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Abstract

Our understanding of how monetary policy works is complicated by an equilibrium-selection

conundrum: because the same path for the nominal interest rate can be associated with mul-

tiple equilibrium paths for inflation and output, there is a long-standing debate about what

the right equilibrium selection is. We offer a potential resolution by showing that small fric-

tions in social memory and intertemporal coordination can remove the indeterminacy. Un-

der our perturbations, the unique surviving equilibrium is the same as that selected by the

Taylor principle, but it no more relies on it; monetary policy is left to play only a stabilization

role; and fiscal policy needs to be Ricardian, even when monetary policy is passive.
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1 Introduction

Can monetary policy regulate inflation and aggregate demand? Does the ZLB trigger a defla-

tionary spiral? Does Ricardian equivalence hold when taxation is non-distortionary, markets are

complete, and consumers have rational expectations and long horizons? One may be inclined

to answer “yes” to all these questions. But the right answer, at least within the dominant policy

paradigm (the New Keynesian model), is that it depends on how equilibrium is selected.

The basic problem goes back to Sargent and Wallace (1975): the same path for the nomi-

nal interest rate is consistent with multiple equilibrium paths for inflation and, in the presence

of nominal rigidity, for output too. The standard approach selects a specific equilibrium by as-

suming that monetary policy satisfies the Taylor principle (Taylor, 1993), or equivalently that it

is “active” (Leeper, 1991). The model’s three “famous” equations then admit a unique bounded

solution, which is the one customarily used to interpret the data and guide policy.1 An alternative

approach, the Fiscal Theory of the Price Level (FTPL),2 selects a different equilibrium by assum-

ing that fiscal policy is “non-Ricardian.” As emphasized by Cochrane (2017, 2018), this invalidates

the answers provided above and elevates government debt and deficits to key determinants of in-

flation and output, even when these variables do not enter the model’s three famous equations.

Because both approaches boil down to untestable assumptions about off-equilibrium strate-

gies of the monetary and fiscal authorities, the debate about which approach is “right” has never

been settled.3 We offer a way out of this dead-end by demonstrating how the core issue hinges

on delicate assumptions about social memory and intertemporal coordination. Once we per-

turb these assumptions, tinily but appropriately, the conventional solution of the New Keynesian

model emerges as the unique rational expectations equilibrium regardless of whether monetary

policy is active or passive. This reinforces the logical foundations upon which one can answer

“yes” to the questions raised in the beginning. And it allows one to think about both the Taylor

principle and the FTPL in new ways, liberated from the equilibrium-selection conundrum.

Preview of main results. A crucial stepping stone of our analysis is the translation of a New

Keynesian economy to a dynamic coordination game among the consumers. The basic idea is

1Like the textbook treatment, we work with the linearized New Keynesian model and restrict attention to bounded
equilibria, which amounts to studying the local determinacy question. As usual, this leaves outside the analysis
self-fulfilling hyper-inflations (Obstfeld and Rogoff, 1983, 2021; Cochrane, 2011) and self-fulfilling liquidity traps
(Benhabib et al., 2002), which can themselves be ruled out by appropriate escape clauses.

2See Leeper (1991), Sims (1994) and Woodford (1995) for the genesis of the FTPL, Cochrane (2005, 2017, 2018) for
extensions and reinterpretations, and Bassetto (2002) for a careful game-theoretic perspective.

3Bassetto (2008) offers a concise and balanced review of the debate, and Canzoneri, Cumby, and Diba (2010) dis-
cuss how it fits in the broader context of the study of the fiscal-monetary interaction. For more thorough discussions
of the role played by off-equilibrium policy threats, see Kocherlakota and Phelan (1999), King (2000), Bassetto (2002),
Cochrane (2007), and Atkeson et al. (2010).
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that one’s optimal spending depends on others’ spending via three GE channels: the feedback

for aggregate spending to income (the Keynesian cross); the feedback from aggregate spending

to inflation (the Phillips curve); and the response of monetary policy (the Taylor rule). The first

two channels contribute to strategic complementarity, and in particular to a dynamic feedback

strong enough to support multiple equilibria; the third pulls in the opposite direction.4

Under this prism, which we develop in Sections 2 and 3, the Taylor principle translates to

the following requirement: let the third channel above be strong enough to guarantee a unique

equilibrium when different generations of consumers can perfectly coordinate their behavior

over time. In the rest of the paper, we instead accommodate a small but appropriate friction

in such coordination and proceed to show how this can eliminate all equilibria except one, that

known as the model’s fundamental or minimum state variable (MSV) solution.

Our main result, developed in Section 4, models the friction as follows. In each period, a con-

sumer learns the current shocks (payoff-relevant or not); with probability λ ∈ [0,1), she knows

nothing else; and with the remaining probability, she inherits the information of another, ran-

domly selected, consumer from the previous period. This lets λ parameterize the speed at which

social memory “fades” over time: for any t , the fraction of the population who “remembers” (i.e.,

can directly or indirectly condition their actions on) the shocks realized at any τ≤ t is (1−λ)t−τ.

The frictionless, representative-agent case is nested withλ= 0; it translates to common knowl-

edge of the economy’s history (which defines what “perfect” coordination means for us); and it

admits a continuum of sunspot and backward-looking equilibria whenever the Taylor principle

is violated. Our main result is that all these equilibria unravel as soon as λ > 0. Only the funda-

mental/MSV solution survives, regardless of whether the monetary policy is active or passive.

Strictly speaking, this result precludes direct observation of the actions of others, or of en-

dogenous outcomes such as inflation and output. But because such outcomes are functions of

the underlying shocks, in the limit as λ→ 0 consumers face vanishing uncertainty about the his-

tory of both shocks and outcomes, suggesting that our conclusions do not necessarily rest on

assuming away either endogenous aggregation of information or endogenous coordination de-

vices. We corroborate this point in Section 5 with two additional results, both of which allow for

direct observation of endogenous outcomes. This requires an adjustment in the perturbation

notion—in particular, the perturbation considered in Proposition 4 amounts to immediate for-

getting of a small component of the fundamentals, whereas that considered in our main result

amounts to asymptotic forgetting of the distant past—but the end result is the same.

4The second channel is shut off with rigid prices but the first channel is always there—whether hidden behind
the representative consumer’s Euler condition or made salient in the “intertemporal Keynesian cross” (Auclert et al.,
2018). This, along with the central role of aggregate demand in Keynesian thinking, explains why we opt to represent
the economy as a game among the consumers instead of one among the firms.
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Interpreting our contribution. The logic behind our results echoes the literature on global

games (Morris and Shin, 2002, 2003) and is subject to a similar qualification: indeterminacy may

strike back if markets or other mechanisms facilitate enough coordination (Angeletos and Wern-

ing, 2006; Atkeson, 2000). That said, it is useful to recognize the following point. In our context,

any equilibrium other than the MSV solution is sustained by a self-fulfilling infinite chain over

different generations of players: today’s consumers are responding to a payoff-irrelevant variable

(e.g., the current sunspot or the past rate of inflation) because and only because they expect to-

morrow’s consumers to do the same on the basis of a similar expectation about behavior further

into the future, and so on. This explains why the relevant perturbations relate, one way or an-

other, to social memory. And it suggests that the requisite type of common knowledge might be

harder to attain in our context than in the case of, say, a self-fulfilling bank run.

All in all, we therefore view our contribution not as a definite resolution of the New Keynesian

model’s indeterminacy problem but rather in the following terms: (i) as a new lens for under-

standing this problem; (ii) as a formal justification for treating it like a bug instead of a feature;

and (iii) as an invitation to reconsider the meaning of both the Taylor principle and the FTPL. The

first two points should be self-evident by now, so let us expand on the last.

Consider first the Taylor principle. Our uniqueness result removes the need for equilibrium

selection but leaves room for sunspot-like fluctuations in the form of overreaction to noisy public

news (Morris and Shin, 2002), shocks to higher-order beliefs (Angeletos and La’O, 2013; Benhabib

et al., 2015), or related forms of bounded rationality (Angeletos and Sastry, 2021). This in turn lets

the slope of the Taylor rule to play a new function: to regulate the macroeconomic complemen-

tarity and, thereby, the magnitude of such sunspot-like fluctuations along the unique equilib-

rium. Our contribution is therefore not to rule out “animal spirits” altogether but rather to recast

the Taylor principle as a form of on-equilibrium stabilization instead of an off-equilibrium threat.

Consider next the FTPL. In Section 6, we show the following elementary result for a suitable

extension of our model: as long as consumers are neither rationally confused nor plainly irra-

tional, the economy reduces to the same game as that in the absence of fiscal policy. This for-

malizes the sense in which government debt and deficits are sunspots and directly implies that

the equilibrium selected by the FTPL is not robust to our perturbations: fiscal policy has to be

Ricardian even when monetary policy is passive.

Like our main result, this lesson is subject to the following qualification: at this point, it is

anyone’s guess whether the real world is better approximated by the full-information benchmark,

our specific perturbations, or other plausible alternatives. Still, our analysis illustrates the logical

fragility of the existing formulation of the FTPL and, by extension, the value of fresh takes on it.

For instance, we would favor a reformulation in which the equilibrium-selection issue is moot
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(whether with the help of our perturbations or otherwise) and the fiscal-monetary interaction is

modeled as a game of chicken between the two authorities.

Related literature. The title of our paper could have been shared by Atkeson et al. (2010): that

paper, too, seeks to achieve determinacy without the Taylor principle. But this means something

very different there. That paper replaces Taylor rules with a class of more sophisticated strate-

gies, which, inter alia, avoid Cochrane (2011)’s criticism that active monetary policy amounts to

a threat to “blow up” inflation. But Bassetto (2002, 2005) had previously shown that basically the

same point holds for the FTPL: that theory can be extended to allow for more sophisticated strate-

gies for the fiscal authority and to escape the corresponding criticism that the non-Ricardian as-

sumption amounts to a threat to “blow up” the government budget (Kocherlakota and Phelan,

1999; Buiter, 2002). In short, these works do not address the equilibrium-selection conundrum;

they only deepen it. By contrast, our paper shows how appropriate perturbations of the private

sector’s information/coordination can dispense with this conundrum altogether.

Our main result (Proposition 2) reminds Rubinstein (1989), Morris and Shin (1998, 2003), and

Abreu and Brunnermeier (2003): certain equilibria unravel because of a series of contagion ef-

fects related to higher-order beliefs. Our second result (Proposition 3) has the flavor of rational

inattention: agents observe an endogenous coordination device with idiosyncratic noise. Our

third result (Proposition 4) connects to Bhaskar (1998) and Bhaskar, Mailath, and Morris (2012):

it combines a purification in payoffs with finite social memory. The common thread is the relax-

ation of common knowledge and the resulting coordination friction. But the precise connections

between our results and the related literatures deserve further exploration.

A large literature has already incorporated information/coordination frictions in the New

Keynesian model (Mankiw and Reis, 2002; Woodford, 2003; Maćkowiak and Wiederholt, 2009;

Angeletos and Lian, 2018). But it has not addressed the determinacy issue: it has focused ex-

clusively on how such frictions shape the model’s MSV solution, while assuming away all other

solutions (by invoking, implicitly or explicitly, the Taylor principle). We do the exact opposite: our

perturbations remove all other solutions without necessarily affecting the MSV solution itself.

A different literature has attempted to refine the model’s solutions by requiring that they are E-

stable (McCallum, 2007; Christiano et al., 2018). This approach, which seeks to formalize what it

takes for a rational expectations equilibrium to be “learnable,” and has had mixed success.5 Still,

we view this approach and ours as complements in that they both contribute towards reinforcing

the logical foundations of the conventional, or “monetarist,” approach.

5For example, sunspot equilibria can be E-stable if the interest rate rule is written as a function of expected in-
flation (Honkapohja and Mitra, 2004). And there is a debate on how the E-stability of backward-looking solutions
depends on the observability of shocks (Cochrane, 2011; Evans and McGough, 2018).
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The determinacy problem we are after extends from Rational Expectations Equilibrium (REE)

to a larger class of solution concepts that relax the perfect coincidence between subjective beliefs

and objective outcomes but preserve a fixed-point relation between the two, such as cognitive

discounting (Gabaix, 2020) and diagnostic expectations (Bordalo et al., 2018). By contrast, Level-

K Thinking (García-Schmidt and Woodford, 2019; Farhi and Werning, 2019) produces a unique

solution because it shuts down completely the feedback from objective reality to subjective be-

liefs. This assumption seems too strong, especially in the context of stationary environments.

Finally, it seems a safe guess that our methods extend from our setting to a larger class of

linear, forward-looking, rational-expectations models, like those studied in Blanchard (1979) and

Blanchard and Kahn (1980). But they have be to be translated with caution in non-linear settings,

especially when these feature multiple steady-state equilibria. In short, our paper speaks to the

question of local determinacy but not necessarily to that of global determinacy.

2 A Simplified New Keynesian Model

In this section, we introduce our version of the New Keynesian model. This contains two unusual

assumptions: a specific OLG structure for the consumers and an ad hoc Phillips curve. These as-

sumptions ease the exposition, especially once we perturb common knowledge of the economy’s

history; but as discussed in Section 6, they do not drive the results.

An intertemporal Keynesian cross (aka a Dynamic IS equation)

Time is discrete and is indexed by t . There are overlapping generations of consumers, each living

two periods. A consumer born at t has preferences given by

u(C 1
i ,t )+βu(C 2

i ,t+1)e−%t ,

where C 1
i ,t and C 2

i ,t+1 are consumption when young and old, respectively, u(C ) ≡ 1
1−1/σC 1−1/σ,

β ∈ (0,1) is a fixed scalar, %t is an intertemporal preference shock (the usual proxy for aggregate

demand shocks), and Ei ,t is the consumer’s expectation. Young and old consumers earn the same

income. Young consumers can borrow or save using the single asset traded in the economy, a

one-period nominal bond; old consumers pay out any outstanding debt, or eat their savings,

before they die. The budget constraint of a consumer born at t are therefore given by

C 1
i ,t +Bi ,t = Yt and C 2

i ,t+1 = Yt+1 + It

Πt+1
Bi ,t ,

where Bi ,t is her saving/borrowing in the first period, It is the (gross) nominal interest rate be-

tween t and t +1, andΠt+1 is the corresponding inflation rate.
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Old consumers are “robots:” they face no optimizing margin, their consumption mechani-

cally adjusts to meet their end-of-life budget. Young consumers, instead, are “strategic:” they op-

timally choose consumption and saving/borrowing. After the usual log-linearization, this trans-

lates to the following optimal consumption function:6

c1
i ,t = Ei ,t

[
1

1+β yt + β
1+β yt+1 − β

1+βσ(it −πt+1 −%t )
]

. (1)

Pick any t . Because the average saving/borrowing of the young has to be zero,
∫

c1
i ,t di = yt ;

and because the average net wealth of old has to be zero as well,
∫

c2
i ,t di = yt . Combining, we

infer that the two groups consume the same—or equivalently that aggregate consumption, ct ,

coincides with the average consumption of the young. Computing the latter from (1), and impos-

ing yt = ct , we infer that, for any process of interest rate and inflation, the process for aggregate

spending must satisfy the following equation:

ct = Ēt

[
1

1+βct + β
1+βct+1 − β

1+βσ(it −πt+1 −%t )
]

, (2)

where Ēt [·] = ∫
Ei ,t [·]di is the average expectations of the young.

As evident from its derivation, this equation combines consumer optimality with market

clearing; and it encapsulates the positive feedback between aggregate spending and income,

holding constant the real interest rate. This equation can thus be read as a special case of the

“intertemporal Keynesian cross” (Auclert et al., 2018), or as as Dynamic IS equation.

Connection to standard New Keynesian model

Although our version of the Dynamic IS equation looks different from its textbook counterpart, it

actually nests it when there is full information. In this benchmark, Ēt can be replaced by Et , which

henceforth denotes the rational expectation conditional on full information about ht . Along with

the fact that ct and it are measurable in ht , this means that in this case equation (2) reduces to

ct = 1
1+βct + β

1+βEt [ct+1]− β
1+βσ(it −Et [πt+1]−%t ),

or equivalently

ct = Et [ct+1]−σ(it −Et [πt+1]−%t ),

which is evidently the same as the Euler condition of a representative, infinitely-lived consumer.

This clarifies the dual role of the adopted micro-foundations. With full information, they

6Throughout, we log-linearize around the steady state in which %t = 0,Πt = 1, and It =β−1; and we use lower-case
variables to denote log-deviations from steady state. Also, (1) is a version of the Permanent Income Hypothesis. The
only subtlety is that we have allowed consumers to be inattentive to current income and current interest rates (which
is why yt and it appear inside the expectation operator). But as we explain below, such inattention can be vanishingly
small under our main perturbation, and can be completely dispensed with under the variant perturbations.
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let our model translate to the standard, representative-agent, New Keynesian model. And away

from this benchmark, they ease the exposition by letting the intertemporal Keynesian cross take a

particularly simple form and by equating the players in our upcoming game representation to the

young consumers. These simplifications are relaxed in Section 6, without changing the essence.

A Phillips curve and a Taylor rule

For the main analysis, we abstract from optimal price-setting behavior (firms are “robots”) and

impose the following, ad hoc Phillips curve:

πt = κ(yt +ξt ), (3)

where κ≥ 0 is a fixed scalar and ξt is a “supply” or “cost-push” shock. As shown in Section 6, our

arguments directly extend to the fully micro-founded, forward-looking, New Keynesian Phillips

curve. We suspect the same is true for a Neoclassical Phillips curve a la Lucas (1972). In all cases,

the essence (for our purposes) is that there is a positive GE feedback from aggregate output to

inflation. Equation (3) merely stylizes this feedback in a convenient form.

We finally assume that monetary policy follows a Taylor rule:

it = zt +φπt , (4)

where zt is a random variable, possibly correlated with %t and ξt , and φ≥ 0 is a fixed scalar that

parameterizes how aggressively the monetary authority raises the interest rate in response to

inflationary pressures.7 As is well known and will be reviewed shortly, φ > 1 is necessary and

sufficient for the uniqueness of bounded equilibrium in the standard paradigm—but not under

our perturbations. Our results will indeed apply even if φ= 0, which nests interest rate pegs.

The model in one equation—and the economy as a game

From (3) and (4), we can readily solve for πt and it as simple functions of yt , which itself equals

ct . Replacing into (2), we conclude that the model reduces to the following single equation:

ct = Ēt [(1−δ0)θt +δ0ct +δ1ct+1] (5)

where δ0,δ1 are fixed scalars and θt is a random variable, defined by

δ0 ≡ 1−βσφκ
1+β < 1, δ1 ≡ β+βσκ

1+β > 0, θt ≡− 1

1+φκσ
(
σzt −σ%t +σφκξt −σκEt [ξt+1]

)
.

7Similarly to King (2000) and Atkeson et al. (2010), letting zt be correlated with %t and ξt helps disentangle the
stabilization and equilibrium selection functions of Taylor rules in the standard paradigm: the former can be served
by the design of zt , the latter by the restriction φ> 1.
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By construction, equation (5) summarizes private sector behavior and market clearing, for

any information structure and any monetary policy. Different information structures change the

properties of Ēt but do not change the equation itself. Similarly, different monetary policies map

to different values for δ0 or different stochastic processes for θt , via the choice of, respectively, a

value for φ or a stochastic process for zt . But for any given monetary policy, we can understand

equilibrium in the private sector by studying equation (5) alone.

Equation (5) and the micro-foundations behind it also facilitate the interpretation of the econ-

omy as a certain infinite-horizon game. In this game, the only players acting at t are the young

consumers of that period (old consumers, firms, and the monetary authority are “robots,” in the

sense already explained) and their best responses are obtained by combining their optimal con-

sumption functions with first-order knowledge of market clearing, the Phillips curve, and the

Taylor rule. This gives the individual best response at t as

ci ,t = Ei ,t [(1−δ0)θt +δ0ct +δ1ct+1] , (6)

and recasts (5) as the period-t average best response function. Under this prism, δ0 and δ1 pa-

rameterize, respectively, the intra-temporal and the inter-temporal degree of strategic comple-

mentarity, while θt identifies the game’s fundamental (i.e., the only payoff-relevant exogenous

random variable). Finally, by regulating the strength of the underlying GE feedbacks, different

values for β, κ, and φ map to different degrees of strategic complementarity.

Parenthesis: Sticky vs flexible prices

The slope of the Phillips curve, κ, can be arbitrarily large but not literally infinite. Some degree of

nominal rigidity is necessary in order to conceptualize the economy as a dynamic coordination

game and, thereby, to introduce the relevant friction. We clarify this point in Appendix B. We

also suspect that a version of our insights may apply to flexible-price models with a well-defined

demand for money (e.g., models with money in the utility function). We will not explore this idea,

but we will make clear that our formal arguments do not rely on the precise micro-foundations.

Fundamentals, sunspots, and the equilibrium concept

Aggregate uncertainty is of two sources: fundamentals and sunspots. The former are herein con-

veniently summarized in θt . The latter are represented by a random variable ηt that is indepen-

dent of the current, past, and future values of θt . As explained in Section 5, our arguments extend

to essentially arbitrary specifications of these variables. To ease the exposition, the main analysis

makes the following simplification:
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Assumption 1 (Simplification). Both the fundamental θt and the sunspot ηt are i.i.d. over time.

Let ht capture the history of all fundamentals and sunspots up to and including period t . To

simplify the exposition, we assume that histories are infinite and, accordingly, focus on stationary

equilibria. More precisely, we let ht ≡ {θt−k ,ηt−k }∞k=0 and we define an equilibrium as follows:

Definition 1 (Equilibrium). An equilibrium is any solution to equation (5) along which: expecta-

tions are rational, although potentially based on imperfect information about ht ; the outcome is a

stationary, linear function of the underlying shocks, namely

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

γkθt−k (7)

where {ak ,γk } are known coefficients; and the outcome is bounded in the sense that V ar (ct ) <∞.8

Recall that consumer optimality, firm behavior, and market clearing have already been em-

bedded in equation (5). It follows that the above definition is the standard definition of a Rational

Expectations Equilibrium (REE), except for the addition of three “auxiliary” restrictions: station-

arity, linearity, and boundedness. The first two restrictions are technical.9 The third is of sub-

stance but has the usual interpretation: the exclusion of unbounded equilibria can be justified

by appropriate “exit” strategies along the lines of Taylor (1993), Christiano and Rostagno (2001)

and Atkeson et al. (2010), namely a commitment to switch from the Taylor rule to money-growth

targeting or whatever else it takes for keeping inflation within some bounds.

Finally, and circling back to our game-theoretic prism, note that the following is true: because

every agent is infinitesimal, one’s deviations are of no consequence for others, so there is no need

to specify off-equilibrium beliefs. The economy’s Rational Expectations Equilibria (REE) thus

coincide with the corresponding game’s Perfect Bayesian Equilibria (PBE).

3 The Standard Paradigm

In this section, we consider the full-information version of our model (which is, in essence, the

standard New Keynesian model); we review its determinacy problem; and we finally contextual-

ize our departures from this benchmark.

8Note that V ar (ct ) can be finite only if there exists a scalar M > 0 such that |ak | ≤ M and
∣∣γk

∣∣≤ M for all k.
9The stationarity restriction comes hand-in-hand with the assumption of infinite history and can readily be re-

laxed; see Appendix B for an illustration. The linearity restriction, on the other hand, is strictly needed for tractability;
but we have no reason to believe that it drives our results, plus it is commonplace in the literature.
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Full information, the MSV solution, and the Taylor principle

Suppose that all consumers know the entire ht , at all t . As shown earlier, it is then as if there

is a representative, fully informed and infinitely lived, consumer—just as in the textbook case.

Accordingly, equation (5), which summarizes equilibrium, reduces to the following:

ct = θt +δEt [ct+1], (8)

where Et [·] ≡ E[·|ht ] is the rational expectation conditional on full information and

δ≡ δ1

1−δ0
= 1+κσ

1+φκσ > 0.

Note that δ is necessarily positive but can be on either side of 1, depending on φ.

Because equation (8) is purely forward looking and θt is i.i.d., ct = cF
t ≡ θt is necessarily an

equilibrium. This is known as the model’s “fundamental” or “minimum state variable (MSV)”

solution (McCallum, 1983), and is the basis of the conventional understanding of how monetary

policy works. For instance, if the central bank can adjust zt in response to the underlying demand

and supply shocks, she can guarantee θt = 0. This directly translates to ct = 0 (“closing the output

gap”) under the MSV solution—but not under others solutions.

To rule out other solutions and justify conventional policy predictions, the standard approach

imposes the Taylor principle. In our context, just as in the textbook treatment, this principle is

defined by the restriction φ > 1. This in turn translates to δ0 +δ1 < 1 and, equivalently, δ < 1.

The former can be read as “the overall degree of strategic complementarity is small to guarantee

a unique equilibrium,” the latter as “the dynamics are forward-stable.” And conversely, φ < 1

translates to “the complementarity is large enough to support multiple equilibria” (δ0 +δ1 > 1)

and the “dynamics are backward-stable” (δ> 1).

This discussion underscores the tight connection between our way of thinking about determi-

nacy (the size of the strategic complementarity) and the standard way (the size of the eigenvalue).

The next proposition verifies this point and also characterizes the type of equilibria that emerge

in addition to the MSV solution once the Taylor principle is violated.10

Proposition 1 (Full-information benchmark). Suppose that ht is known to every i for all t , which

means in effect that there is a representative, fully informed, agent. Then:

(i) There always exist an equilibrium, given by the fundamental/MSV solution cF
t .

(ii) When the Taylor principle is satisfied (φ> 1), the above equilibrium is the unique one.

10By restricting φ ≥ 0, we have guaranteed δ > 0. If we allow δ < 0, which is possible if φ is sufficiently negative,
Proposition 1 and the discussion after it continue to hold, provided that we recast the Taylor principle as δ ∈ (−1,1).
As for our upcoming uniqueness result (Proposition 2), this readily extends to negative φ and δ.
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(iii) When this principle is violated (φ< 1), there exist a continuum of equilibria, given by

ct = (1−b)cF
t +bcB

t +acηt , (9)

where a,b ∈R are arbitrary scalars and cB
t ,cηt are given by

cB
t ≡−

∞∑
k=1

δ−kθt−k︸ ︷︷ ︸
backward-looking, pseudo-fundamental component

and cηt ≡
∞∑

k=0
δ−kηt−k︸ ︷︷ ︸

pure sunspot component

. (10)

To understand the type of non-fundamental equilibria documented in part (iii) above, take

equation (8), backshift it by one period, and rewrite it as follows:

Et−1[ct ] = δ−1(ct−1 −θt−1). (11)

Since ηt is unpredictable at t −1, the above is clearly satisfied with

ct = δ−1(ct−1 −θt−1)+aηt , (12)

for any a ∈R. As long as δ> 1, we can iterate backwards to obtain

ct =−
∞∑

k=1
δ−kθt−k +a

∞∑
k=0

δ−kηt−k = cB
t +acηt . (13)

This is both bounded, thanks to δ> 1, and a rational-expectations solution to (11), by construc-

tion, which verifies that cB
t +acηt constitutes an equilibrium, for any a ∈R. Part (iii) of the Propo-

sition adds that the same is true if we replace cB
t with any mixture of it and the MSV solution.

To illustrate what all these equilibria are, switch off momentarily the fundamental shocks.

Then, cF
t = cB

t = 0 and (9) reduces to ct = acηt , which is a pure sunspot equilibrium of arbitrary

aptitude. In this equilibrium, consumers respond to the current sunspot because and only be-

cause they expect future agents to keep reacting to it, in perpetuity.

Now let us switch off the sunspots and switch on the fundamentals. Multiplicity then takes

the following form: the same path for interest rates or other fundamentals maps to a continuum

of different paths for aggregate spending and inflation. Consider, for example, the solution given

by ct = cB
t . Along it, aggregate spending is invariant to the current interest rate and increases with

past interest rates. This may sound paradoxical but is sustained by basically the same self-fulling

infinite chain as that described above: consumers spend more in response to higher interest rates

because and only because they expect future consumers to do the same in perpetuity. The same

is true for any equilibrium of the form (9) for b 6= 0, and explains why all such equilibria can be

thought of as both non-fundamental and backward-looking.

All in all, the Taylor principle is therefore used not only to rule out sunspots but also to secure

the logical foundations of the modern policy paradigm. The rest of our paper attempts to liberate

these foundations from their strict reliance on the Taylor principle, or any substitute thereof.
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Beyond the full-information benchmark: a challenge and the way forward

Consider conditions (12) and (13). Clearly, these are equivalent representations of the same equi-

librium: the first is recursive, the second is sequential. This equivalence means that all the equi-

libria that can be supported by perfect knowledge of ht = {θt−k ,ηt−k }∞k=0 coincide with those that

can be supported by perfect knowledge of (θt ,ηt ;θt−1,ct−1). But what if agents lack such perfect

knowledge, as it is bound to the case in reality?

Regardless of what agents know or don’t know, one can always represent any equilibrium in

a sequential form, or as in equation (7). This is simply because ct has to be measurable in the

history of exogenous aggregate shocks, fundamental or otherwise. But it is far from clear if and

when there is an equivalent recursive representation. In fact, a finite-state recursive representa-

tion is generally impossible when agents observe noisy signals of endogenous outcomes, due to

the infinite-regress problem first highlighted by Townsend (1983).

This poses a challenge for what we want to do in this paper. On the one hand, we seek to

highlight how fragile all non-fundamental solutions can be to perturbations of the aforemen-

tioned kinds of common knowledge, or to small frictions in coordination. On the other hand, we

need to make sure that these perturbations do not render the analysis intractable.

To accomplish this dual goal, in the rest of the paper we follow two strategies. Our main one,

in Section 4, takes off from (13), or the sequential representation. An alternative, in Section 5,

circles back to (12), the recursive representation. Both strategies illustrate the fragility of non-

fundamental equilibria, each one from a different angle.

4 Uniqueness with Fading Social Memory

This section contains our main result. We introduce a friction in social memory and show how it

yields a unique equilibrium regardless of monetary policy.

Main assumption

For the purposes of this and the next section, we replace the assumption of a representative,

fully-informed agent with the following, incomplete-information variant:

Assumption 2 (Social memory). In every period t , a consumer’s information set is given by

Ii ,t = {(θt ,ηt ), · · · , (θt−s ,ηt−s)},

where s ∈ {0,1, · · · } is drawn from a geometric distribution with parameter λ, for some λ ∈ (0,1].

12



To understand this assumption, note that herein s indexes the idiosyncratically random length

of the history of shocks that an agent knows. Next, recall that the geometric distribution means

that s = 0 with probability λ, s = 1 with probability (1−λ)λ, and more generally s = k with proba-

bility (1−λ)kλ, for any k ≥ 0. By the same token, the fraction of agents who know at least the past

k realizations of shocks is given by µk ≡ (1−λ)k .

One can visualize this as follows. At every t , the typical player (young consumer) learns the

concurrent shocks; with probability λ, she learns nothing more; and with the remaining proba-

bility, she inherits the information of another, randomly selected player from the previous period

(a currently old consumer). In this sense, λ parameterizes the speed at which social memory (or

common-p belief of past shocks) fades over time.

Two remarks help complete the picture. First, although we have herein specified the available

information about fundamentals in terms of the “summary” variable θt , this is only for exposi-

tional simplicity: we can readily replace θt in the statement of Assumption 2 with (%t ,ξt , zt ), the

vector of all the primitive payoff-relevant shocks. Second, when φ = 0, knowledge of zt trans-

lates to knowledge of it . That is, for the special case of interest rate pegs, Assumption 2 and our

upcoming uniqueness result is consistent with perfect knowledge of the policy instrument. As

for the more general case in which φ 6= 0, Assumption 2 requires that consumers be uncertain

about, or inattentive, to the current interest rate (and all other endogenous outcomes). But such

uncertainty becomes vanishingly small in the limit as λ→ 0+: in this limit, almost all consumers

become nearly perfectly informed about nearly infinite histories of the exogenous shocks and,

therefore, of the endogenous outcomes as well.11

Main result

The full-information benchmark is nested with λ = 0; this indeed translates to Ii ,t = ht (perfect

knowledge of the infinite history) for all i and t . The question of interest is what happens forλ> 0,

and in particular as λ→ 0+. In this limit, the friction becomes vanishingly small, in the sense that

almost every agent knows the history of shocks up to an arbitrarily distant point in the past. But

the following is also true: no matter how small λ is, as long as it is not exactly zero, we have that

limk→∞µk = 0, which means that shocks are expected to be “forgotten” in the very distant future.

As shown next, this causes all non-fundamental equilibria to unravel.

11See Proposition 7 in Appendix B for a formalization of this point, as well as for a qualification. Also, let us em-
phasize that we can reconcile our upcoming uniqueness result with perfect knowledge of current interest rates and
current income if (i) we abstract from the possibility that consumers extract information about the past sunspots
from these variables; or (ii) we allow for such signal extraction but invoke a different perturbation argument, that
developed in Subsection 5.
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Proposition 2 (Determinacy without the Taylor principle). Suppose that social memory is im-

perfect in the sense of Assumption 2, for any λ> 0. Regardless of φ, or of δ0 and δ1, the equilibrium

is unique and is given by the fundamental/MSV solution.12

The result is proven in Appendix A for arbitrary δ0 and δ1. To illustrate the main argument as

transparently as possible, here we set δ0 = 0 and δ1 = δ, for arbitrary δ> 0 (including δ> 1). This

zeroes in on the role of coordination across time. We also abstract from fundamentals and focus

on ruling out pure sunspot equilibria. That is, we specialize equation (5) to

ct = δĒt [ct+1]; (14)

we search for solutions of the form ct =∑∞
k=0 akηt−k ; and we verify that ak = 0 for all k.

By Assumption 2, we have that, for all k ≥ 0,

Ēt [ηt−k ] =µkηt−k

where µk ≡ (1−λ)k measures the fraction of the population at any given date that know, or re-

member, a sunspot realized k periods earlier. Future sunspots, on the other hand, are known to

nobody. It follows that, along any candidate solution, average expectations satisfy

Ēt [ct+1] = Ēt

[
a0ηt+1 +

∞∑
k=1

akηt+1−k

]
= 0+

+∞∑
k=0

ak+1µkηt−k .

By the same token, condition (14) rewrites as

+∞∑
k=0

akηt−k︸ ︷︷ ︸
ct

= δ
+∞∑
k=0

ak+1µkηt−k︸ ︷︷ ︸
Ēt [ct+1]

.

For this to be true for all sunspot realizations, it is necessary and sufficient that, for all k ≥ 0,

ak = δµk ak+1, (15)

or equivalently

ak+1 =
ak

δµk
. (16)

Because µk → 0 as k →∞, |ak | explodes to infinity, and hence a bounded solution does not exist,

unless a0 = 0. But a0 = 0 implies ak = 0 ∀k. We conclude that the latter identifies the unique

bounded solution. That is, all sunspot equilibria are ruled out and only the MSV solution survives.

12Note that the fundamental/MSV solution remains the same as we move away from λ= 0 thanks to the assump-
tion that Ii ,t contains xt always. As mentioned in the Introduction, this helps isolate our contribution from the
existing literature on informational frictions, which focuses on how the MSV solution is influenced by imperfect in-
formation about xt but does not address the determinacy issue. Here, we do the exact opposite, but one could have it
both ways: modify Assumption 2 so as to remove perfect information about xt and reshape the MSV solution, while
also preserving our argument for uniqueness.
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Comparison to full information and the importance of limk→∞µk = 0

We will explain the essence of our result momentarily. But first, it is useful to repeat the above

argument for the knife-edge case with λ= 0. In this case, µk = 1 ∀k and condition (16) becomes

ak+1 = δ−1ak .

When δ < 1 (equivalently φ > 1), this still explodes as k → ∞ unless a0 = 0, which means that

the unique bounded solution is once again ak = 0 for all k. But when δ > 1, the above remains

bounded, and indeed converges to zero as k → ∞, for arbitrary a0 = a ∈ R. This recovers the

sunspot equilibria of Proposition 1.

Note next that the result does not depend on the assumption that memory decays at an ex-

ponential rate, but it depends on it vanishing asymptotically, i.e., on µk → 0 as k →∞. If instead

µk → µ for some µ ∈ (0,1), multiplicity would have remained for δ> 1/µ; that is, the Taylor prin-

ciple would have been relaxed but would not have been completely dispensed with. Notwith-

standing this point, let us emphasize that key is not whether memory actually vanishes over time

but rather how agents reason about the future. We expand on this next.

Intuition and the role of higher-order beliefs

To appreciate the essence of our result and what lies beneath it, focus on the effects of the first-

period sunspot and let { ∂ct
∂η0

}∞t=0 stand for the corresponding impulse response function (IRF). We

can then rewrite condition (15) as
∂ct

∂η0
= δµt

∂ct+1

∂η0
.

This is the same condition as that characterizing the IRF of ct to η0 in a “twin” representative-

agent economy, in which condition (5) is modified as follows:

ct = δ̃tEt [ct+1], with δ̃t ≡ δµt .

Under this prism, it is as if we are back to the standard New Keynesian model but the relevant

eigenvalue, or the overall strategic complementarity, has become time-varying and has been re-

duced from δ to δ̃t . Furthermore, because µt → 0 as t →∞, we have that there is T large enough

but finite so that 0 < δ̃t < 1 for all t ≥ T, regardless of δ. In other words, the twin economy’s dy-

namic feedback becomes weak enough that ct cannot depend on η0 after T. By induction then,

ct cannot depend on η0 before T either.13

This interpretation of our result must be clarified as follows. Here we focused on the response

13Although this argument assumed δ0 = 0, it readily extends to δ0 6= 0. In this case, the twin economy has both δ0

and δ1 replaced by, respectively, µtδ0 and µtδ1. That is, both types of strategic complementarity are attenuated.
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of ct to η0. This means that our “twin” economy is defined from the perspective of period 0, and

that δ̃t = µtδ measures the feedback from t + 1 to t in a very specific sense: as perceived from

agents in period 0, when they contemplate whether to react to η0. To put it differently, in this

argument t indexes not the calendar time but rather the belief order, or how far into the future

agents reason about the effects of an innovation today.

Let us further explain. Because η0 is payoff irrelevant in every t , period-0 agents have an

incentive to respond to it only if they are confident that period-1 agents will also respond to it,

which in turn can be true only if they are also confident that period-1 will themselves be confident

that period-2 agents will do the same, and so on, ad infinitum. It is this kind of “infinite chain”

that supports sunspot equilibria when λ = 0. And conversely, the friction we have introduced

here amounts to the typical period-0 agent reasoning as follows:

“I can see η0. And I understand that it would make sense to react to it if I were con-

fident that all future agents will keep conditioning their behavior on it in perpetuity.

But I worry that future agents will fail to do so, either because they will be unaware of

it, or because they may themselves worry that agents further into the future will not

react to it. By induction, I am convinced that it makes sense not to react to η0 myself.”

Two remarks help complete the picture. First, the reasoning articulated above, and the proof

given earlier, can be understood as a chain of contagion effects from “remote types” (uninformed

agents in the far future) to “nearby types” (informed agents in the near future) and thereby to

present behavior. This underscores the high-level connection between our approach and the

global games literature (Morris and Shin, 1998, 2003).

Second, the aforementioned worries don’t have to be “real” (objectively true). That is, we can

reinterpret Assumption 2 as follows: agents don’t forget themselves but worry that others will

forget. Strictly speaking, this requires a modification of the solution concept: from REE to PBE

with misspecified priors about one another’s knowledge, along the lines of Angeletos and Sastry

(2021). But the essence is the same: the fear that agents far in the future may fail to support a

sunspot, or backward-looking, equilibrium causes any such equilibrium to unravel.

5 Robustness and Complementary Perturbations

In this section, we explain how our uniqueness result generalizes to more flexible specifications

of the fundamentals and the sunspots, provided of course that Assumption 2 is maintained. We

next replace this assumption with two variants, which accommodate direct observation of past

outcomes and, thereby, endogenous coordination devices. As flagged in the Introduction, these
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variants may not fully address the question of realism. But they circle back to the discussion

of extensive and recursive representations of REE; they allow our insights to translate from the

one perspective to the other; and they ultimately reinforce our message that the indeterminacy

problem can be treated as a bug instead of a feature. At the end of the section, we also comment

on the distinction between local and global determinacy. Readers interested primarily in the

applied content of our contribution may skip this section and jump to Section 6.

Persistent fundamentals

In the main analysis we assumed that the fundamental θt is uncorrelated over time. Relaxing this

assumption changes the MSV solution but does not affect our determinacy result.

To illustrate, suppose that θt follows an AR(1) process: θt = ρθt + εt , where ρ ∈ (−1,1) is a

fixed scalar and εt ∼N (0,1) is a serially uncorrelated innovation. As long as ρ 6= 0, an innovation

affects payoffs not only today but also in the future. This naturally modifies the MSV solution.

Indeed, if we guess that ct = γθt for some γ ∈R and substitute this into (8), we infer that the guess

is correct if and only if γ= 1+δργ. For this to admit a solution, it is necessary and sufficient that

ρ 6= δ−1. Provided that this is the case, the MSV solution exists and is now given by cF
t = 1

1−δρθt .

Modulo this minor adjustment, Proposition 2 directly extends. This claim is verified in Appendix

C, indeed for a more general specification of the fundamental uncertainty: such generality natu-

rally modifies the MSV solution but does not interfere with our uniqueness argument.

Let us now zero in on the role of ρ 6= δ−1 in the above example. This restriction is used to

guarantee the existence of the MSV solution. But it is not needed in our argument for ruling out

any other solution. For the later purpose, it suffices to invoke Assumption 2 alone. Finally, note

that the comparative statics of the MSV solution with respect to θt switch sign depending on

whether ρ is lower or higher than δ−1. In particular, when ρ > δ−1, the MSV solution exhibits the

so-called neo-Fisherian property: a sufficiently persistent increase in the nominal interest rate

triggers an increase in inflation and the output. This raises number of delicate questions, such

as whether the neo-Fisherian property is realistic, whether the MSV solution can be obtained

by forward induction, or even whether the New Keynesian model is mis-specified. But these

questions are beyond the scope of our paper.

Persistent sunspots

Let us now revisit the assumption that the sunspot is serially uncorrelated. As in the case of

fundamentals, this is assumption can readily be relaxed, except for one special case: when ηt

follows an AR(1) process with autocorrelation exactly equal to δ−1. In this case, ct = cF
t + aηt
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is an equilibrium for any a and is supported by knowledge of the concurrent θt and ηt alone.

Social memory of the distant past is no more needed, because the exogenous sunspot happens

to coincide with the right sufficient statistic of economy’s infinite history.

This situation seems exceedingly unlikely insofar as the sunspot is an exogenous random vari-

able. But what if agents can devise an endogenous sunspot? For instance, could it be that agents

coordinate on an equilibrium that lets an endogenous outcome, such as perhaps ct itself, repli-

cate the requisite sunspot? This possibility still presumes significant intertemporal coordination,

but the approach taken thus far was not designed to address it. We thus address it in the rest of

this section, with the help of two variant perturbations.

Recursive sunspot equilibria: another example of fragility

Recall that, with full information, our model boils down to the following equation:

ct = θt +δEt [ct+1],

where δ≡ δ1
1−δ0

and Et is the full-information rational expectation. Let us momentarily shut down

the fundamentals, assume that δ> 1, and focus on the set of all pure sunspot equilibria:

ct = a
∞∑

k=0
δkηt−k , (17)

for arbitrary a 6= 0. As noted earlier, this can be represented in recursive form as

ct = aηt +δ−1ct−1. (18)

It follows that all sunspot equilibria can be supported with the following “minimal” informa-

tion set: Ii ,t = {ηt ,ct−1}. Intuitively, ct−1 endogenously serves the role of the knife-edge persistent

sunspot discussed earlier.

Taken at face value, this challenges our message. But as shown next, this logic, too, can be

fragile. Suppose that information is given by

Ii ,t = {ηt , si ,t }, with si ,t = ct−1 +εi ,t .

Here, si ,t is a private signal of the past aggregate outcome, εi ,t ∼ N (0,σ2) is idiosyncratic noise,

and σ ≥ 0 is a fixed parameter. When σ = 0, we are back to the case studied above, and the

entire set of sunspot equilibria is supported. When instead σ > 0 but arbitrarily small, agents’

knowledge of the past outcome is only slightly blurred by idiosyncratic noise. As shown next, this

causes all sunspot equilibria to unravel.

Proposition 3. Consider the economy described above. For any σ> 0, not matter how small, and

regardless of δ0 and δ1, there is a unique equilibrium and it corresponds to the MSV solution.
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The proof is actually quite simple. But we prefer to delegate it to the Appendix, because the

present example is still special in two regards: it rules out public signals of ct−1; and it rules out

information about longer histories.

The first limitation is easy to address: Proposition 3 readily generalizes to si ,t = ct−1+vt +εi ,t ,

where vt is aggregate noise and εi ,t is idiosyncratic noise. This can be interpreted as a situation

where a publicly available statistic is not only contaminated with measurement error but also

observed with idiosyncratic noise due to rational inattention (Sims, 2003) or imperfect cognition

(Woodford, 2019a). It is only in the knife-edge case in which the statistic is a “public signal” in the

precise sense of common knowledge that multiplicity survives.14

The second limitation is more challenging, because it opens the pandora box of signal extrac-

tion and infinite regress. In the next subsection, we therefore offer a different approach, which

manages to keep this box closed while accommodating direct—and indeed perfect—knowledge

of long histories of aggregate output and inflation.

Breaking the infinite chain even when past outcomes are perfectly observed

In the above exercise we focused on pure sunspot equilibria. Let us now bring back the funda-

mental shocks and consider any of the equilibria of the form cB
t +acηt , which, recall, were obtained

by “solving the model backwards.” These can be replicated by letting Ii ,t ⊇ {ηt ,ct−1,θt−1} and by

having each consumer play the following recursive strategy:

ci ,t = δ−1(ct−1 −θt−1)+aηt . (19)

Contrary to the strategy that supported the pure sunspot equilibrium, the above strategy requires

that the agents at t know not only ct−1 but also θt−1. Why is knowledge of θt−1 necessary? Because

this is what it takes for agents at t to know how to undo the direct, intrinsic effect of θt−1 on the

incentives of the agents at t−1, or to “reward” them for not responding to their intrinsic impulses.

This suggests that the “infinite chain” that supports all backward-looking equilibria—and all

sunspot equilibria, as well— breaks if the agents at t do not know what exactly it takes to “reward”

the agents at t −1. To make this point crisply, we proceed as follows.

First, we introduce a new fundamental disturbance, denoted by ζt ; we modify equation (5) to

ci ,t = Ei ,t [(1−δ0)(θt +ζt )+δ0ct +δ1ct+1]; (20)

and we let ζt be drawn independently over time, as well as independently of any other shock in

the economy, from a uniform distribution with support [−ε,+ε], where ε is positive but arbitrarily

small. This let us parameterize the payoff perturbation by ε, or the size of the support of ζt .

14We thank a referee from prompting us to clarify this subtlety.
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Second, we abstract from informational heterogeneity within periods, that is, we let Ii ,t = It

for all i and all t . This guarantees that ci t = ct for all i and t , and therefore that we can think of the

economy as a sequence of representative agents, or a sequence of players, one for each period.

Under the additional, simplifying assumption that It contains both θt and ζt , we can then write

the best response of the period-t representative agent as

ct = θt +ζt +δE [ct+1|It ]. (21)

where δ ≡ δ1
1−δ0

, as always, and E [·|It ] is the rational expectation conditional on It . This is simi-

lar to the standard, full-information benchmark, except that we have allowed for the possibility

that today’s representative agent does not inherit all the information of yesterday’s representative

agent: It does not necessarily nest It−1.

Finally, we let It contain perfect knowledge of arbitrary long histories of the endogenous out-

come, the sunspots, and the “main” fundamental; but we preclude knowledge of the past values

of the payoff perturbation introduced above. Formally:

Assumption 3. For each t , there is a representative agent whose information is given by

It = {ζt }∪ {θt , · · · ,θt−Kθ
}∪ {ηt , · · · ,ηt−Kη}∪ {ct−1, · · · ,ct−Kc }

for finite but possibly arbitrarily large Kη, Kc , and Kθ.

When the ζt shock is absent, or ε = 0, Assumption 3 allows replication of all sunspot and

backward-looking equilibria with extremely short memory, namely with Kη = 0 and Kθ = Kc = 1.

This is precisely the recursive representation of these equilibria in the standard paradigm. But

there is again a discontinuity: once ε> 0, all the non-fundamental equilibria unravel, no matter

how long the memory may be.

Proposition 4. Suppose that Assumption 3 holds and ε> 0. Regardless of δ, there is unique equi-

librium and is given by ct = cF
t +ζt , where cF

t is the same MSV solution as before.

How does this connect to our main result? Both results introduce a friction in social memory

and intertemporal coordination, thus breaking the infinite chain that sustain all non-fundamental

equilibria. But the exact friction is different: whereas it amounts to asymptotic forgetting of the

distant past in our main result, here it amounts to immediate forgetting of a small component of

the fundamentals. This also means a change in the formal arguments: whereas our main result

echoes the global-game literature, the present one is more closely connected to Bhaskar (1998)

and Bhaskar et al. (2012). The precise connections between our two results, as well as between

the corresponding two literatures, deserve further study.
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Local vs global determinacy

Throughout, we work with the linearized New Keynesian model and restricted equilibria to be

bounded. As previously mentioned, this amounts to focusing on local determinacy around a

given steady state (herein normalized to zero). But what about global determinacy?

Let us first address this question within the policy context of interest. To ensure global de-

terminacy, the standard paradigm compliments the Taylor principle with an escape clause: to

switch from interest-rate setting to a different policy regime, such as money-supply setting or

even commodity-backed money, should inflation exit certain bounds.15 Under the standard ap-

proach, the escape clause rules out all unbounded equilibria (i.e., self-fulfilling inflationary and

deflationary spirals), while the Taylor principle rules out any bounded equilibrium other than

the MSV solution. Under our approach, the Taylor principle becomes redundant but the escape

clause—or a credible commitment to arrest explosive paths—is still needed.

Consider next other contexts, such as the OLG model of money by Samuelson (1958). This

is a non-linear model and it admits two steady-state equilibria: an “autarchic” one, in which

the old and the young consume their respective endowment and money is not traded; and a

“bubbly” one, in which money facilitates Pareto-improving transfers between the young and the

old. In addition, there is a continuum of bounded sunspot equilibria, all of which hover around

the second steady state. In this context, we can’t rule out either of the steady-state equilibria,

because our methods maintain common knowledge of the steady state(s) themselves, nor can

we say anything about global determinacy. But if we linearize that model around each steady

state and apply our assumptions and results, we can guarantee local determinacy of both steady

states, and can therefore rule out the aforementioned sunspot equilibria.16

This clarifies the scope of our theoretical contribution. It seems a safe guess that Proposi-

tion 5 extends to a general class of linear REE models, such as that considered in the classics by

Blanchard (1979) and Blanchard and Kahn (1980). In non-linear settings, this is likely to trans-

late to local determinacy. But our methods and results do not speak to the question of global

determinacy—except for the specific policy context of interest and in the way explained above.

With this qualification in mind, we next focus on our paper’s applied contribution.

15See, inter alia, Wallace (1981), Obstfeld and Rogoff (1983, 2021), Christiano and Rostagno (2001), and the discus-
sion of “hybrid” Taylor rules in Atkeson et al. (2010).

16We thank the editor for suggesting the link to Samuelson (1958) and a referee for suggesting a different non-
linear example, which has the same flavor but is more directly comparable to our own setting. We use that example
in Appendix D to further illustrate the issues discussed above.
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6 Applied Lessons

In this section we translate our main result to two applied lessons: one regarding the FTPL, and

another regarding the Taylor principle. To facilitate these translations, we first illustrate how our

main result extends to a larger class of New Keynesian model than that employed thus far.

Nesting a larger class of New Keynesian economies

Borrowing insight from the HANK literature, let us bypass the micro-foundations of consumer

behavior and instead assume directly that aggregate demand can be expressed as follows:

ct =C
({

Ēt [yt+k ]
}∞

k=0 ,
{
Ēt [rt+k ]

}∞
k=0

)+%t , (22)

where rt ≡ it −πt+1 stands for the real interest rate, C is a linear function, and %t is an exogenous

shock. This generalizes equation (1) from our baseline model, allowing aggregate consumption

to depend on expectations about interest rates and income at all future periods, not just the next

period. In Appendix E, we show how to obtain (22) from a perpetual-youth version of the New

Keynesian model. This allows us to cast the decay in social memory as the byproduct of indi-

vidual mortality. But this interpretation is not strictly needed. For the present purposes, we take

equation (22) as given and think of it as a linear but otherwise flexible specification of the in-

tertemporal Keynesian cross (Auclert et al., 2018).

Consider next the supply side. We now replace our baseline model’s ad hoc, static Phillips

with the standard, micro-founded, and forward-looking New Keynesian Phillips curve:

πt = κyt +βEt [πt+1]+κξt , (23)

where κ ≥ 0 and β ∈ (0,1) are fixed scalars and ξt is, again, a cost-push shock. The micro-

foundations of (22) are omitted because they are entirely standard: whenever given the opportu-

nity by the “Calvo fairy,” firms optimally reset their prices under rational expectations and with

full information.17 Finally, we let the Taylor rule be

it = zt +φy yt +φππt , (24)

for some random variable zt and some fixed scalars φc ,φπ ≥ 0.18

17The assumption that firms, unlike consumers, have full information simplifies the exposition and maximizes
proximity to the standard New Keynesian model, without affecting the essence. For, as long as the informational
friction is present in the consumer side, it is not necessary to “double” it in the production side.

18We can readily accommodate forward-looking terms in the policy rule. This changes the exact values of the
coefficients {δk } in the upcoming game representation, namely equation (25), but does not affect Proposition 5,
because this holds for arbitrary such coefficients. What we cannot readily nest in (25) is a backward-looking Taylor
rule, such as it = zt +φππt−1, or a backward-lookin Phillips curve. See, however, Appendix B for an illustration of
why this does not upset our result, insofar as, of course, Assumption 2 is maintained.
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The “famous” three equations are now given by (22), (23) and (24), along with yt = ct (by mar-

ket clearing). Solving (23) and (24) for inflation and the interest rate, and replacing these solutions

into (22), we can obtain ct as a linear function of
{
Ēt [yt+k ]

}∞
k=0, or equivalently of

{
Ēt [ct+k ]

}∞
k=0 .

We conclude that a process for ct is part of an equilibrium if and only if it solves the following:

ct = Ēt

[
(1−δ0)θt +

+∞∑
k=0

δk ct+k

]
(25)

for some scalars {δk }∞k=0, with δ0 < 1 and ∆≡ δ0 +∑∞
k=1 |δk | <∞.

Similar to equation (5) in our baseline model, this equation conveniently summarizes all the

underlying GE feedbacks.19 These feedbacks are now more convoluted, and aggregate spending

in any given period depends on expectations of the outcomes in all future periods as opposed to

merely the next period, but the essence is similar. For our purposes, the key is that the economy

translates to a game in which: (i) a continuum of players acts in each period; (ii) a player’s optimal

strategy is given by ci ,t = Ei ,t
[
θt +∑+∞

k=0δk ct+k
]

for any t , any realization of her information set

Ii ,t , and any strategy played by other players; and (iii) the coefficient δk identifies the slope of an

agent’s best response with respect to the average action k periods later.

Thus put aside the micro-foundations and focus on the game representation. The overall

strategic interdependence, or the analogue of the sum δ0 +δ1 from our main analysis, is now

given by∆. With∆> 1, multiple self-fulfilling equilibria can be supported under full information,

in a similar fashion as in Section 3. But they unravel once we introduce Assumption 2, because

this again breaks the “infinite chain” behind them. We verify this claim below. The proof is more

tedious than that of Proposition 5 and is delegated to Appendix A, but the basic logic is the same.

Proposition 5 (Generalized result). Consider the above generalization, impose Assumption 2, and

let λ> 0. Whenever an equilibrium exists, it is unique and is given by the MSV solution.20

Feedback rules and Taylor principle: equilibrium selection or stabilization?

Go back to the textbook New Keynesian model. Let {i o
t ,πo

t ,co
t } denote the optimal path for in-

terest rates, inflation, and output, as a function of the underlying demand and supply shocks.

And ask the following question: what does it take for the optimum to be implemented as the

unique equilibrium? The textbook answer is that, as long as the monetary authority observes the

19Accordingly, the coefficients {δk }∞k=0 can be expressed as functions of the following “deeper” parameters, which

regulate these feedbacks: the MPCs out of current and future income, { ∂C
∂yk

}∞k=0; the sensitivities of consumption to

current and future real interest rates, { ∂C
∂rk

}∞k=0; the slope, κ, and the forward-lookingness, β, of the NKPC; and the
policy coefficients, φπ and φc .

20When θt is uncorrelated over time, the MSV solution is again given by cF
t = θt . More generally, it can be solved

for in a similar way as in our earlier discussion of persistent fundamentals.
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aforementioned shocks, it suffices to follow the following feedback rule, for any φ> 1:

it = i o
t +φ(πt −πo

t ).

This is nested in (4) with zt = i o
t −φπo

t , and is sometimes referred to as the “King rule” (after King,

2000). Note then that φ can take any value above 1, and this does not affect the properties of

the optimum. That is, the feedback from πt to it serves only the role of equilibrium selection;

macroeconomic stabilization is instead achieved via the optimal design of zt , and in particular

via its correlation with the underlying demand and supply shocks.21

What if the monetary authority does not observe these shocks? Feedback rules may then help

replicate the optimal contingency of interest rates on shocks. But this function could be at odds

with that of equilibrium selection. See Galí (2008, p.101) for an illustration with cost-push shocks,

and Loisel (2021) for a general formulation. Seen from this perspective, our results help ease the

potential conflict between equilibrium selection and stabilization: because feedback rules are no

more needed for equilibrium selection, they are “free” to be used for stabilization.

At the same time, our results pave the way for recasting the spirit of the Taylor principle as

a form of stabilization instead of a form of equilibrium selection, in effect turning upside down

its conventional interpretation (Atkeson et al., 2010; King, 2000). By this, we mean the following.

When the equilibrium is unique (whether thanks to our perturbations or otherwise) but strategic

complementarity is sizable, sunspot-like volatility can obtain from overreaction to noisy public

news (Morris and Shin, 2002), shocks to higher-order beliefs (Angeletos and La’O, 2013; Benhabib

et al., 2015), or related forms of bounded rationality (Angeletos and Sastry, 2021). In this context,

the slope of the Taylor rule admits a new function: by regulating the overall complementarity in

the economy, it also regulates the magnitude of such sunspot-like fluctuations along the unique

equilibrium. Our contribution is therefore not to rule out “animal spirits” altogether but rather

to recast policies that lean against them as a type of on-equilibrium stabilization instead of an

off-equilibrium policy threat.

To make this idea more concrete, suppose (i) that we preserve our informational assumptions

about sunspots, (ii) we introduce correlated higher-order uncertainty about future fundamentals.

By (i), we can maintain the MSV solution as the economy’s unique equilibrium, while by (ii), we

can let this solution fluctuate in response to correlated shocks in higher-order beliefs. In the eyes

of an outside observer, or a policymaker, the economy may appear to be ridden with “animal

spirits.” And a policy that “leans against the wind” may well help contain the effects of such

animal spirits basically in the same as it does with other, less exotic, demand and supply shocks.

21While most textbook treatments stop here, a kosher analysis combines the Taylor principle with escape clauses
that rule out cunbounded equilibria; see the related discussion at end of this section.
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On the Fiscal Theory of the Price Level (FTPL)

We now turn to how our paper relates to the FTPL. To this goal, let us momentarily go back again

to the basics: the textbook, three-equation, New Keynesian model. Add now a fourth equation,

written compactly (and in levels) as follows:

Bt−1

Pt
= PV St , (26)

where Bt−1 denotes the outstanding nominal debt, Pt denotes the nominal price level, and PV St

denotes the real present discounted value of primary surpluses. Does the incorporation of this

equation make a difference for the model’s predictions about inflation and output?22

The standard approach says no by assuming that fiscal policy is “Ricardian,” in the following

sense: PV St is required to adjust so as to make sure that (26) holds no matter Pt . This allows

prices and quantities to be determined by the MSV solution of the model’s other three equations.

The FTPL turns this upside down: it requires that Pt itself adjusts to make sure that (26) for any

given PV St . This is a coherent theoretical alternative, provided that the price level is determined

according to a different solution of the model’s other three equations.

It should be intuitive at this point that, by removing all solutions other than the MSV one,

our paper also removes the equilibrium selected by the FTPL. But our analysis and formal results

have thus far abstracted from fiscal policy. Could it be that explicit incorporation of fiscal policy

modifies the MSV solution or otherwise upsets the way we have thought about the issue? We now

show how to fill in the hole, clarifying some subtleties on the way.

We start by assuming that consumers have infinite horizons, or are “dynasties” as in Barro

(1974). This rules out inter-generational redistribution and makes our analysis directly compara-

ble to the standard treatment of the FTPL. For simplicity, we also rule out idiosyncratic income or

interest-rate shocks. But we allow, at least momentarily, for arbitrary information. We can then

write the (log-linearized) individual consumption function as follows:

ci ,t = Ei ,t

[(
1−β)

γwi ,t −σβ
+∞∑
k=0

βk (it+k −πt+k+1)+ (
1−β)+∞∑

k=0
βk (

yt+k −τt+k
)]

, (27)

where wi ,t is the household’s real financial wealth in the beginning of period t , τt+k are the lump

sum taxes she owns in period t +k, all other variables are as before, and γ is the steady-state ratio

of aggregate private financial wealth to GDP (equivalently, that of public debt to GDP).23

22There is disagreement between the proponents and the opponents of the FTPL on whether (26) should be read as
a “real” constraint on the fiscal authority, which must hold both on and off equilibrium, or merely as an equilibrium
condition, the market’s valuation of government debt. Here, we put aside this somewhat “philosophical” debate and
focus instead on whether and how equation (26) matters, regardless of its “deeper” interpretation.

23Note that equation (27) accommodates not only arbitrary information about the future but also possible inat-
tention to own wealth: wi ,t is left inside the expectation operator. This is not strictly needed for any of the results
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Equation (27) is basically the Permanent Income Hypothesis. To derive it, we only imposed in-

dividual optimality: we made no assumption about what a consumer knows about the economy,

how she forms expectations about interest rates, taxes, etc., or how he reasons about the behavior

of others. We now add the following “minimal” assumptions about such knowledge/reasoning:

Assumption 4. Consumers are first-order rational, in the sense that they have first-order knowl-

edge of equation (26), the Phillips curve, the Taylor rule, and market clearing.

Assumption 5. At least on average, consumers do not mis-perceive their idiosyncratic wealth, in

the sense
∫

Ei ,t [wi ,t −wt ]di = 0.

Assumption 4 is implied by REE but is significantly weaker than it: rational expectations

amounts to infinite-order knowledge of the facts stated in this assumption, as well as of oth-

ers’ rationality, whereas the assumption requires only first-order knowledge of the stated facts.

More succinctly, we require that agents themselves understand that equation (26) must ulti-

mately hold, but we do not necessarily require that they know that others know this fact, nor

that they have rational expectations about others’ beliefs and behavior.

Assumption 5, on the other hand, is trivially satisfied when there is a representative agent (in

which case wi ,t = wt for all i ), as well as when agents are heterogeneous but know both their

own wealth and the aggregate wealth (in which case
∫

Ei ,t [wi ,t −wt ] = ∫
(wi ,t −wt )di = 0). More

generally, this assumption rules out the possibility that consumers confuse aggregate changes in

fiscal policy for idiosyncratic variation in wealth. Such confusion is possible in the presence of

informational frictions (Lucas, 1972) and may even rationalize a failure of Ricardian equivalence.

But this is clearly not what the existing formulation of the FTPL is about, so Assumption 5 seems

fully appropriate for our purposes.

This assumption alone guarantees that we can aggregate equation (27) to get the following:

ct = Ēt

[(
1−β)

γwt −σβ
+∞∑
k=0

βk (it+k −πt+k+1)+ (
1−β)+∞∑

k=0
βk (

yt+k −τt+k
)]

. (28)

Next, equation (26) rewrites in log-linearized form as

bt−1 −p = 1
γEi ,t

[+∞∑
k=0

βk (τt+k − g t+k )

]
By Assumption 4, consumers understand this equation, as well as the identities wt = bt−1 − pt

and yt = ct + g t . We can thus use these facts in (28) to obtain the following equation:

stated below. But it helps reduce the tension between Assumption 2, which we invoke in Corollary 1, and the idea
that consumers may learn about past, unobserved, sunspots from the observation of their own wealth.
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ct = Ēt

[
−σβ

+∞∑
k=0

βk (it+k −πt+k+1)+ (
1−β)+∞∑

k=0
βk ct+k

]
. (29)

This can be interpreted as a DIS equation. But regardless of interpretation, the key observation

here is that this equation is independent of fiscal policy. Finally, using the consumers’ knowledge

of the Taylor rule and the Phillips curve, we can map this equation to a special case of equation

(25). That is, without invoking Assumption 2 or any other assumption about social memory and

coordination, we can reach the following elementary result.

Proposition 6. Suppose that agents are first-order rational and do not mis-perceive their wealth,

in the sense of Assumptions 4 and 5. Then, aggregate consumption satisfies equation (25), for some

coefficients {δk }∞k=0 and some random variable θt . Furthermore, debt and deficits do not appear in

this equation: δk is a function of (σ,β,κ,φ) for all k, and θt is a transformation of (zt ,%t ,ξt , g t ).

This result contains two key messages. First, the economy admits a similar game representa-

tion as before. And second, government debt and deficits do not enter the payoffs/best responses

of this game. More succinctly, this result formalizes the sense in which debt and deficit are “non-

fundamental” and verifies that the MSV solution is invariant to them.24

As already flagged, this result itself is true regardless of whether social memory/intertemporal

coordination is perfect or imperfect. But once we combine it with our main assumption, it allows

us to translate Proposition 5 to the present context as follows:

Corollary 1. Suppose expectations of aggregate outcomes are formed according to Assumption 2.

Whenever an equilibrium exists, it corresponds to the MSV solution of equation (25) and is invari-

ant to both the outstanding level of debt and to the fiscal rule F . To put it differently, fiscal policy

has to be Ricardian, or else it leads to equilibrium non-existence.

With Full Information

Fiscal Policy is
Ricardian Non-Ricardian

Taylor Principle holds Determinacy No equilibrium
does not hold Multiplicity Determinacy

With Our Perturbations

Fiscal Policy is
Ricardian Non-Ricardian

Taylor Principle holds Determinacy No equilibrium
does not hold Determinacy No equilibrium

Table 1: Standard Paradigm vs Our Approach

24The conventional justification of this idea is that public debt and deficits do not appear the representative con-
sumer’s Euler condition. Cochrane (2005) criticizes this view on the basis that it fails to take into account the con-
sumer’s budget constraint and transversality condition, and he seems to argue that this allows for government debt
to have a wealth effect off equilibrium. Proposition 6 deals properly with this issue (using individual consumption
functions instead of merely Euler conditions) and shows that the conventional view remains valid as long as con-
sumers are “minimally” rational, in the sense we have made precise.
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Table 1 helps position this lesson in the literature. The left panel, which is basically repro-

duced from Leeper (1991), summarizes the state of the art. According to it, the non-Ricardian

assumption is consistent with equilibrium existence, and uniquely pins down inflation and out-

put, when monetary policy is passive. The right panel summarizes our own take on the issue: the

non-Ricardian assumption is equated to equilibrium non-existence regardless of whether mon-

etary policy is active or passive. This explains the sense in which our approach transforms the

rejection of the FTPL from a “religious choice” to a logical necessity—provided, of course, that

one accommodates the type of informational/coordination friction we have formalized here.

We conclude with two important qualifications. First, while the offered lesson about the FTPL

is valid given Assumption 2, one can of course question the latter’s precise meaning and empir-

ical plausibility. Note in particular that, in the present context, this assumption rules out direct

private or public signals of bt−1, thus also ruling out equilibria in which consumers condition

their behavior on such signals. Nevertheless, Proposition 6, which does not depend on Assump-

tion 2, makes clear that any such equilibrium is necessarily a non-fundamental one, along which

public debt plays one and only one role: that of an endogenous sunspot. At a high level, this

circles back to our discussion of endogenous sunspots in Section 5. But the endogenous sunspot

is now of a different form, preventing applicability of the specific results developed in that sec-

tion. This calls for further exploration of the informational assumptions that may or may not

support the equilibrium selected by the FTPL. But it does not negate the essence of what we have

shown: a precise formalization of the sense in which the equilibrium selected by the FTPL is both

non-fundamental (Proposition 6) and fragile to certain perturbations (Corollary 1).

Second, our approach leaves ample room for debt and deficits, or expectations thereof, to

drive inflation and output insofar as (i) these objects influence aggregate demand because of

finite horizons, liquidity constraints, rational confusion, or even plain irrationality; or (ii) the

monetary authority internalizes the fiscal ramifications of its policies. The first option lets bt−1

and τt − g t enter directly our game representation, for given zt and φ; the second one makes

the monetary authority’s choice of these objects endogenous to fiscal conditions. Both options

thus allow government debt and deficits to drive the MSV solution, regardless of whether another

solution exists or not. By the same token, our uniqueness result is logically consistent with the

“unpleasant arithmetic” of Sargent and Wallace (1981), the Ramsey literature on how monetary

policy can substitute for fiscal policy and/or ease tax distortions (e.g., Chari et al., 1994; Benigno

and Woodford, 2003; Sims, 2022), any estimated link between fiscal conditions and inflation (e.g.,

Bianchi and Ilut, 2017; Bianchi et al., 2020; Chen et al., 2021), and the real-world concern that

monetary policy may succumb to political pressure. Perhaps these are the issues that the spirit

of the FTPL is meant to be about, once liberated from the equilibrium selection conundrum.
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7 Conclusion

In this paper, we revisited the indeterminacy issue of the New Keynesian model. We highlighted

how all sunspot and backward-looking equilibria hinge on a delicate, infinite, self-fulfilling chain

between current and future behavior. And we showed how to break this chain, and guarantee

that the model’s fundamental or MSV solution is the unique rational expectations equilibrium re-

gardless of monetary or fiscal policy, by appropriately perturbing the model’s assumptions about

social memory and intertemporal coordination.

We thus provided a rationale for why equilibrium can be determinate even with interest rate

pegs—or why monetary policy may be able to regulate aggregate demand without a strict reliance

on the Taylor principle or any other off-equilibrium threat. But we also discussed how one could

accommodate sunspot-like volatility along the economy’s unique equilibrium, and highlighted

that a steeper Taylor rule could help regulate the size of such volatility in a continuous way. More

succinctly, we first killed the Taylor principle as a form of equilibrium selection and then resur-

rected it as a form of macroeconomic stabilization.

We offered a similar two-sided approach to the FTPL. We first showed that, under our per-

turbations, the non-Ricardian assumption can be equated to equilibrium non-existence, regard-

less of whether monetary policy was active or passive. One may of course quibble with the re-

alism of our perturbations. Still, by illustrating the potential fragility of the existing formulation

of the FTLP, we not only lend support to the conventional use of the New Keynesian model but

also paved the way for resurrecting the (appealing) spirit of the FTPL outside the (unappealing)

equilibrium-selection conundrum.

To illustrate what we have in mind, consider the topical question of whether the large public

debt in the US will trigger inflation by forcing the hands of the Fed towards more lax monetary

policy, or the broader question of which authority is “dominant.” In our view, such questions

seem to call for modeling the interaction between the the fiscal and the monetary authorities as

that of two players in a game, for example a game of chicken. But this requires in the first place

the existence of a unique mapping from the players’ actions—government deficits and interest

rates, respectively—to their payoffs. Such a unique mapping is missing in the standard paradigm,

because of the equilibrium determinacy problem: the same paths for government deficits and

interest rates can be associated with multiple equilibria within the private sector, and thereby

with multiple equilibrium payoffs for the two authorities. By providing a possible fix to this “bug,”

or at least a formal justification for bypassing it, our paper may open the way to new research on

these important policy questions.
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Appendix A: Proofs

As discussed after Definition 1, our proofs use a weaker boundedness criterion than the require-

ment of a finite V ar (ct ). The next lemma verifies that that the latter implies the former. The rest

of the Appendix provides the proofs for all the results.

Lemma 1. Consider any candidate equilibrium, defined as in Definition 1. There exist a finite

scalar M > 0 such that |ak | ≤ M and
∣∣γk

∣∣≤ M for all k.

From Assumption 1 and Definition 1, we have

V ar (ct ) =
( ∞∑

k=0
a2

k

)
V ar

(
ηt

)+( ∞∑
k=0

γ2
k

)
V ar (θt ) .

This can be finite only if limk→+∞ |ak | = 0 and limk→+∞
∣∣γk

∣∣ = 0. We conclude that there exist a

scalar M > 0, large enough but finite, such that |ak | ≤ M and
∣∣γk

∣∣≤ M for all k.

Proof of Proposition 1

Part (i) follows directly from the fact that cF
t ≡ θt satisfies (8).

Consider part (ii). Let {ct } be any equilibrium and define ĉt = ct − cF
t . From (8),

ĉt = δEt [ĉt+1]. (30)

From Definition 1,

ĉt =
∞∑

k=0
âkηt−k +

∞∑
k=0

γ̂kθt−k ,

with |âk | ≤ M̂ and
∣∣γ̂k

∣∣≤ M̂ for all k, for some finite M̂ > 0. From Assumption 1, we have

Et [ĉt+1] =
+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂k+1θt−k .

The equilibrium condition (30) can thus be rewritten as

∞∑
k=0

âkηt−k +
∞∑

k=0
γ̂kθt−k = δ

(+∞∑
k=0

âk+1ηt−k +
∞∑

k=0
γ̂k+1θt−k

)
.

For this to be true for all t and all states of nature, the following restrictions on coefficients are

necessary and sufficient:

âk = δâk+1 ∀k ≥ 0, γ̂0 = δγ̂1 and γ̂k = δγ̂k+1 ∀k ≥ 1.

When the Taylor principle is satisfied (|δ| < 1), âk and γ̂k explodes unless â0 = 0 and γ̂0 = 0. We

know that the only bounded solution of (30) is ĉt = 0. As a result, cF
t is the unique equilibrium.

Finally, consider part (iii). cB
t ≡ −∑∞

k=1δ
−kθt−k and cηt ≡ ∑∞

k=0δ
−kηt−k are bounded (the in-

finite sums converge) when the Taylor principle is violated (|δ| > 1). cB
t satisfies (8). So does
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ct = (1−b)cF
t +bcB

t +acηt for arbitrary b, a ∈R.

Proof of Proposition 2

Since the sunspots {ηt−k }∞k=0 are orthogonal to the fundamental states {θt−k }∞k=0, the argument in

the main text proves that ak = 0 for all k. We can thus focus on solutions of the following form:

ct =
∞∑

k=0
γkθt−k . (31)

And the remaining task is to show that γ0 = 1 and γk = 0 for all k ≥ 1, which is to say that only the

MSV solution survives.

To start with, note that, since θt is a stationary i.i.d. Gaussian variable from Assumption 1, the

following projections apply for all k ≥ s ≥ 0 :

E
[
θt−k |I s

t

]= 0,

where I s
t ≡ {

(
θt ,ηt

)
, · · · ,

(
θt−s ,ηt−s

)
} is the period-t information set of an agent with memory

length s.

Now, from Assumption 2, we know

Ēt [θt−k ] = (1−λ)k θt−k +
k−1∑
s=0

λ (1−λ)s E
[
θt−k |I s

t

]≡ (1−λ)k θt−k . (32)

Now consider an equilibrium in the form of (31). From equilibrium condition (5), we know

+∞∑
k=0

γkθt−k = (1−δ0)θt +δ0Ēt

[+∞∑
k=0

γkθt−k

]
+δ1Ēt

[+∞∑
k=0

γkθt+1−k

]

= (
(1−δ0)+δ0 +δ1γ1

)
θt + Ēt

[+∞∑
k=1

(
δ0γk +δ1γk+1

)
θt−k

]

= (
(1−δ0)+δ0 +δ1γ1

)
θt +

+∞∑
k=1

(
δ0γk +δ1γk+1

)
(1−λ)k θt−k ,

where we use the fact that all agents at t know the values of the fundamental state θt .

For this to be true for all states of nature, we can compare coefficients on each xt−k , we have

γ0 = (1−δ0)+δ0γ0 +δ1γ1

γk = (
δ0γk +δ1γk+1

)
(1−λ)k ∀k ≥ 1. (33)

From Definition 1, we know that there is a scalar M > 0 such that
∣∣γk

∣∣≤ M for all k ≥ 0. From (33),

we know that, for all k ≥ 1, ∣∣γk
∣∣≤ (|δ0|+ |δ1|) (1−λ)k M . (34)

Because λ > 0, there necessarily exists an k̂ finite but large enough (|δ0|+ |δ1|) (1−λ)k̂ < 1. We
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then know that, for all k ≥ k̂, ∣∣γk
∣∣≤ (|δ0|+ |δ1|) (1−λ)k̂ M .

Now, we can use the above formula and (33) to provide a tighter bound of
∣∣γk

∣∣: for all k ≥ k̂,∣∣γk
∣∣≤ (|δ0|+ |δ1|)2 (1−λ)2k̂ M .

We can keep iterating. For for all k ≥ k̂ and l ≥ 0,∣∣γk
∣∣≤ (|δ0|+ |δ1|)l (1−λ)l k̂ M .

Since (|δ0|+ |δ1|) (1−λ)k̂ < 1, we then have γk = 0 for all k ≥ k̂. Using (33) and doing backward

induction, we then know γk = 0 for all k ≥ 1 and

γ0 = (1−δ0)+δ0γ0,

which means γ0 = 1, where I use δ0 < 1. Together, this means that the equilibrium is unique and

is given by ct = cF
t , where cF

t = θt .

Proof of Proposition 3

Since information sets are given by Ii ,t = {ηt , si ,t }, any (stationary) strategy can be expressed as

ci ,t = aηt +bsi ,t ,

for some coefficients a and b. Then, ct+1 = aηt+1 + bct ; and since agents have no information

about the future sunspot, Ei ,t [ct+1] = bEi ,t [ct ]. Next, note that Ei ,t [ct ] = aηt +bχsi t , where

χ= V ar (ct−1)

V ar (ct−1)+σ2
∈ (0,1].

Combining these facts, we infer that condition (6), the individual best response, reduces to

ci ,t = Ei ,t [δ0ct +δ1ct+1] = (δ0 +δ1b)Ei ,t [ct ] = (δ0 +δ1b)
{

aηt +bχsi ,t
}

.

It follows that a strategy is a best response to itself if and only if

a = (δ0 +δ1b)a and b = (δ0 +δ1b)bχ. (35)

Clearly, a = b = 0 is always an equilibrium, and it corresponds to the MSV solution. To have a

sunspot equilibrium, on the other hand, it must be that a 6= 0 (and also that |b| < 1, for it to be

bounded). From the first part of condition (35), we see that this a 6= 0 if and only if δ0 +δ1b = 1,

which is equivalent to b = δ−1. But then the second part of this condition reduces to 1 =χ, which

in turn is possible if and only if σ= 0 (since V ar (ct−1) > 0 whenever a 6= 0).
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Proof of Proposition 4

Given Assumption 3, an possible equilibrium takes the form of

ct =
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γkθt−k +χζt .

From (21), we have that

Kη∑
k=0

akηt−k +
Kβ∑

k=1
βk ct−k +

Kθ∑
k=0

γk xt−k +χζt = θt +ζt +δE[
Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=0

βk+1ct−k +
Kθ−1∑
k=0

γk+1θt−k |It ]

= θt +ζt +δ
[

Kη−1∑
k=0

ak+1ηt−k +
Kβ−1∑
k=1

βk+1ct−k +
Kθ−1∑
k=0

γk+1θt−k

]

+δβ1

[
Kη∑

k=0
akηt−k +

Kβ∑
k=1

βk ct−k +
Kθ∑

k=0
γkθt−k +χζt

]
where we use Assumption 1 and the fact that ζt is drawn independently over time. For this to be

true for all states of nature, we can compare coefficients:

ak = δak+1 +δβ1ak ∀k ∈ {
0, · · · ,Kη−1

}
and aKη = δβ1aKη (36)

βk = δβk+1 +δβ1βk ∀k ∈ {
1, · · · ,Kβ−1

}
and βKβ

= δβ1βKβ
(37)

γk = δγk+1 +δβ1γk ∀k ∈ {1, · · · ,Kθ−1} and γKθ
= δβ1γKθ

(38)

γ0 = 1+δγ1 +δβ1γ0 and χ= 1+δβ1χ. (39)

First, from the second equation in (39), we know δβ1 6= 1. Then, from the second parts of (36)–

(38), we know aKη = 0, βKβ
= 0, and γKθ

= 0. From backward induction on (36)–(39), we know that

all a,b,γ are zero except for the following:

γ0 = 1.

We also know that χ= 1. We conclude that the unique solution is

ct = cF
t +ζt ,

where cF
t = θt .

Proof of Proposition 5

We first note that the MSV solution of (25) is still given by cF
t = θt . Consider an equilibrium taking

the form of (7). We use (5):

+∞∑
l=0

alηt−l +
∞∑

l=0
γlθt−l = (1−δ0)θt + Ēt

[+∞∑
k=0

δk

(+∞∑
l=0

alηt+k−l +
∞∑

l=0
γlθt+k−l

)]
. (40)
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We know

Ēt [ηt−l ] =

µlηt−l if l ≥ 0

0 otherwise

where µl = (1−λ)l is the measure of agents who remember a sunspot realized l periods earlier as

in the proof of Proposition 2. Comparing coefficient in front of ηt−l and using the facts that each

sunspot is orthogonal to all fundamentals:

al =µl

+∞∑
k=0

δk ak+l ∀l ≥ 0. (41)

Because liml→∞µl = 0, there necessarily exists an l̂ finite but large enough µl̂

∑∞
k=0 |δk | < 1.25

Since we are focusing bounded equilibria as in Definition 1, there exists a scalar M > 0, arbi-

trarily large but finite, such that |al | ≤ M for all l . From (41), we then know that, for all l ≥ l̂ ,

|al | ≤µl̂ M
+∞∑
k=0

|δk | , (42)

where we also use the fact that the sequence {µl }∞l=0 is decreasing. Now, we can use (41) and (42)

to provide a tigehter bound of |al |. That is, for all l ≥ l̂ ,

|al | ≤
(
µl̂

∞∑
k=0

|δk |
)2

M .

We can keep iterating. Sinceµl̂

∑∞
k=0 |δk | < 1, we then have al = 0 for all l ≥ l̂ . Using (41) and doing

backward induction, we then know al = 0 for all l .

Now, (40) can be simplified as

∞∑
l=0

γlθt−l = (1−δ0)θt + Ēt

[+∞∑
k=0

δk

∞∑
l=0

γlθt+k−l

]
. (43)

= (1−δ0)θt +
+∞∑
k=0

δkγkθt + Ēt

[+∞∑
l=1

(+∞∑
k=0

δkγk+l

)
θt−l

]
.

For this to be true for all states of nature, we can compare coefficients on each xt−l :

γ0 = 1−δ0 +
+∞∑
k=0

δkγk (44)

γl = (1−λ)l
+∞∑
k=0

δkγk+l ∀l ≥ 1. (45)

25∑∞
k=0 |δk | <∞ because ∆<∞.
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The above two equations can be re-written as:

γ0 = (1−δ0)−1

(
1−δ0 +

+∞∑
k=1

δkγk

)
(46)

γl =
(
1− (1−λ)l δ0

)−1
(+∞∑

k=1
δkγk+l

)
∀l ≥ 1, (47)

where we use δ0 < 1.

From Definition 1, we know that there is a scalar M > 0 such that
∣∣γl

∣∣ ≤ M for all l ≥ 0. From

(45), we know, for all l ≥ 1 ∣∣γl
∣∣≤ (1−λ)l

(+∞∑
k=0

|δk |
)

M . (48)

Because liml→∞ (1−λ)l = 0, there necessarily exists an l̂ finite but large enough such that
(∑+∞

k=0 |δk |
)

(1−λ)l̂ <
1. We then know that, for all l ≥ l̂ , ∣∣γl

∣∣≤ (1−λ)l̂

(+∞∑
k=0

|δk |
)

M .

Now, we can use the above formula and (45) to provide a tighter bound of
∣∣γl

∣∣: for all l ≥ l̂ ,

∣∣γl
∣∣≤ (1−λ)2l̂

(+∞∑
k=0

|δk |
)2

M .

We can keep iterating. Since
(∑+∞

k=0 |δk |
)

(1−λ)l̂ < 1, we then have γl = 0 for all l ≥ l̂ . Using (47)

and doing backward induction, we then know γl = 0 for all l ≥ 1 and, from (46),

γ0 = 1.

Together, this means that the equilibrium is unique and is given by ct = cF
t = θt . This proves the

Proposition.

Proof of Proposition 6 and Corollary 1.

Let us revisit our characterization of optimal consumption. Relative to what we did in (??), there

are exactly three changes: first, we letω= 0 so that consumers are infinitely lived and fiscal policy

does not redistribute wealth across generations (a possibility that is empirically plausible but

orthogonal to the FTPL); second, aggregate disposable income is Yt −Tt instead of Yt , where Yt

are the taxes; third, the consumers’ aggregate financial wealth is Wt ≡
∫

Wi ,t di = Bt−1/Pt instead

of 0, where Bt−1/Pt is the real value of the outstanding nominal debt. Accordingly, the consumer’s

budget constraint is given by
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+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

Ci ,t+k

}
= Wi ,t +

+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

(Yt+k −Tt+k )

}
.

The government’s budget in (26) can be written as

Bt−1/Pt =
+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

(Tt+k −Gt+k )

}
. (49)

Since a consumer understands that (49) holds, she understands that her budget can be written as

+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

Ci ,t+k

}
= Wi ,t −Wt +

+∞∑
k=0

{[
k∏

j=1

(
It+ j−1

Πt+ j

)−1
]

(Yt+k −Gt+k )

}
.

The consumer’s optimal consumption function, in log-linearized form, can thus be written as

follows:

ci ,t = Ei ,t

[(
1−β)

γ
(
wi ,t −wt

)−σβ+∞∑
k=0

βk (it+k −πt+k+1)+ (
1−β)+∞∑

k=0
βk (

yt+k − g t+k
)]

, (50)

where γ = B∗
Y ∗ is the steady-state debt-to-GDP ratio and all lowercase variables represent log-

deviations from the steady state.26 Aggregating, and using Assumption 5, we arrive at

ct =
(
1−β){+∞∑

k=0
βk Ēt

[
yt+k − g t+k

]}−βσ
{+∞∑

k=0
βk Ēt [it+k −πt+k+1]

}
. (51)

This is the same as equation (??), except yt+k is replaced with yt+k − g t+k , because consumers

understand that the government absorbs part of the aggregate output. Crucially, neither the level

of government debt nor the expected path of taxes shows up in this condition; and this is true

despite the fact that no assumption has been made thus far about how consumers form expec-

tations regarding one another’s behavior or any aggregate variable. In other words, to reach con-

dition (51) we have not used the full bite of REE; we have only assumed that consumers have

first-order knowledge of condition (26) from Assumption 4.

From Assumption 4, consumers understand that the goods markets must clear; and second,

consumers understand that inflation obeys the NKPC (23) and that monetary policy follows the

Taylor rule (24). The first property allows us to replace the expectations of {yt+k − g t+k } in condi-

tion (51) with those of {ct+k }; the second allows us to do the same for expectations of {πt+k } and

{it+k }.27

26The steady state is one in which Gt = 0, Yt = Ct = Y ∗, and T ∗ = (
1−β)

B∗ > 0. Also, the following exception
applies to the statement that all variables are in log-deviations: g t is the ratio Gt /Y ∗. This is a standard trick in the
literature on fiscal multipliers (e.g., Woodford, 2011) and it simply takes care of the issue that the log-deviation of the
government spending is not well defined when its steady-state value is 0.

27To be precise, although the expectations of {g t+k } drop out in the first step, they reemerge in the second step as
long asκ> 0, because government spending enters the NKPC as a cost push shock. But this amounts to a redefinition
of ξt , or θt , and is of no consequence for our purposes.
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Putting everything together, we arrive at the same fixed-point relation between ct and the av-

erage expectations of {ct+k }, or the same “game” among the consumers, as when fiscal policy is

absent. That is, the equilibrium process for ct must still solve equation (25);28 under our informa-

tional assumptions, the MSV solution of this equation continues to identify the unique possible

equilibrium process for ct ; conditional on the latter, the processes for πt and it are uniquely

pinned down by the NKPC curve and the Taylor rule; and the fiscal authority’s policy rule, F, does

not enter the determination of any of these objects. This proves Proposition 6. Corollary 1 then

follows from 5.

Appendix B: Additional Discussion

This Appendix Dorroborates various claims made in the main text. First, we explain why the sim-

plification of infinite histories and stationary equilibria is non-essential. Second, we formalize

the sense in which Assumption 2 is compatible with nearly perfect information of both exoge-

nous shocks and endogenous outcomes.

Time 0 and non-stationary equilibria

In the preceding analysis, we let histories be infinite and restricted equilibria to be stationary.

To understand what exactly this simplification does, abstract from fundamentals (this is without

any loss), let calendar time start at t = 0, and modify (7) as follows:

ct = bt +
t∑

k=0
at ,kηt−k ,

where {at ,k } and {bt } are deterministic coefficients. Note that this allows for (i) a time-varying,

non-zero deterministic intercept and (ii) the equilibrium load of a sunspot to be a function of not

only its age (k) but also the calendar time.

It is straightforward to show that Assumption 2 continues to rule out sunspot fluctuations,

that is, at ,k = 0 for all t ,k. But it does not immediately rule a deterministic, time-varying intercept.

28Minor qualification: g t must now be included in the definition of θt , but this makes not difference for the argu-
ment made here.
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In particular, ct is now an equilibrium if and only if

ct = bt = δ−t b0, (52)

for arbitrary b0 ∈R. At first glance, this appears to contradict our claim of equilibrium uniqueness.

But this is only an artifact of introducing infinite social memory “through the back door.”

Let us explain. Clearly, (52) is exactly the same as the following sunspot equilibrium:

ct = δ−tη0,

with the constant b0 in place of the sunspot η0. So all the “deterministic” equilibria obtained

above are really sunspot equilibria in disguise. But by treating b0 (equivalently, c0) as a determin-

istic scalar instead of a random variable, we have artificially bypassed the friction of interest: we

have effectively imposed that the initial sunspot can never be forgotten.

To sum up, insofar one wishes to remain true to the spirit of Assumption 2, one must treat any

initial sunspot as a random variable rather than a deterministic constant. And provided that this

is done, our result goes through.

Knowledge about endogenous outcomes

Although Assumption 2 excluded direct observation of endogenous aggregate outcomes, such as

output and inflation, our main result can be said to compatible with nearly perfect knowledge of

such outcomes, in the following sense:

Proposition 7 (Nearly perfect information about endogenous outcomes). For any given map-

ping from ht to ct as in Definition 1, any K <∞ arbitrarily large but finite, and any ε,ε′ > 0 arbi-

trarily small but positive, there exists λ̂> 0 such that: whenever λ ∈ (0, λ̂), V ar
(
E i

t [ct−k ]− ct−k
)≤ ε

for all k ∈ {0,1, · · · ,K }, for at least a mass 1−ε′ of agents and for every t . (And the same is true if we

replace ct−k with πt−k , it−k , or any linear combination thereof.)

Proof : Consider a candidate equilibrium ct in Definition 1. We first use I s
t to denote the in-

formation set of the period-t agent with memory length s:

I s
t =

{
ηt−s , · · · ,ηt ,θt−s , · · · ,θt

}
.

From Definition 1, we know that ct can be written as

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

γkθt−k .

From the law of total variances, we have

V ar
(
Et

[
ct |I s

t

]− ct
)≤V ar

( ∞∑
k=s+1

akηt−k +
∞∑

k=s+1
γkθt−k

)
.
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Since ηt and θt are independent of each other as well as independent over time, the finiteness of

V ar (ct ) implies that

lim
s→+∞V ar

( ∞∑
k=s+1

akηt−k +
∞∑

k=s+1
γkθt−k

)
= 0.

As a result, for any ε> 0 arbitrarily small but positive, there exists ŝ0, such that

V ar
(
Et

[
ct |I s

t

]− ct
)≤ ε

for all s ≥ ŝ0 and every t . Similarly, for each k ≤ K , there exists ŝk , such that

V ar
(
Et

[
ct−k |I s

t

]− ct−k
)≤ ε

for all s ≥ ŝk and every t . Now, for any ε′ > 0 arbitrarily small but positive, we can find λ̂ > 0

such that
(
1− λ̂)ŝk ≥ 1 − ε′ for all k ∈ {0, · · · ,K } . Together, this means that whenever λ ∈ (0, λ̂),

V ar
(
E i

t [ct−k ]− ct−k
)≤ ε for all k ≤ K , for at least a fraction 1−ε′ of agents, and for every period t .

�

The following important qualification, however, applies. The above result allows the mapping

from ht to ct to be arbitrary but treats this mapping as fixed when λ is lowered towards 0. But the

equilibrium mapping from ht to ct may well vary with λ, upsetting the result. In Section 5 we

therefore present two alternative information structures, which allow for direct observation of

past outcomes and properly deal with this endogeneity.

Alternative Monetary Policies

In the main analysis, we specify the monetary policy (4) where the nominal interest rate responds

to current inflation. In the literature (e.g. Bullard and Mitra, 2002), variants of such rules have

been proposed. One may wonder whether the alternative specifications change our lessons on

determinacy. The answer is no.

For example, one specification is that the the nominal interest rate responds to forecasts of

future inflation:

it = zt +φĒt [πt+1] , (53)

where φ ≥ 0. A system consisting of (2), (3), and (53) can be nested by the general environment

(25), and the determinacy result in Proposition 5 directly applies.

Another specification is that the nominal interest rate responds to lagged values of inflation:

it = zt +φπt−1, (54)

where φ ≥ 0. Even though this case is not directly nested in Proposition 5, the result about how

frictions in intertemporal coordination results in determinacy remains to hold. Specifically, con-
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sider the systems consisting of (2), (3), and (54). Finally, shut down fundamentals shocks %t =
ξt = zt = 0, so the MSV solution is ct = 0. Proposition 2 can be recast as the follows:

Proposition 8 (Alternative monetary policies). Suppose Assumption 2 holds, there are no shocks

to fundamentals, and monetary policy takes the form of (54). The equilibrium is unique and is

given by ct = 0.

Proof : From (2), (3), and (54), we have that any equilibrium must satisfy

ct = Ēt

[
1

1+βct − β
1+βσφκct−1 + β

1+β (1+σκ)ct+1

]
; (55)

and since there are no shocks to fundamentals, we search for solutions of the form ct =∑∞
k=0 akηt−k .

The goal is to verify that ak = 0 for all k.

By Assumption 2, we have that, for all k ≥ 0,

Ēt [ηt−k ] =µkηt−k

where µk ≡ (1−λ)k measures the fraction of the population at any given date that know, or re-

member, a sunspot realized k periods earlier. Future sunspots, on the other hand, are known to

nobody. It follows that, along any candidate solution, average expectations satisfy

Ēt [ct ] =
+∞∑
k=0

akµkηt−k

and similarly

Ēt [ct−1] =
+∞∑
k=1

ak−1µkηt−k .

Ēt [ct+1] =
+∞∑
k=0

ak+1µkηt−k

For condition (19) to be true for all sunspot realizations, it is necessary and sufficient that,

a0 = (1+σκ) a1,

and, for k ≥ 1,

ak =µk

(
1

1+βak − β
1+βσφκak−1 + β

1+β (1+σκ) ak+1

)
.

We hence have, for k ≥ 1,

ak+1 =
1
µk

− 1
1+β

β
1+β (1+σκ)

ak +
σφκ

1+σκak−1. (56)

Since 1
µk

− 1
1+β > 0, we know that, all {ak }+∞k=0 have the same sign if a0 6= 0. But because µk → 0, we

have that |ak | explodes to infinity as k →∞ from 56 unless a0 = 0. But a0 = 0 implies ak = 0 for all
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k. We conclude that the unique bounded equilibrium is ak = 0 for all k, which herein corresponds

to the MSV solution. �

Sticky vs flexible prices

Our analysis has allowed the Phillips curve to have an arbitrary slope κ ∈ [0,∞). In this sense, our

results do not depend on the degree of nominal rigidity, and they allow in particular the limit with

nearly flexible prices (κ→∞). But what about the knife-edge case in which prices are perfectly

flexible (“κ=∞”)?

To ease the exposition, let us address this question in our baseline model. Maintain our as-

sumptions about consumers and monetary policy, but modify the production side so that prices

are truly flexible and output is given by a fixed endowment (so that ct = yt = 0 in log-deviations).

Clearly, our characterization of the individual optimal consumption function in (1) is still valid,

and so does the intertemporal Keynesian cross obtained in condition (2), which we repeat below:

ct = Ēt

[
1

1+βct + β
1+βct+1 − β

1+βσ(it −πt+1 −%t )
]

But now the assumption of a fixed endowment together with market clearing implies that ct = 0,

which in turns means that the above condition reduces to

Ēt
[
it −πt+1 −%t

]= 0.

This is no other than the Fisher equation, only adapted to heterogeneous information.

For simplicity, switch off the discount rate shock, so that %t = 0, and let monetary policy peg

the nominal interest rate at its steady-state value, so that φ = 0 and it = zt = 0. Recall that these

restrictions are consistent with our main result, which guaranteed uniqueness for an arbitrary

degree of nominal rigidity. But now that prices are perfectly flexible, these restrictions imply that

the Fisher equation reduces to

Ēt [πt+1] = 0.

Two properties are then evident. First, there is no feedback from expectations of future outcomes

to current outcomes, or no intertemporal coordination of the type that has been at the core of our

analysis thus far. And second, equilibrium pins down only the average expectation of inflation

and not its precise realizations. In particular, πt = aηt , where ηt is the sunspot and a ∈ R is an

arbitrary scalar, is an REE under our main assumption for every λ > 0 and, more generally, for

every information structure such that Ii ,t merely contains ηt . In a nutshell, our uniqueness result

does not apply and we are basically back to Sargent and Wallace (1981).

Although this clarifies the applicability of our result, we suspect that it ultimately speaks to
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an inherent “bug” of the baseline RBC model, or equivalently of the flexible-price core of the

New Keynesian model. By design, this otherwise important conceptual benchmark is not well

suited for understanding how nominal prices are determined: the nominal price level is both

payoff-irrelevant and set by an “invisible hand.” By contrast, the New Keynesian model ties the

adjustment in nominal prices to the optimizing behavior of specific players, the firms, and allows

one to recast the whole economy as a game between the firms and the consumers.29 The pres-

ence of some nominal rigidity was essential for obtaining such a game in the first place. But once

we got to this point, that is, once we properly accounted for both real output and nominal prices

as the average actions of specific players, our analysis could proceed without any restriction on

how large or small the nominal rigidity might be.

What about monetary models in which nominal rigidity is absent but nominal prices are oth-

erwise payoff-relevant, such as models with money in the utility function? We suspect that a

version of our results may be applicable in this case, but we leave this conjecture open for future

research.

Discounted Euler Equations, and Beyond REE

Suppose we replace our IS equation (2) with the following variant:

ct =−mi it +mπĒt [πt+1]+mc Ēt [ct+1]+%t , (57)

for some positive scalars mi ,mπ,mc . When mc < 1, this nests the “discounted” Euler equations

generated by liquidity constraints in McKay et al. (2017) and by cognitive discounting in Gabaix

(2020). The opposite case, mc > 1, is consistent with the broader HANK literature (Werning, 2015;

Bilbiie, 2020), as well as with over-extrapolation or “cognitive hyperopia”. Finally, mi 6= mπ could

capture differential attention to (or salience of) nominal interest rates and inflation.

With these modifications, the entire analysis goes through, modulo the following adjustment

in the definition of δ :

δ= mπσκ+mc

1+miσφκ

The Taylor principle is still the same in the δ space, but of course changes in the φ space: we now

have that |δ| < 1 if and only if φ ∈ (−∞,φ)∪ (φ,+∞), where

φ≡−mπ

mi
− 1+mc

σκmi
and φ≡ mπ

mi
+ mc −1

σκmi

29This point might have been blurred by our choice to solve out firm behavior and reduce the economy to a game
among the consumers alone. But recall that this game embeded the best-responses of the firms, via the NKPC, which
translates as follows: what we really did in this paper was to study the game played by both consumers and firms, for
any given monetary policy rule.
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Depending on the m′s, these thresholds can be either smaller or larger than the textbook coun-

terparts. In this sense, the model’s region of indeterminacy may either shrink or expand by the

above modifications. For instance, Gabaix (2020) assumes mi = mπ and mc < 1, obtains φ < 1,

and uses this to argue that cognitive discounting relaxes the Taylor principle. But the essence of

the determinacy problem remains the same.

A similar point applies to Diagnostic Expectations as in Bordalo et al. (2018); Perfect Bayesian

Equilibrium with mis-specified priors as in Angeletos and Sastry (2021); and Woodford (2019b)’s

model of “finite planning horizons,” at least once learning is allowed (Xie, 2019). All these con-

cepts depart from REE by relaxing the exact coincidence between subjective beliefs and objective

distribution; but they are close cousins to REE in that they preserve the two-way feedback be-

tween beliefs and outcomes, thus also preserving the indeterminacy problem we have addressed

in this paper.

Contrast this class of concepts with Level-K Thinking (García-Schmidt and Woodford, 2019;

Farhi and Werning, 2019). The latter pins down a unique solution by shutting down the feedback

from objective truth to subjective beliefs. But this begs the question of how agents adjust their

behavior over time, in the light of repeated, systematic discrepancies between what they expect

to happen and what actually happens. Accordingly, we believe that Level-K Thinking is more

appropriate for unprecedented experiences (e.g., the recent ZLB experience) than for the kind of

stationary environments we are concerned with in this paper.

Furthermore, one may argue that Level-K Thinking does not “really” resolve the indetermi-

nacy problem and, instead, only replaces the sunspot with another free variable, the analyst’s

specification of the level-1 belief.30

This explains the sense in which Level-K Thinking replaces one free variable in beliefs (the

sunspot) with another free variable (the analyst’s specification of the level-0 behavior). By con-

trast, our approach leaves neither kind of freedom in specifying beliefs.

This is not to say that our approach is “better.” One may question the realism of both our

30Let us explain what we mean by this. Whenever |δ| > 1, the level-k outcome becomes infinitely sensitive to
the arbitrary level-0 outcome as k → ∞. To see this, consider what Level-K Thinking means in our setting. First,
level-0 behavior is exogenously specified, by a random process {c0

t }. Level-1 behavior is then defined as the best
response to the belief that others play according to level-0 behavior, that is, c1

t ≡ θt +δEt [c0
t+1],where Et is the full-

information expectation operator. This amounts to using the “wrong” beliefs about what other players do but the
“correct” beliefs about the random variables θt and c0

t+1. Iterating K times, for any finite K , gives the level-K outcome

as cK
t ≡∑K

k=0δ
kEt [θt+k ]+δK Et [c0

t+K ]. The solution concept says that actual behavior is given by ct = cK
t for all periods

and states of nature, where both K and {c0
t } are free variables for the modeler to choose. Clearly, {cK

t } is uniquely
determined for any given K and any given {c0

t }. But because {c0
t } is a free variable, the original indeterminacy issue

is effectively transformed to the modeler’s (or the reader’s) uncertainty about {c0
t }. Furthermore, the bite of this

uncertainty is most severe precisely when the indeterminacy issue is present: whenever |δ| > 1, the sensitivity of {cK
t }

to {c0
t } explodes to infinity as K →∞.
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main informational assumption and our approach’s heavy reliance on REE. Furthermore, the two

approaches are ultimately complementary in two regards: highlighting the role of higher-order

beliefs; and solidifying the logical foundations of the MSV solution. Thus, while the above dis-

cussion clarifies the differences in the two approaches, perhaps their common ground is what

matters the most for applied purposes.

Appendix C: General Fundamentals

In this Appendix we verify the claim that our main result extends to a more general specification

for the fundamentals. In particular, we let θt variable be any stationary, zero-mean, Gaussian

process, admitting a finite-state representation.

Assumption 6 (Fundamentals). The fundamental θt admits the following representation:

θt = q ′xt with xt = Rxt−1 +εx
t , (58)

where q ∈Rn is a vector, R is an n ×n matrix of which all the eigenvalues are within the unit circle

(to guarantee stationarity), εx
t ∼N (0,Σε) , and Σε is a positive definite matrix.

This directly nests the case in which (%t ,ξt , zt ) follows a VARMA of any finite length. It also al-

lows xt to contain “news shocks,” or forward guidance about future monetary policy. We hence-

forth refer to xt as the fundamental state.

Definition 1 and Assumption 2 adapt to this generalization as follows.

Definition 2 (Equilibrium). An equilibrium is any solution to equation (5) along which: expecta-

tions are rational, although potentially based on imperfect and heterogeneous information about

ht ; the outcome is a stationary, linear function of the underlying shocks, or

ct =
∞∑

k=0
akηt−k +

∞∑
k=0

γ′k xt−k (59)

where ak ∈R and γk ∈Rn are known coefficients for all k; and the outcome is bounded in the sense

that V ar (ct ) is finite.31

Assumption 7 (Social memory). In every period t , a consumer’s information set is given by

Ii ,t = {(xt ,ηt ), · · · , (xt−s ,ηt−s)},

where s ∈ {0,1, · · · } is drawn from a geometric distribution with parameter λ, for some λ ∈ (0,1].

31Note that V ar (ct ) can be finite only if there exists a scalar M > 0 such that |ak | ≤ M and ‖γk‖1 ≤ M for all k, where
‖ ·‖1 is the L1-norm. Our upcoming result actually uses only this weaker form of boundedness.
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With these minor adjustments in place, we can readily extend our main result. As anticipated

in the main text, the only subtlety regards the existence and characterization of the MSV solution.

Let us explain.

Because equation (8) is purely forward looking and xt is a sufficient statistic for both the con-

current θt and its expected future values, it is natural to look for a solution in which ct is a function

of xt alone; this restriction indeed defines the MSV solution. Thus guess ct = γ′xt for some γ ∈Rn ;

use this to compute Et [ct+1] = γ′Rxt ; and substitute into (8) to get ct = θt +δγ′Rxt = [q ′+δγ′R]xt .

Clearly, the guess is verified if and only if γ′ solves γ′ = q ′+δγ′R, which in turn is possible if and

only if I −δR is invertible (where I is the n×n identity matrix) and γ′ = q ′(I −δR)−1. We conclude

that the following assumption is necessary and sufficient for the existence of the MSV solution:

Assumption 8. The matrix I −δR is invertible.

We can then reach the following result:

Proposition 9. Proposition 2 continues to hold, modulo the following adjustment of the MSV so-

lution:

cF
t ≡ q ′ (I −δR)−1 xt . (60)

Proof. Similarly to Lemma 1, the requirement V ar (ct ) <∞ implies a uniform bound on the

coefficients ak and γk : there exist a finite scalar M > 0 such that |ak | ≤ M and ‖γk‖1 ≤ M for all k,

where ‖·‖1 is the L1-norm. We thus focus on candidate solutions that are bounded in this weaker

sense.

Since the sunspots {ηt−k }∞k=0 are orthogonal to the fundamental states {xt−k }∞k=0, the same

argument as that used in Proposition 2 still proves that ak = 0 for all k. We can thus focus on

solutions of the following form:

ct =
∞∑

k=0
γ′k xt−k . (61)

And the remaining task is to show that γ′0 = q ′(I −δR)−1 and γ′k = 0 for all k ≥ 1, which is to say

that only the MSV solution survives.

To start with, note that, since xt is a stationary Gaussian vector given by (58), the following

projections apply for all k ≥ s ≥ 0 :

E
[
xt−k |I s

t

]=Wk,s xt−s ,

where I s
t ≡ {xt , ..., xt−s} is the period-t information set of an agent with memory length s and

Wk,s ≡ E
[
xt−k x ′

t−s

]
E
[
xt x ′

t

]−1 = E[
xt x ′

t

](
R ′)k−s

E
[
xt x ′

t

]−1
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is an n ×n matrix capturing the relevant projection coefficients.

Next, note that

‖Wk,s‖1 ≤ ‖E[
xt x ′

t

]‖1‖
(
R ′)k−s ‖1‖E

[
xt x ′

t

]−1 ‖1, (62)

where ‖ · ‖1 is the 1-norm. Since all the eigenvalues of R are within the unit circle, we know its

spectral radius is less than one: ρ (R) = ρ
(
R ′) < 1. From Gelfand’s formula, we know that there

exists Λ̄ ∈ (0,1) and M1 > 0 such that

‖(
R ′)k−s ‖1 ≤ M1Λ̄

k−s ,

for all k ≥ s ≥ 0. Together with the fact that E
[
xt x ′

t

]
is invertible (because Σε is positive definite

and ρ (R) < 1), we know that there exists M2 > 0 such that

‖Wk,s‖1 ≤ M2Λ̄
k−s . (63)

Now, from Assumption 7, we know that

Ēt [xt−k ] = (1−λ)k xt−k +
k−1∑
s=0

λ (1−λ)s E
[
xt−k |I s

t

]≡ k∑
s=0

Vk,s xt−s , (64)

where, for all k ≥ s ≥ 0,

Vk,k = (1−λ)k In×n and Vk,s =λ (1−λ)s Wk,s .

Together with (63), we know that there exits M3 > 0 andΛ= max
{
1−λ,Λ̄

} ∈ (0,1) such that for all

k ≥ s ≥ 0,

‖Vk,s‖1 ≤ M3Λ
k . (65)

Now consider an equilibrium in the form of (61). From equilibrium condition (5), we know

+∞∑
k=0

γ′k xt−k = (1−δ0)θt +δ0Ēt

[+∞∑
k=0

γ′k xt−k

]
+δ1Ēt

[+∞∑
k=0

γ′k xt+1−k

]

= (
(1−δ0) q ′+δ0 +δ1γ

′
0R +δ1γ

′
1

)
xt + Ēt

[+∞∑
k=1

(
δ0γ

′
k +δ1γ

′
k+1

)
xt−k

]

= (
(1−δ0) q ′+δ0 +δ1γ

′
0R +δ1γ

′
1

)
xt +

+∞∑
k=1

(
δ0γ

′
k +δ1γ

′
k+1

)( k∑
s=0

Vk,s xt−s

)
.

For this to be true for all states of nature, it has to be that the load of xt−k on the left hand side

coincides with that on the right hand side, for all k ≥ 0. That is, the {γk }∞k=0 coefficients must solve

the following system:

γ′0 = (1−δ0) q ′+δ0γ
′
0 +δ1γ

′
0R +δ1γ

′
1

γ′k =
+∞∑
l=k

(
δ0γ

′
l +δ1γ

′
l+1

)
Vl ,k ∀k ≥ 1. (66)
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From the aforementioned boundedness property, we know that there is a scalar M > 0 such that

‖γ′k‖1 ≤ M for all k ≥ 0, where ‖ ·‖1 is the 1-norm. Using this fact along with (65) and (66), we can

then infer that, for all k ≥ 1,

‖γ′k‖1 ≤ (|δ0|+ |δ1|)
+∞∑
l=k

‖Vl ,k‖1M ≤ (|δ0|+ |δ1|) M3
Λk

1−ΛM . (67)

Because limk→∞Λk = 0, there necessarily exists an k̂ finite but large enough such that

(|δ0|+ |δ1|) M3
Λk̂

1−Λ < 1. (68)

It follows that, for all k ≥ k̂,

‖γ′k‖1 ≤ (|δ0|+ |δ1|) M3
Λk̂

1−ΛM .

Now, we can use the above formula and (66) to provide a tighter bound for ‖γ′k‖1: for all k ≥ k̂,

‖γ′k‖1 ≤
(

(|δ0|+ |δ1|) M3
Λk̂

1−Λ

)2

M .

And then we can keep iterating the same argument to get the following: for all k ≥ k̂ and l ≥ 0,

‖γ′k‖1 ≤
(

(|δ0|+ |δ1|) M3
Λk̂

1−Λ

)l

M .

And since the term in the parenthesis is less than 1, we conclude that any non-zero value for γ
′
k

can be ruled out, for all k ≥ k̂. Using (66) and doing backward induction, we conclude that γ′k = 0

for all k ≥ 1.

We are then left with a single equation for γ′0 :

γ′0 = (1−δ0) q ′+δ0γ
′
0 +δ1γ

′
0R.

Under Assumption 8, the above reduces to γ′0 = q ′ (I −δR)−1 , which corresponds to the MSV

solution. And since we have already proved that γk = 0 for all k ≥ 1 and ak = 0 for all k ≥ 0,

we conclude that the MSV solution is the unique equilibrium. �

Appendix D: Non-linearities and Multiple Steady States

Here we use an example, suggested by a referee, to clarify that our result speaks only to local

determinacy around a given steady state: global indeterminacy may still be possible, at least

when non-linearities support multiple steady-state equilibria.

Suppose that an agent’s best response is given by

ci ,t = δEi ,t [ct+1]−ωEi ,t [c3
t ], (69)
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for some scalars δ,ω. When ω= 0, this reduces back to our baseline, linear model and our main

result applies. The point here is to understand what happens when ω 6= 0. Let us focus in partic-

ular on how ω matters when δ> 1.

When ω ≤ 0, there is a unique steady state and is given by ci ,t = 0. When instead ω > 0, (69)

admits three steady states. These are given by

ci ,t =−c̄, ci ,t = 0, and ci ,t = c̄,

where c̄ ≡
√

δ−1
ω . If we linearize (69) around any of these steady states, we can apply our result to

the corresponding linearized model. In this sense, our approach guarantees local determinacy

around all three steady states and regardless of their eigenvalues. But our approach does not

guarantee global determinacy.

This should not be totally surprising. In our baseline model, the unique steady steady, which

is given by ci ,t = 0, serves as an anchor for expectations of future outcomes, in a similar way that

the common prior serves as an anchor for higher-order beliefs in the static games of Morris and

Shin (1998, 2002). When there are multiple steady states, each one of them can play this kind

of anchoring role locally, helping guarantee local determinacy. But our approach is silent about

global dynamics, such as jumps from one steady state to another.

To illustrate what we mean, consider the following example, which was proposed by a referee.

Suppose there exists a sunspot following a two-state Markov chain with values ηt ∈ {−1,+1} and

transition probabilityπ. Suppose next that all agents coordinate on playing the following strategy,

which requires knowledge only of the concurrent sunspot realization:

ci ,t = aηt ,

for some a 6= 0. This means, more simply, that all agents coordinate on playing the same action,

and that this action follows a two-state Markov chain with values ci ,t ∈ {−a,+a} and transition

probability π.

It is straightforward to check that this strategy constitutes an equilibrium if and only if a =√
δ(2π−1)−1

ω
, which in turn is well defined if and only if π ∈

(
1+δ−1

2 ,1
)

Also, as π→ 1, we have that

a → c̄, that is, this type of equilibrium translates to infrequent jumps across the two outer steady

states. Finally, this type equilibrium is robust to imperfect knowledge of the distant past in the

following sense: it suffices to have common knowledge of the current realization of the sunspot

(which itself is persistent as long as π 6= 1
2 ) and of the parameters π, a, and δ.

It is important to recognize that the equilibrium constructed above is not memoryless: the

restriction π> 1+δ−1

2 implies π> 1
2 , which means that the sunspot itself has to be persistent. This

example therefore links to our discussion of persistent sunspots discussed in Section 5. But there
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is a key difference: whereas there was a unique value for the persistence parameter ρ that sup-

ported multiplicity in our linear setting, now there is a whole range of values for the correspond-

ing parameter π that supports multiplicity in the present example.

Does this upset our main message? Not necessarily. First of all, we have been upfront that

our paper is ultimately only about local determinacy, and from this perspective our result is still

valid: if we linearize the present example around any of the three steady states, we still have local

determinacy. Second, and related, the above example is not a “perturbation” of our original set-

ting: for ω positive but small enough, the outer two steady states diverge to plus/minus infinity,

and so do the values of ct in the equilibrium constructed above. Last but not least, the above

equilibrium still assumes a significant degree of dynamic coordination: to jump from one steady

state to another, or more precisely between the two points of the Markov chain, agents must be

confident not only that other agents will do the same today but also that future generations will

stay at the new point with sufficient probability.

This begs the question of how sensitive the type of equilibrium constructed above is to per-

turbations of intertemporal common knowledge, albeit of a different from that those considered

in this paper. But our methods are not equipped to answer this question. At the end of the day, we

thus prefer to iterate our “real” take-home lesson: our contribution is not to argue that all kinds of

dynamic indeterminacy are gone, but rather to shed new light on the (local) determinacy prob-

lem of the New Keynesian model, to provide a formal justification for treating this problem as

bug, and to set the foundations for re-thinking both the Taylor principle and the FTPL.
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