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Abstract

We study infectious diseases in a Susceptible-Infected-Recovered (SIR) model
with interregional trade and endogenous migration. In our model, agents weigh the
risk of infection and economic opportunities across regions when choosing the opti-
mal location for work and life. They practice social distancing by avoiding high-risk
areas. The model predicts that if migration cost is sufficiently low, the global basic
reproductive number R0 can be greater than one even if local R0 is smaller than one.
However, when global R0 coincides with local R0, further tightening of migration
control becomes ineffective in reducing global R0. We apply our theory to study
the COVID-19 pandemic in the US. Reduced-form evidence based on smartphone
user data indicates that the risk of infection at the destination reduces bilateral mi-
gration flows, and state-level containment policies effectively reduce the number of
cases. A new method of “normalized hat algebra” is developed to solve and estimate
the model. We estimate our model the US economy of 50 states. Counterfactual
simulations based on the estimated model indicate that policies that altered cross-
state mobility friction reduced the number of COVID-19 cases by 56.1 thousand
while local containment policies reduced the number of cases by 31.6 million.
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1 Introduction

The 2019 novel coronavirus (COVID-19) pandemic has caused enormous loss of lives
worldwide and brought the global economy into a deep recession. Depending on the
vaccine’s effectiveness, there is a real possibility that the pandemic could last until 2025
(Kissler et al., 2020). Containment policies have slowed down the spread of the virus
(Hsiang et al., 2020; Maier and Brockmann, 2020) but also led to a collapse of global
passenger and trade flow (Azevedo, 2020; ICAO, 2020). Reopening national borders for
people and goods flows while safeguarding lives from the virus will be a paramount policy
issue in the coming years. More broadly, due to rapid globalization and urbanization,
infectious disease outbreaks have become more common in recent years, including SARS
in 2003, H1N1 in 2009, MERS in 2012, Ebola in 2014, and Zika in 2015. How to cope
with pandemics while reaping the benefits of globalization remains a long-term challenge
for humanity.

In this paper, we study the dynamics of infectious diseases and the effect of con-
tainment policies using a multi-region Susceptible-Infected-Recovered (SIR) model with
interregional trade and endogenous migration. In our model, agents of different types
weigh the risk of infection and economic opportunities across regions when choosing the
optimal location for work and life in each period. They automatically practice social
distancing by avoiding high-risk areas. As migration is endogenous in our model, we can
study the optimal mobility control. We provide the lower bound and upper bound for
the range of migration restriction. When the migration cost is sufficiently low, the global
basic reproductive number R0 can be greater than one even if local R0 is smaller than one,
so the migration friction should be increased. On the other hand, when the migration
friction is sufficiently high, such that global R0 coincides with local R0, further tightening
of migration control becomes ineffective in reducing global R0.

We apply our theory to study the real-life scenario of the US economy during the
COVID-19 pandemic. First, we provide reduced-form evidence using smartphone us-
er data, which suggests that the risk of infection at the destination reduces bilateral
state-to-state migration flows. Later, when we simulate the model, we indeed find the
Susceptible tend to move from regions with higher infection rates to those with lower
infection rates. Second, we report that US state policies are effective at containing the
pandemic and reducing the number of COVID-19 cases, while inter-state human mobility
tends to worsen the pandemic and raise local COVID-19 cases. We confirm these find-
ings in our simulated model by strengthening containment policies and show that stricter
containment policies or higher inward migration costs reduce local infection. Interesting-
ly, we find that unilateral imposition of migration restriction has “beggar-thy-neighbor”
effect as it tends to increase the density of the infected population and the probability of
getting infected in other regions. Without policy coordination, short-sighted governments
in regions with outbreak tend to adopt loose containment policies while other regional
governments would adopt policies as strict as possible.

We estimate our model to 50 US states and run counterfactual simulations to evaluate
the effect of policies implemented by governments, including restrictions on cross-state
movement and containment policies which reduced interaction of people within each s-
tate. We find both policies effectively reduced the number of accumulative infection during
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March 2020 to July 2020. In aggregate, the observed changes in migration friction during
this period reduced the total number of infection by about 56.1 thousand while the con-
tainment policies reduced infection by a total of 31.6 million. The stark difference in the
effect of these two policies can be attributed to the fact that the US imposed minimum
restriction of cross-state mobility during the migration. The effects were heterogeneous
across states, in general, states with more stringent policies registered a bigger rise in the
number of cases without these policies.

The first contribution of our paper to the literature of quantitative economic geogra-
phy (Allen and Arkolakis, 2014; Redding and Rossi-Hansberg, 2017; Monte et al., 2018;
Tombe and Zhu, 2019; Caliendo et al., 2019). The recent progress relies on models that
deliver gravity equations for trade flows, migration, and commuting flows. These models
are flexible and general enough to be brought to data and permit rich counterfactual
analysis. We contribute to the literature by embedding an epidemiological model inside
an economic geography model. In our model, agents’ migration decisions are complicated
by the fact that they can switch to other types in the next period while the probability
of switching is endogenous, time-varying, and depends on the distribution of agents in
each region.1 This makes existing quantitative methods, including the “dynamic hat al-
gebra” approach developed by Caliendo, Dvorkin, and Parro (2019), unsuitable to solve
the model.2 Instead, we make a methodological contribution by developing the approach
“normalized hat algebra”. We express the equilibrium conditions in terms of relative d-
ifferences with respect to the steady state. It allows us to solve the dynamic model and
conduct counterfactual simulations along the transition path without estimating all the
fundamental parameters.3

The second contribution of our paper to the literature is in the field of epidemiological
models (Kermack and McKendrick, 1927). We build a multi-region SIR model with
endogenous migration across regions. Despite previous studies showing human mobility
contributed to the spread of SARS-CoV-2 across Chinese cities (Fang et al., 2020) and
large US cities (Glaeser et al., 2020) and our own evidence using smartphone user data
capturing US inter-state mobility, migrations are typically taken as given or assumed away
in existing SIR models with multiple regions (Bartlett, 1956; Muroya et al., 2013; Adda,
2016; Fajgelbaum et al. 2020; Antràs et al., 2020; Bisin and Moro, 2020). Moreover, such
models do not capture the behavioural response in mobility to the virus which can reduce
infection even without containment policies (Fang et al 2020).4 Instead, agents in our
model weigh the risk of infection and economic opportunities across regions and optimize
the location for work and live in each period. Hence, they automatically follow social
distancing measures and avoid going to high-risk regions. To verify this assumption, we

1We follow the literature (e.g., Acemoglu et al., 2020) to assume that the probability of infection
depends on the density of the Susceptible and the Infected in the local population.

2Caliendo et al. (2017) assume that workers differ by skills. However, their skill type is time-invariant.
Our method therefore can be applied to scenarios that agent can switch types, for example, from low-skill
worker to high-skill worker.

3Since the differences are taken with respect to the steady state, compared to the “dynamic hat
algebra” approach, the additional parameters that we need to estimate are the steady state variables.

4For example, Antràs et al. (2020) assume that buyers and sellers from different countries interact with
each other only through international trade. Fajgelbaum et al. (2020) take the pre-pandemic commuting
flows as given when studying the pandemic’s optimal lockdown.
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estimate how the state-to-state migration flow responded to disease conditions in each
state during the pandemic. We find that people are less likely to move to a state with a
higher infection rate of COVID-19, conditional on containment policies in each state and
a number of controls.

We also contribute to the literature by investigating the effect of containment policies.
By now, there is plenty of evidence that containment policies are effective in flattening the
epidemic curve of COVID-19 (Fang et al., 2020; Hsiang et al., 2020; Maier and Brockmann,
2020). Our results confirm that US state policies were effective in reducing the number
of COVID-19 cases. However, it is less clear whether these policies have been optimal or
sub-optimal. There are normative studies on optimal containment policies along various
dimensions, including quarantine and testing (Berger et al., 2020; Piguillem and Shi,
2020), lockdown (Alvarez et al., 2020; Acemoglu et al., 2020; Fajgelbaum et al., 2020),
and general economic policies (Eichenbaum et al., 2020). However, to the best of our
knowledge, no studies has provided optimal policy on human mobilities with endogenous
migration. Our preliminary theoretical results show that if migration friction is sufficiently
small, the global R0 is greater than 1. Raising migration frictions tends to reduce R0.
However, once migration friction is high enough such that the global R0 coincides with
local R0, further increases in migration friction would not reduce R0. Therefore, a full
lockdown would not be optimal, leaving scope for optimal mobility control.

The rest of the paper is arranged as follows. Section 2 introduces the data and presents
the stylized facts which motivate our model. Section 3 sets up the model and discusses
an analytical result. Section 4 introduces the normalized hat algebra. Section 5 presents
our strategy to estimate the model to the US economy of 50 states and demonstrates the
model channels with by simulating a three-region economy. Section 6 runs counterfactual
simulations for the US economy to evaluate the effect of containment policies and migra-
tion friction. Section 7 concludes and discusses two theoretical extensions to incorporate
vaccination and testing to the model.

2 Data and Stylized Facts

This section presents three stylized facts about the effect of containment policy and the
role of inter-state migration on the spread of COVID-19 across US states. These new
stylized facts motivate our theoretical model in the next section.

2.1 Data

Epidemiological Data of COVID-19
Daily COVID-19 data for each state since January 2020 till July 2020 are collected from

the COVID Tracking Project. It reports information on the total number of confirmed
cases, hospitalized cases, and deaths. We aggregate the daily data to bi-weekly frequency
and build a panel dataset with newly confirmed cases of US states.

Policy Data
The implementation dates of COVID-19 US state policies are documented by Raifman

et al. (2020). This database tracks COVID-19 policices implemented by each state over
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time and covers a wide range of policies, including public place closure, physical distance
closures, stay home policy, face-mask-wearing, and quarantine policy. The corresponding
detailed classification of policies is listed in Table 1.

We follow Hale et al. (2020) to construct a US state-level policy index. The index
is a composite measure that combines different indicators of containment policies into
a general index. We first rescale each of the sub-policy under their indicator by their
maximum value to create a score between 0 and 100, with a missing value contributing 0.
These scores of different indicators are averaged to get the final composite measure for each
state. The composite measure allows us to compare government responses to COVID-19
across states. It also avoids the problem that some policies are implemented closely, and
the interpretation of individual policy responses could be over or mis-estimated.

Figure 1 plots the mean of the composite index for 50 states and DC over time. We
find that US state containment policies peaked around April 2020 and were then gradually
relaxed. Figure 2 shows the composite index’s regional variation and trends every four
weeks from March to July, 2020. As we can see, there are large variations across states
in the strictness of containment policies.

Migration Data
To estimate the impact of the pandemic on migration, we use anonymous smartphone

data from PlaceIQ, a location analytics firm, which track mobile phone users’ location
over time. Such data have been used to measure mobility during the pandemic (Glaeser,
et al. 2020). We aggregate the Location Exposure Index (LEX) constructed by Couture
et al. (2021) to a bi-weekly level to obtain real-time state-to-state migration flows during
the pandemic.

Other Socio-Economic Statistics
US state population, wage, and income data in 2019 are from the US Census Bureau.

Our source of state-level price data is the Regional Price Parities (RPPs) from the US
Bureau of Economic Analysis. RPPs measures the differences in price levels across states
and metropolitan areas for a given year. State-to-state trade flows are constructed from
the 2017 Commodity Flow Survey (CFS), provided by the Bureau of Transportation
Statistics and the US Census Bureau. State-to-state migration flows at annual frequency
from 2014 to 2018 are from the IPMUS-USA database of Minnesota Population Center5.

Table 1 shows the summary statistics of the above-mentioned variables. Panel A is at
the state-pair bi-weekly level, while Panel B is at the state bi-weekly level.

2.2 Stylized Facts

Exploiting the data collected, we use reduced-form econometric tools to establish three
stylized facts about inter-state migration, containment policies, and the development of
COVID-19 in the US. We are interested in how the risk of infection affected agents’
mobility during the pandemic. We would also like to know whether containment policies

5Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas, and
Matthew Sobek. IPUMS USA: Version 10.0 [dataset]. Minneapolis, MN: IPUMS, 2020. http-
s://doi.org/10.18128/D010.V10.0
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implemented by state governments were effective in slowing down the pandemic and inter-
state migration flows exacerbated infection.

Fact 1: People avoid high risk areas when migrating during the pandemic

Compared with existing studies on COVID-19, a key innovation of our model is that
migration is endogenous and agents perceive the risk of infection in different regions when
moving across regions. To support this assumption, we use migration data from PlanceIQ
during the pandemic and study how migration responded to infection risk in different
regions. To investigate whether people responded to the risk of infection, we estimate the
following equation.

ln(mij,t) = a0 + a1Infectioni,t−1 + a2Infectionj,t−1 + a3Quarantinej,t−1 + ... (1)

+
∑
k

bkXij,k + dt +Oi +Dj + ξij,t

while mij,t is the flow of people from state i to j at time t, Infectioni,t−1 captures
the lagged infection rate at the origin state and Infectionj,t−1 the destination state.
Quarantinej,t−1 is the lagged quarantine policy imposed by the destination state. Xij,k

captures the time variant gravity variables including distance, shared common border be-
tween the origin and destination. Finally, dt captures the time fixed effect, Oi and Dj the
origin and destination state fixed effects, respectively, and ξij,t the error term. Estimated
results are shown in Table 2. We estimate the model using the method of Poisson Pseudo
Maximum Likelihood (PPML), which deals with zeros in the migration data and poten-
tial heteroskedasticity (Silva and Tenreyro, 2006). Table 2 presents the estimated result.
The gravity variables are consistent with the prior literature (Poncet, 2006; Tombe and
Zhu, 2019): distances discourage inter-state migration while a shared border encourages
it. We find that higher infection rate at the destination strongly and significantly reduced
the state-to-state migration flow, while quarantine policy at the destination or infection
rate at the origin did not seem to matter. It suggests that migration behavior during
the pandemic changes with people spontaneously avoiding areas with high infection risks,
after controlling for the effect of quarantine policies across states.

We next study the impact of containment policies and cross-state human mobility on
the spread of the pandemic by estimating the following equation:

yi,t = b0 + b1ClosureIndexi,t + b3
∑
j 6=i

m0
ji ln(casesj,t−1) + dt + Si + νij,t, (2)

while yi,t is our measure of newly confirmed COVID-19 cases in state i at period t, and
ClosureIndexi,t is an index capturing the stringency of closure measure as described in
section 2.1, which ranges from 0 to 100. We measure the exposure of state i to the
pandemic in other states due to inter-state mobility using

∑
j 6=im

0
ji ln(casesj,t−1). m

0
ji is

the share of people moving from state j to state i in the initial period of our sample,
which is before the outbreak of the pandemic. ln(casesj,t−1) is the logarithm of the lagged
number of cases in state j. We also control for time fixed effect dt and state fixed effect
Si.

Table 3 presents the estimation results. In columns (1) - (4), we estimate the model
using the method of OLS and using the logarithm of the number of new cases as the
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outcome. To deal with zeros in the number of cases and heteroskedasticity (Silva and
Tenreyro, 2006), columns (5) - (8) estimate the model using the method of PPML. As we
can see, across all columns, the closure index which measures the stringency of contain-
ment policies had a significant and negative impact on the number of new cases. We can
therefore summarize the finding as

Fact 2: Stringent containment policies are effective on reducing new infection.

The original PlaceIQ data measure cross state mobility in terms of share at daily
frequency. Our analysis is at the bi-weekly frequency. We measure the exposure to
pandemic in other states using either the average daily migration shares within initial
two weeks or the maximum. As for the pandemic, we measure either in terms of the
number of new cases or the cumulative number of cases. Across these measures, we find
the positive and significant effect of exposure to the COVID-19 pandemic in other regions
via cross-state migration on the local pandemic, which we summarize as the follows.

Fact 3: More migration from states of higher number new cases is associated
with higher number of local cases.

3 Model

Motivated by the stylized facts, we set up a multi-region SIR model with interregional
trade and endogenous migration. Agents make dynamic migration decisions taking into
account the risk of infection and the probability of recovery in different regions. The
model predicts how the dynamics of the pandemic and demography, trade, and the welfare
depend on migration frictions and other model parameters.

3.1 Consumption, Production, and Trade

Consider an economy consisting of N regions. Agents derive utility from consuming a
non-tradable composite final good given by

u(ci,t) =

[∫ 1

0

qi,t (ω)
σ−1
σ dω

] σ
σ−1

,

while qi,t (ω) is the quantity of intermediate good variety ω consumed by agents in region
i at period t, and σ is the elasticity of substitution between the differentiated varieties.

Intermediate goods are tradable. Following Eaton and Kortum (2002), we assume that
agents purchase from the region offering the lowest price for each variety. Intermediate
goods are produced with a linear production technology in labor input while productivities
are random and drawn from the Fréchet distributions given by

z ∼ Fi(z) = e−Aiz
−θ
,

while Ai captures the average productivity of region i and θ the dispersion of productivity.
The cost of purchasing one unit of goods from region i in region j is given by

pij(ω) =
τijwi,t
zi(ω)

,
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where wi,t is the wage at region i at period t and τij is the iceberg trade cost from region i
to j. According to Eaton and Kortum (2002), the expenditure share of region j on goods
from region i is given by

πij,t =
Ai (τijwi,t)

−θ

Φj,t

, (3)

while Φj,t =
∑N

k=1Ak (τkjwk,t)
−θ. The aggregate price index in region j is given by

Pj,t = γ1Φ
−1/θ
j,t , (4)

while γ1 ≡ Γ( θ+1−σ
θ

) is a constant.

3.2 Migration, Demographic and Disease Dynamics

We adopt the SIRD model (Kermack and McKendrick, 1927) and divide the total pop-
ulation into four groups, the Susceptible (S), Infected (I), the Recovered (R), and the
Deceased (D).6 For the purpose of empirical analysis, we assume that time is discrete
and use Si,t, I i,t, Ri,t, Di,t to denote the population of each group at the beginning of the
period t in region i, and Si,t, Ii,t, Ri,t, Di,t at the end of period t. The size of each group
evolves over time due to both the pandemic and migration across regions.

For migration, we follow recent quantitative economic geography literature (Redding
and Rossi-Hansberg, 2017; Caliendo et al. 2019; Tombe and Zhu, 2019) and assume that
agents make their migration decision by maximizing the expected utility. To be specific,
for the Susceptible group S in region i at period t, their problem can be characterized by
the following Bellman equation,

USi,t(εi,t)= ui,t + max
j
{βEt[(1− αj,t+1)U

S
j,t+1(εj,t+1) + αj,t+1U

I
j,t+1(εj,t+1)]− µ̃ij,t + εij,t}, (5)

while ui,t is the instantaneous utility given by ui,t =
wi,t
Pi,t

, and β is the discount rate.

With a probability of αj,t+1, the agent will get infected in region j at period t + 1 and
join group I with a value function of U I

j,t+1. With a probability of 1 − αj,t+1, the agent
will remain uninfected and join group S with a value function of US

j,t+1. The migration
cost from i to j for is µ̃ij,t in period t. On the top of that, agents currently in region i
receive a vector of preference shock εi,t at the end of each period with each element εij,t
following an i.i.d. Gumbel distribution

Pr {εij,t ≤ ε} = exp
{
− exp

{
−ε/κ− γEuler

}}
, (6)

while κ is a parameter that controls the dispersion of the shock while γEuler is the Euler
constant ensuring that the shock has zero mean. Similarly, for groups I and R, their value
functions are given by

U Ii,t(εi,t) = uIi,t + max
j
{βEt[(1− γRj − γDj )U Ij,t+1(εj,t+1) + γRj U

R
j,t+1(εj,t+1) + γDj U

D]− µ̃ij,t + εij,t},

(7)

6If the death rate is zero, the setup is the same as the standard SIR model.
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and
UR
i,t(εi,t) = ui,t + max

j
{βEt[UR

j,t+1(εj,t+1)]− µ̃ij,t + εij,t}, (8)

while γRj and γDj , are the recovered and death rates in region j, respectively. For group I,
their instantaneous utility uIi,t =

ηi,twi,t
Pi,t

depends on the effective labor supply rate ηi,t ∈
[0, 1] which depends on the containment policy. Following Fajgelbaum et al. (2020), we
assume that a stricter containment policy will urge more infected people to telecommute,
thus reduce the effective wage for those infected. For group D, the Deceased, their value
function is given by UD which is a constant that we normalize as 0.7 Solving problems
(5), (7), and (8), we find that values of residents can be recursively defined as the present
option values of future living choices portfolio:

V S
i,t = exp

(ui,t
κ

) N∑
k=1

(
V S
k,t+1

)β(1−αk,t+1) (V I
k,t+1

)βαk,t+1 (µik,t)
−1 ,

V I
i,t = exp

(
uIi,t
κ

)
N∑
k=1

(
V I
k,t+1

)β(1−γRj −γDj ) (
V R
k,t+1

)βγRj (V D
)γDk (µik,t)

−1 , (9)

V R
i,t = exp

(ui,t
κ

)∑N

k=1

(
V R
k,t+1

)β
(µik,t)

−1 ,

and the migration rates are given by:

mS
ij,t =

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1 (µij,t)
−1∑N

k=1

(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik,t)
−1
,

mI
ij,t =

(
V I
j,t+1

)β(1−γRj −γDj ) (
V R
j,t+1

)βγRj (V D
)γDj (µij,t)

−1∑N
k=1

(
V I
k,t+1

)β(1−γRj −γDj ) (
V R
k,t+1

)βγRj (V D)γ
D
k (µik,t)

−1
, (10)

mR
ij,t =

(
V R
j,t+1

)β
(µij,t)

−1∑N
k=1

(
V R
k,t+1

)β
(µik,t)

−1 ,

while V g
i,t = exp(Et(U

g
i,t)/κ), g ∈ {S, I, R} , and µij,t = exp(µ̃ij,t/κ). Compared with ex-

isting models on migration (Redding and Rossi-Hansberg, 2017; Caliendo et al. 2019;
Tombe and Zhu, 2019), there are a few major differences. First, the migration rates are
heterogeneous across different of groups of agents. Second, other than migration frictions,
disease parameters (infection, recovery, and death rates), also affect the migration prob-
ability directly. Lastly, the agents take into account the fact that they might switch to
other types in following periods. It is worth mentioning that though agents are uncertain
about whether they will get infected next period, the aggregate risks of infection αj,t+1

are endogenously determined by collective migration decisions, thus will be considered as
given from the perspective of each individual when making location choices.

7We adopt the linear utility function of u(x) = x following Artuç et al (2010). If we follow Caliendo
et al (2019) to assume u(x) = lnx, UD by definition should be the utility of zero consumption stream,
which would be −∞ and collapse the value functions to zero.
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As standard in SIR models, the demographic dynamics within period due to the disease
are given by

Si,t = Si,t − Ti,t, Ii,t = Ti,t +
(
1− γRi − γDi

)
I i,t, (11)

Ri,t = Ri,t + γRi I i,t, Di,t = Di,t + γDi I i,t,

where

Ti,t = Mi

(
Si,t
Li,t

,
ηi,tI i,t
Li,t

)
Li,t (12)

is the number of newly infected people in region i at time t and Mi(., .) is the matching
function between groups S and I (Acemoglu et al., 2020). Then the infection rate is

given by αit ≡ Ti,t
Si,t

. To simplify matters, we adopt the functional form assuming that

Mi

(
Si,t
Li,t

,
ηi,tIi,t
Li,t

)
= min

{
Si,t
Li,t

, χi
Si,t
Li,t

(
ηi,tIi,t
Li,t

)φ}
, while χi is a parameter that can be shaped

by regional features influencing spread of virus like area and climate, ηi,t which is region
and time specific and depends on and crucially local containment policies, and φ is the
matching elasticity regarding infected population.8 Similar to other dynamic models of
migration, the demographic dynamics across periods due to migration are given by

Si,t =
N∑
j=1

Sj,t−1m
S
ji,t−1, I i,t =

N∑
j=1

Ij,t−1m
I
ji,t−1, (13)

Ri,t =
N∑
j=1

Rj,t−1m
R
ji,t−1, Di,t = Di,t−1.

To sum up, the timing of the event in the model is given by Figure 3.
Finally, to close the model, the goods market condition for each market is give by

wi,t (Si,t +Ri,t + ηi,tIi,t) =
N∑
j=1

πij,twj,t (Sj,t +Rj,t + ηj,tIj,t) . (14)

3.3 Equilibrium

Given our assumptions, the time-varying fundamentals of the economy are the bilateral
migration costs µt = {µij,t}N,Ni=1,j=1 and containment policies ηt = {ηi,t}Ni=1, while the

constant fundamentals include productivities of each region A = {Ai}Ni=1, bilateral trade

costs τ = {τij}N,Ni=1,j=1, recovery rate γR =
{
γRi
}N
i=1

, death rate γD =
{
γDi
}N
i=1

, and

the scale parameter of the matching function χ = {χi}Ni=1. We denote the time-varying
fundamentals as Ωt ≡ {µt, ηt} and the constant fundamentals as Ω ≡

{
A, τ, γR, γD, χ

}
.

8Here we add a min operator in the definition of the matching function to allow for the scenario that
the pandemic explodes and everyone susceptible is infected. Then all susceptible people will get infected
at some period, which cannot be simulated if traditional economic matching function of M(x, y) = xθy1−θ

or epidemiological matching function of M(x, y) = axy is used.
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The other parameters which are assumed to be constant across regions and time are:
the trade elasticity (θ), the migration elasticity (κ), the discount rate (β), and the elas-
ticity of substitution between differentiated varieties in final consumption (σ).

Our first goal is to find the equilibrium wage wt = {wi,t}Ni=1 and allocation of expendi-

ture {πij,t}N,Ni=1,j=1 for period t, given the fundamentals of the economy Ωt and Ω, and the

distribution of each of type of agents across regions Gt ≡ {Si,t, Ii,t, Ri,t, Di,t}Ni=1, which
will be referred as the temporary equilibrium.

Definition 1 Given (Ωt, Ω, and Gt), a temporary equilibrium is a vector of wages w(Ωt,Ω, Gt)
satisfying equations (3), (4) and (14).

The temporary equilibrium corresponds to the equilibrium of a static multi-regional
trade model.9 We then define the sequential competitive equilibrium for a given path of
{Ωt}∞t=0 and Ω. If we denote mt = {mS

ij,t, m
I
ij,t, m

R
ij,t}

N,N
i=1,j=1 and Vt = {V S

i,t, V
I
i,t, V

R
i,t}Ni=1

as the migration share and lifetime utility of each group, the definition of the sequential
competitive equilibrium is

Definition 2 Given ({Ωt}∞t=0, Ω, and G0), the sequential competitive equilibrium is a
sequence of {Gt, mt, Vt, w(Ωt,Ω, Gt)}∞t=0 satisfying equations (10), (11), (12), (12), and
(14).

Then we are ready to define the stationary equilibrium.

Definition 3 A stationary equilibrium is a sequential competitive equilibrium such that
{Gt, mt, Vt, w(Ωt,Ω, Gt)}∞t=0 are constant over time.

(sth is wrong with the numbering the equations. Should be 9-13)

3.4 Migration and R0

Only under certain restrictions, SIR models have analytical solutions (Harko et al., 2014).
Embedding such models in an economic geography model with interregional trade and
endogenous migration by multiple groups of agents makes it even more complicated. N-
evertheless, we can provide analytical results about the R0 to demonstrate the interaction
between migration and the pandemic. If we rewrite the law of motion for group I given
in Eq. (12) and (14) 10:

Ii,t = χi
Si,t
Li,t

I i,t +
(
1− γRi − γDi

)
I i,t =

(
1− γRi − γDi + χi

Si,t
Li,t

) N∑
j=1

mI
ji,t−1Ij,t−1.

Following Diekmann et al. (1990), we vectorize the equation above as

It+1 = FIt −VIt,

9Redding (2016) provides a proof of existence and uniqueness to a similar problem.
10Now we assume that φ = 1 and the pandemics will not explode, as usually people do when calculating

R0
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while

F =


1 + χ1

1 + χ2

. . .

1 + χN



mI

11,ss mI
21,ss · · · mI

N1,ss

mI
12,ss mI

22,ss · · · mI
N2,ss

...
...

. . .
...

mI
1N,ss mI

2N,ss · · · mI
NN,ss

 ,

V =


γD1 + γR1

γD2 + γR2
. . .

γDN + γRN



mI

11,ss mI
21,ss · · · mI

N1,ss

mI
12,ss mI

22,ss · · · mI
N2,ss

...
...

. . .
...

mI
1N,ss mI

2N,ss · · · mI
NN,ss

 .
and mI

ji,ss is the steady state value of mI
ji,t−1. The first term refers to all the historical

infected people, including the incumbent and the newly infected. And the second refers
to those who either die or recover, not infected any longer. Then R0 can be calculated as
the spectral radius of the following matrix

M = (F− I) V−1.

Intuitionally, F− I indicates the newly infected while V−1 is for the expected duration of
infection. So by definition, matrix M represents the number of people an infected person
is expected to contaminate during his illness. In the symmetric case, χi = χ, γRi +γDi = γ,
the migration matrix for group I is

mI =


a b · · · b
b a · · · b
...

...
. . .

...
b b · · · a

 ,
while a is the probability of staying in local region and b the probability of migrating to
other regions. Matrix mI has two eigenvalues, one that equals a − b and another that
equals 1. Then matrix M can be diagonalized as

M = P−1


χ+1− 1

a−b
γ

χ+1− 1
a−b

γ
. . .

χ
γ

P, (15)

which has two eigenvalues given by χ/γ and (χ+ 1− 1/ (a− b)) /γ. We find that even
if the local R0 = χ/γ < 1, the global R0 is greater than 1 as long as b ≥ χ+γ

1+χ+γ
1
N

. If
χ+γ

1+χ+γ
1
N
> b > 2χ

1+2χ
1
N

, then the global R0 = (1/ (a− b)− 1− χ) /γ which decreases with

b. Finally, as long as b ≤ 2χ
1+2χ

1
N

, the global R0 coincides with the local R0, which does
not depend on migration costs. We summarize the results in the following proposition.

Proposition 4 In a symmetric equilibrium,
(a) if migration cost is sufficiently small such that b ≥ χ+γ

1+χ+γ
1
N

, i.e., the probability of
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migrating to other region is sufficiently large, then the global basic reproductive number
R0 > 1, even if the local R0 < 1;
(b) if migration cost is sufficiently large such that b ≤ 2χ

1+2χ
1
N

, i.e, the probability of
migrating to other region is sufficiently low, then the global basic reproductive number
R0 > 1 coincides with the local R0.

According to result (a), the pandemic may be waning in a region but waxing globally.
One way to put down the pandemic globally is to reduce migration across regions. How-
ever, according to result (b), beyond a certain threshold, further increasing the migration
cost becomes ineffective as the global R0 is determined by the local R0.

4 Normalized Hat Algebra

The “Hat Algebra” approach has been widely used in quantitative trade and economic
geography models (Dekle et al, 2007; Costinot and Rodriguez-Clare, 2014; Redding and
Rossi-Hansberg, 2017). This approach allows researchers to fit models to observed data
without estimating model fundamentals such trade and migration costs but still permits
rich counterfactual analysis. However, it is only useful in static or steady models. Calien-
do et al. (2019) extended this approach and developed the method of “Dynamic Hat
Algebra” to solve models with intrinsic migration dynamics.11 They show how to derive
the transition path and conduct counterfactual analysis along the transition path in a
class of models.

Unfortunately, the dynamic hat algebra cannot be applied to our setting. Firstly, the
dynamic hat algebra relies on the logarithm preference while we follow Artuç et al. (2010)
and assume an linear preference.12 Secondly, due to the pandemic, group S transits to
group I over time and the transition probability is time-variant. This makes the dynamic
hat algebra impractical even if we adopt the logarithm preference. To see that, we can
rewrite the growth rate of group S’s value function in Equation (10) following Caliendo
et al. (2019):

V̇ S
i,t+1 = exp

(
ui,t+1 − ui,t

κ

) N∑
k=1

mS
ik,t(V̇

S
k,t+2)

β(1−αk,t+2)(V̇ I
k,t+2)

βαk,t+2

(
V S
k,t+1

V I
k,t+1

)β(αk,t+1−αk,t+2)

,

while V̇ g
i,t+1 =

V gi,t+2

V gi,t+1
, g ∈ {S, I}. As we can see, the term (V S

k,t+1/V
I
k,t+1)

β(αk,t+1−αk,t+2)

emerges any time infection rates fluctuates: αk,t+1 6= αk,t+2. Therefore, we cannot rewrite
the equation purely in terms of the growth rate of the value function and proceed to solve
the model in terms of changes as Caliendo et al. (2019).

To solve this problem, we instead develop a “Normalized Hat Algebra” approach by
normalizing all value function to their corresponding steady-state values. If we denote
x̂t = xt/xss, while xss is the steady state value of variable x. Then if we define

11In new economic geography models such as Fujita et al (1999), migration typically follows an exoge-
nous process which depends on the wage difference between regions.

12This is because the Deceased group have streams of zero consumption in our model. Under the
logarithm preference, the utility of the Deceased will be minus infinity, which collapses all value function
to zero as long as the probability of death is positive.
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Definition 5 A converging sequence is such that limt→∞Φt = Φss,

we have the following result

Proposition 6 Given the initial allocation of the economy (G0, π0) and the steady state
of economy (ΦSS,Φ), and an anticipated sequence of fundamentals {Φt}∞t=0, the solution
to the sequential competitive equilibrium solves equations (14), (12) , (12), together with
the following nonlinear equations

V̂ S
i,t = exp(

ui,t(wt)− ui,ss(wss)
κ

)
N∑
j=1

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j,ss

V S
j,ss

)βαj,t+1

V̂ I
i,t = exp(

uIi,t(wt)− uIi,ss(wss)
κ

)
N∑
j=1

mI
ij,ss

(
V̂ I
j,t+1

)β(1−γRj −γDj ) (
V̂ R
j,t+1

)βγRj
V̂ R
i,t = exp(

ui,t(wt)− ui,ss(wss)
κ

)
N∑
j=1

mR
ij,ss

(
V̂ R
j,t+1

)β

mS
ij,t =

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(
V Ij,ss
V Sj,ss

)βαj,t+1

∑N
k=1m

S
ik,ss

(
V̂ S
k,t+1

)β(1−αk,t+1) (
V̂ I
k,t+1

)βαk,t+1
(
V Ik,ss
V Sk,ss

)βαj,t+1

mI
ij,t =

mI
ij,ss

(
V̂ I
j,t+1

)β(1−γRj −γDj ) (
V̂ R
j,t+1

)βγRj
∑N

k=1m
I
ik,ss

(
V̂ I
k,t+1

)β(1−γRj −γDj ) (
V̂ R
k,t+1

)βγRj
mR
ij,t =

mR
ij,ss

(
V̂ R
j,t+1

)β
∑N

k=1m
R
ik,ss

(
V̂ R
k,t+1

)β
.

for all regions i and j at each period t, while wt is the solution to the temporary equilibrium
given {Φt, Gt} and wss = limt→∞wt.

Therefore, given the initial conditions, steady state values and anticipated sequence of
converging time varying fundamentals, we are able to solve the transitional dynamics. The
key to get there results is that at the steady state, the infection rate in each region should
reach zero. In other words, economic activities achieve stability either all the susceptible
get infected or pandemic just gradually fades away as all infection are eliminated. In both
cases, steady state values for the Recovered and the Susceptible V R

i,ss, V
S
i,ss can be solved

first, and then the infected V I
i,ss from Equation (10).

Compared with dynamic hat algebra, our approach requires the value of steady states.
But counterfactual analysis can be conducted directly by inserting counterfactual param-
eters into , rather than develop new equation systems as in dynamic hat algebra. The
detailed algorithm to use the normalized hat algebra is in the Appendix A.1.
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5 Quantifying the Model

In this section, we first estimate our model to the spatial economy of 50 US states. We use
data from the pre-pandemic US economy to estimate the steady-state trade and migration
parameters (trade elasticity σ, migration elasticity κ, trade and migration costs). For the
matching function between groups S and I, M(., .), we estimate it using epidemiological
data of COVID-19 and containment policies. Then we apply our normalized hat algebra
approach to estimate time-varying migration friction during the pandemic by fitting the
model to observed the dynamics during the pandemic.

We then simulate an artificial three-region economy to demonstrate the mechanism of
our model, before running full counterfactuals in the section for the US economy.

5.1 Estimation

We categorize the model parameters into four groups: Preference, Trade, Migration, and
Pandemics, which are calibrated using separate data sets.

Preference

To ease our quantitative analysis and calibration, we set the following parameters
by adopting common values from the literature. We set the value of β = 0.96, the
discount factor, to match the 4% yearly interest rate. σ captures the demand elasticity
of consumption goods. We set σ = 2.13

Trade

We estimate trade elasticity and trade costs using the 2017 Commodity Flow Survey
by aggregating the data to state level. According to Equation (3), if we normalize the
bilateral trade share with the home trade share in the destination, we have

ln

(
πij,t
πjj,t

)
= −θ ln τij + STi − STj − θ ln

wi,t
wj,t

, (16)

while STi ≡ lnAi is the state fixed effect indicating technology and the coefficient before
the income ratio of origin and destination states

wi,t
wj,t

is the trade elasticity. Following

Waugh (2010), we decompose trade friction into distance, contiguity and importer fixed
effect to allow for asymmetric trade costs between states

ln τij = βT0 + βT1 ln distij + βT2 contij + δTj + εTij,

while ln(dist)ij is the log of distance between two states, contij is a dummy indicating
contiguous or not, δTi is the importer fixed effect , and εTij the error term. Without loss

of generality, we can normalize that
∑N

i=1 S
T
i =

∑N
i=1 δ

T
i = 0.

Table A.1 presents our estimates of θ, which varies from about 2 to 3. We will set
θ = 2.961 in our benchmark simulation according to the estimation result in column (2).14

13To ensure that the price index in equation (4) is well defined, we need θ > σ − 1. Later, we will do
robustness checks on the value of σ.

14We later explore the sensitivity of our results using alternative values of θ.
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After obtaining the value of trade elasticity, we infer the set of trade costs between any
two states using the following equation

τ̂ij = exp
(
β̂T0 + β̂T1 ln distij + β̂T2 contij + δ̂Tj

)
,

and plot the distribution of these estimated trade costs in Appendix Figure A1.

Migration

We next estimate the migration elasticity within the U.S. We also estimate the steady-
state migration costs by fitting the pre-pandemic migration data to a model without
pandemic, and estimate changes in migration costs during the pandemic by fitting our
dynamic model with pandemic to observed migration and epidemiological data.

First, in the model without pandemic, it is easy to show that the migration share from
region i to j is given by15

mij,t =
V β
j,t+1µ

−1
ij∑N

k=1 V
β
k,t+1µ

−1
ik

.

Normalize mij,t by the share of non-migrants who stay at the home state mii,t, we get

ln

(
mij,t

mii,t

)
= β lnVj,t+1 − β lnVi,t+1 − lnµij. (17)

The model implies the share of migrants from state i to state j at time t, relative to
the share of non-migrants who stay at the home of state i, is a function of value function
differences and migration costs. Taking the first difference of equation (17), we estimate
the following dynamic panel regression model to estimate migration elasticity κ.

ln
mij,t

mii,t

− β ln
mij,t+1

mjj,t+1

=
β

κ

(
wj,t+1

Pj,t+1

− wi,t+1

Pi,t+1

)
− (1− β) lnµij + εκij,t, (18)

which is similar to the estimation equation in Artuç et al (2010). But the differences of
real wage, instead of relative ratio, now enter the equation, so scale of real wage matters
when estimation. Fortunately, when estimating trade cost, technology across states is
normalized.

∑N
i=1 S

T
i = 0 indicates

∏N
i=1Ai = 1, thus we can scale the real wage by:

N∏
i=1

wi
Pi

=

(
1

γ

)N ( N∏
i=1

πii

)−1/θ
(19)

We further assume that migration costs depend on distance, contiguity, and destination
effect:

ln µ̂ij = β̂M0 + β̂M1 ln distij + β̂M2 contij + δ̂Mj . (20)

For a given β, κ can be obtained by taking ratio of β and the coefficient in front of
wj,t+1

Pj,t+1
− wi,t+1

Pi,t+1
. We provide the resulting estimates for κ in Table A.2. According to our

15Check Caliendo et al (2019) or Tombe and Zhu (2019).
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preferred specification of column (4), the implied migration elasticity is κ = 2.97.16 We
infer the set of migration costs between any two states using the equation (20) and plot
the distribution of these estimated migration costs in Figure A2.

Next, we estimate changes in migration costs during pandemics by matching migration
and epidemiological data during the pandemic with our dynamic model with pandemic.
Our estimated changes in migration costs minimize the difference between cases predicted
by the model and the observed data across states for the period of March 7th 2020 to July
12th 2020 at bi-weekly frequency. We set the distribution of agents across states G0 as the
observed data in first period. Then we assume that migration costs to a state j change

in a constant rate ˙δMj,t until the last period of our data. The model would then generate

series of changes in the number of newly infected cases for each state {Îi,t}. We then
estimate the changes in migration costs by solving the following problem

min ˙δMj,t

∑
i

(Îi,18/Ii,18 − 1)2.

As shown in Figure 4, during the early pandemics period, migration inflow barriers in
most states stayed relatively stable with a weekly change rate less than 5%, but Vermont,
New Hampshire, Utah and Maine witnessed an increasing migration inflow barrier with
rate 20.5%, 8.8%, 5.6% and 5.1%. On the contrary, Washington, Indiana, Minnesota and
Georgia muted their inflow barriers by rates of 13.2%, 9.3%, 7.6% and 5.8%.

Pandemics

In this subsection, we report our estimates of epidemiological parameters. We set the
mortality rate γDi equal to 0.5 percent, which is a weighted average of U.S. population
for different age groups (Eichenbaum et al, 2020). It takes on average 18 days to either
recover or die for infected group (Atkeson, 2020), and our model is set at bi-weekly level,
there is γRi + γDi = 14/18. Thus we obtain recovery rate γRi of 0.77.

We adopt the following empirical model to estimate the parameters in the matching
function χi, φ,and ηi,t:

ln
Ti,t

Si,t
= lnχi + φ ln ηi,t + φ ln

I i,t
Li,t

.

By assuming that ln ηi,t = −b·Policyi,t17, while Policyi,t is the containment policy adopted
by state i at period t, we get the following specification for estimation.

ln
Ti,t

Si,t
= βP0 + βP1 Policyi,t + βP2 ln

I i,t
Li,t

+ ιi + εPi,t.

Only the accumulated number of positive, recovery and death are available in the
data. We therefore calculate the stock of infected I i,t as the difference of accumulated

16Fajgelbaum et al.(2019) estimate the migration elasticity using a static migration model applied to
the United States and explore the variation in state-level taxes. Their estimates vary across different
model specifications and range from 1.36 to 2.25.

17Actually, we assume that ln ηi,t = a− b ·Policyi,t as linear form. But before the pandemic, there was
no containment policy and ηi,t = 1, which means that a = 0.
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number of positive and recovery. Once empirical model is estimated, we infer coefficients
φ = βP2 , b = −βP1 /βP2 , and χi = exp{βP0 + ιi}.

We find that the estimated that φ = 0.519 and b = 0.0154. Figure 5 plots the
region specific matching scale parameter χi. We find that χi tends to be higher in states
with higher population density. For example, χi is greater than 0.2 in populous states
like Massachusetts, Maryland, New Jersey, Rhode Island, DC, Illinois and Delaware but
below 0.02 in states with small population like Montana and Hawaii.

5.2 Simulating a Three-region Economy

Before running the counterfactual simulation, we first simulate an artificial three-region
economy, which helps us understand how endogenous migration affects the propagation of
shocks across regions in our model. Other than the basic parameters mentioned above, we
assume the remaining parameters take the value in Table 4. Therefore, the three regions
are symmetric in fundamentals. In dynamic simulation with disease outbreaks, we assume
10% people in region 1 get infected by the virus at the initial period.

Comparative Statics at Steady States

At the steady state, there should be no infected people. If the pandemic gets under
control, a fraction of the susceptible remain uninfected while those who got infected die
or recover. In this case, the Recovered and the Susceptible coexist at the steady state.
However, if the pandemic exploded, infection does not stop as long as there are susceptible
people. In this case, we will only observe the Recovered at the steady state.

Figure 6 plots the welfare level of each type of agent at the steady state and how
it varies with model parameters. The blue lines are for the welfare of the Infected, and
red ones for the Susceptible and Recovered who share the same welfare at the steady-
state. It is obvious that the Infected are much worse off due to a positive probability of
death.18 Lowering trade friction and migration cost for the Susceptible and Recovered will
increase their welfare. Besides, a higher recovery rate, lower death rate, higher effective
labor supply, and lower migration cost for the Infected will raise the welfare of the Infected
but does not affect the welfare of the Susceptible and Recovered.

Comparative Dynamics of Containment Policies

We next examine the effect of local containment policy on the transition path by
varying the effective labor supply, η. It determines the frequency of interaction between
the Infected and other groups and measures the strictness of the within-region containment
policy. Figure 7 plots the simulation results. The solid lines are for the case that η = 0.5,
while dashed ones η = 0.3, a scenario with lower effective labor supply, therefore stricter
containment policy.

With stricter local containment policy, pandemics fade out more rapidly, cause fewer
death, and preserve a higher labor force at the steady state. Infection declines in region 1,
but forms a hump shape in region 2 and 3. This is because migration spreads pandemics
from region 1 to region 2 and 3 within a few periods. However, a small reproduction

18Note the left axis is for the Infected while the axis is for the Susceptible and Recovered.
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number guarantees a converging steady state with the Susceptible surviving, leading to
the hump shape for regions 2 and 3.

As for the total labor supply, we find a U-shape for region 1 but an inverted U-shape
for regions 2 and 3. To better illustrate how different groups react, we compare dynamic
migration rates with steady state, as shown in the last row of Figure 7. We find that
migration rates of the Infected and the Recovered barely deviate (blue lines basically
coincide with black lines) but the migration rate of the Susceptible significantly deviates
from the steady state. To avoid infection in region 1, the outflow of the Susceptible people
from region 1 increases, while the inflow decreases. As a substitution, migration of the
Susceptible between regions 2 and 3 rises. The endogenous migration of the Susceptible
explains the first half of total labor dynamics. A few periods later, infection rates across
regions converge to a nearly equal level as the virus spreads to regions 2 and 3. Then
migration rates return to steady-state, and so does the total labor force, which accounts
for the second half of total labor dynamics. Figure 8 plots the effect on the real economy.
Again, we find that the dynamics are mainly driven by the Susceptible. The changes of
their welfare level are much bigger than other groups, at a different order of magnitude.

Comparative Dynamics of Migration Cost

Suppose region 2 puts forward a policy aiming at reducing immigrants from region
1, the origin of the pandemic, by raising the migration cost moving from region 1 µ12.
Figure 9 plots the simulation results. From the figure, we find that the policy levels
down the infection rate in region 2 but increase those in region 1 and 3. Correspondingly,
the number of Susceptible in region 2 rises, but those in region 1 and 3 falls, resulting
in a seemingly “beggar-thy-neighbor” effect. However, when we consider the total labor,
region 2 experiences a sharp decline while regions 1 and 3 attract more labor. The reason is
relatively straightforward: people in region 1 find it hard to move to region 2, while region
3 absorbs some immigrants from region 1 who would have moved to region 2. Moreover,
migration of the Susceptible is the main driving force of demographic dynamics.

Policy Competition and Coordination

In this subsection, we explore the scope of regional competition and coordination in
containment policies (measured by η) during the pandemic. Before we begin, we first
define the welfare criteria adopted by policy makers.

Definition 1: regional welfare is the sum of welfare across all local residents at the
steady-state;

Definition 2: regional welfare is the sum of values across all residents in the first
period.

We consider the following three policy scenarios:

Policy scenario 1: Taking η3 as given, regions 1 and 2 make policy simultaneously
to maximize its welfare

Policy scenario 2: Taking η3 as given, a social planner chooses η1 and η2 to maximize
the total welfare of regions 1 and 2

Policy scenario 3: Keeping η3 constant, a social planner chooses η1 and η2 to max-
imize the total welfare of regions 1, 2 and 3
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Welfare definition 1 focuses on long-term well-being, while welfare definition 2 puts
more weight on short-term well-being. Policy scenario 1 is the case with local policy
competition. Policy scenario 2 can be thought of as a federal government coordinating
among states, given foreign policies. And policy scenario 3 examines the global welfare.

As shown in Figure 10, if the pandemic starts in region 3, only the outcome using
welfare definition 2 in policy scenario 3 indicates a policy combination, as η1 = η2 = 1.
Otherwise, η1 = η2 = 0 would be the optimal policy, i.e., regions 1 and 2 make containment
policy as strict as possible.

Next, we consider the case that the pandemic start in both regions 1 and 2. Figure
11 plots how welfares varies with policies. It is interesting to note that if policy makers
are short-sighted, all three policy scenarios call for a loose policy combination such that
η1 = η2 = 1. But if long-term welfare matters, strict policies are adopted in all scenarios.

Finally, if the pandemic starts in region 1, far-sighted policy makers always adopt strict
containment policies. Short-sighted global or federal policy markers support a loose policy
combination. However, short-sighted local policy makers would prefer a rather interesting
policy combination of η1 = 1 and η2 = 0 in competition. According to Figure 12, if short-
sighted local governments make their policy choices without coordination, states with
more severe pandemics will not tighten containment policies while other states with tend
to adopt strict containment policies.

6 Counterfactual Analysis

In this section, we use our calibrated US economy with 50 states to simulate the effect of
containment policies and migration policies on the pandemic and real economy. We first
show the baseline calibrated economy. We then conduct two counterfactual simulations.
The first one removes the estimated changes in migration friction. The second one assumes
away containment policies implemented by state governments.

6.1 The Baseline Economy

In this subsection, we first take the calibrated US states parameters into the model and
run a dynamic series of infection cases from March 7th to July 12th. As shown in Figure
13, the red dashed lines are model-predicted accumulative infection while black solid
lines are reported cases in reality, all normalized with the states population. Our results
captures the general rising infection across all states. There are some states with relatively
good fit, such as Colorado (CO), Illinois (IL), Massachusetts (MA), New Jersey (NJ) and
Pennsylvania (PA). A few states display significant discrepancy. States like California
(CA) and Florida (FL) have missing data on recovered cases, which lead to exaggeration in
the number of continuing infected cases. Some deviations can be attributed to the pooling
of recovery and mortality rate when we calibrate the model. This tends to overestimate
the infection curves in states with relative poor medical conditions and underestimate
infection in states with more abundant medical resources.
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6.2 No Change in Migration Costs

Migration barriers play roles in preventing the spread of pandemics. During pandemics,
tests and quarantine measures taken by local governments increase the cost of moving
across states. To the extreme, governments can shut down the borders and bring all
movements to a full stop. Our model would help us know the extent that such changes
in migration friction slow down the pandemic in the US.

We do that by eliminating the calibrated changes in effective migration costs shown
in Figure 4. Figure 14 presents the corresponding counterfactual result. From the top
panel of the figure, we find that states with high calibrated migration barriers increments
suffer more from removing the migration friction. For example, infected cases in Vermont
and New Hampshire at July 12th will grow for an extra 17.2% and 7.1%, respectively;
but those in Washington, Indiana and Minnesota will reduce by 9.6%, 6.9% and 5.4%,
respectively.

However, when we dig deeper, the bottom panel in Figure 14 shows that infection
probabilities in almost all the states rise. Though bigger states do not impose significant
change in migration cost, like DC, New Jersey, Delaware and Maryland, they experience
greater increase in infection risks due to geographic centrality. People will on average
get infected with a probability 0.07 basic points higher, and 56.1 thousands more will
be involved into infection by July 12th 2020. So actually the reduction of infection cases
in some states should be attributed to the incentive to move out, and the migration
changes during early pandemics do work in controlling epidemic situation. As for economic
impacts, it is not surprising that states with lower migration inflow barriers grow relatively
faster. Indeed migration cost change will make a trade-off between economic growth and
pandemics control.

6.3 No Containment Policies

There is evidence that containment policies reduce infection effectively (Hsiang et al,
2020). In our endogenous migration context, isolation of infected individuals within re-
gions not only reduces the state-specific infection probability of the susceptible population,
but benefits all the other states via migration linkages.

Our conterfactual simulation removes the estimated changes in containment policies,
shown in Figure 5. The results in Figure 15 indicate that containment policies contribute
significantly to slow down the pandemic. Without the policies, infected cases in all states
at July 12th would have grown more than 10%. In states such as New York (NY) and
California (CA), the number of cases would near double, a growth of 83.9% for NY and
71.5% for CA. Again, infection probabilities in all the states raise, but in fairly greater
magnitudes. Residents in Massachusetts even find themselves more likely to get infected
by 1.5 percent points. Overall, containment policy reduce infection cases up to 31.6 million
across US by July 12th 2020. And intuitively, containment policies do more economic harm
to populous states. But the counterfactual GDP shares fluctuate within 1%.
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7 Conclusion

Although the rapid globalization and urbanization generate enormous gains from inter-
national trade and immigration, they also lead to more frequent outbreaks of infectious
diseases. In this paper, we develop a framework to analyze the role of human migration
in both economic and disease dynamics under the context of the COVID-19 pandemic.
We combine a multi-region spatial general equilibrium model of international trade with
endogenous migration across regions, adding the SIR model from epidemiology. We ad-
dress several important features by building on two branches of models. First, as we allow
endogenous migration during the pandemic, agents weigh the risk of infection and eco-
nomic opportunities across regions and optimize the location chosen for work and life in
each period. Hence, agents automatically practice social distancing by avoiding high-risk
areas. This could help to clearly identify the real effect of containment policies through
counterfactual analysis. Second, although embedding an SIR model in an economic geog-
raphy model with interregional trade and dynamic migration makes it very complicated to
solve, we can still provide some analytical results about R0 to demonstrate the interaction
between migration and the pandemic.

Despite adding many moving parts to the SIR model, our model is quite versatile and
can be extended to study other relevant policies taken by governments. In this section,
we consider two important policies, vaccination and testing, which are in the Appendix
A.2.
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Figure 1: Evolution of COVID-19 policies averaged across US states

Notes: The figure plots the average of policy indexes across states over time.
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Figure 2: Overall policy response across states and time

Notes: The figure plots the overall containment policy across states at different points in time.
Darker colors denote more stringent lockdowns.

Figure 3: Model time line
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Figure 4: Calibrated Changes in Migration Cost
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Figure 7: Effective labor supply η and demographic dynamics
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ûI

Region1, η=0.5
Region2, η=0.5
Region1, η=0.3
Region2, η=0.3

Periods
5 10 15 20

-0.01

-0.005

0

0.005

0.01

0.015
Import Share Change

Region1, η=0.5
Region2, η=0.5
Region1, η=0.3
Region2, η=0.3

Figure 8: Effective labor supply η and the dynamics of the real economy

31



Periods
5 10 15 20

0.295

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335
The Susceptible

Region1, µ
12

=3

Region2, µ
12

=3

Region3, µ
12

=3

Region1, µ
12

=6

Region2, µ
12

=6

Region3, µ
12

=6

Periods
5 10 15 20

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
The Infected

Region1, µ
12

=3

Region2, µ
12

=3

Region3, µ
12

=3

Region1, µ
12

=6

Region2, µ
12

=6

Region3, µ
12

=6

Periods
5 10 15 20

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
The Recovered

Region1, µ
12

=3

Region2, µ
12

=3

Region3, µ
12

=3

Region1, µ
12

=6

Region2, µ
12

=6

Region3, µ
12

=6

Periods
5 10 15 20

×10
-4

0

1

2

3

4

5

6

7

8

9
The Dead

Region1, µ
12

=3

Region2, µ
12

=3

Region3, µ
12

=3

Region1, µ
12

=6

Region2, µ
12

=6

Region3, µ
12

=6

Periods
5 10 15 20

0.3315

0.332

0.3325

0.333

0.3335

0.334

0.3345

0.335
Total Labor

Region1, µ
12

=3

Region2, µ
12

=3

Region3, µ
12

=3

Region1, µ
12

=6

Region2, µ
12

=6

Region3, µ
12

=6

Periods
5 10 15 20

×10
-3

0

0.5

1

1.5

2

2.5

3

3.5
Infection Rate

Region1, µ
12

=3

Region2, µ
12

=3

Region3, µ
12

=3

Region1, µ
12

=6

Region2, µ
12

=6

Region3, µ
12

=6

Periods
5 10 15 20

×10
-4

-2

0

2

4

6

8

10

12
Migration from 1 to 2

m
12
S

m
12
I

m
12
R

Periods
5 10 15 20

×10
-4

-14

-12

-10

-8

-6

-4

-2

0

2
Migration from 2 to 1

m
21
S

m
21
I

m
21
R

Periods
5 10 15 20

×10
-4

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Migration from 2 to 3

m
23
S

m
23
I

m
23
R

Figure 9: Migration cost µI12 and demographic dynamics
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Figure 10: Policy interactions for a pandemics shock in region 3
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Figure 11: Policy interactions for pandemics shocks in region 1 and 2
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Figure 12: Policy interaction for asymmetric pandemics shocks in region 1
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Figure 13: Model Predicted Curves of US States

35



W
A

IN M
N

G
A

N
V

S
D

C
A

S
C

IA O
R

K
S

N
Y

T
X

M
O

ID P
A

W
I

C
O

T
N

H
I

O
K

K
Y

A
Z

M
T

A
K

N
E

O
H

V
A

IL N
C

LA N
D

A
L

N
M

N
J

W
V

M
D

F
L

C
T

A
R

D
E

M
S

R
I

W
Y

M
A

M
I

D
C

M
E

U
T

N
H

V
T

-0.1

-0.05

0

0.05

0.1

0.15

0.2
C

ou
nt

er
fa

ct
ua

l I
nf

ec
tio

n

W
A

IN M
N

G
A

N
V

C
A

S
D

S
C

IA O
R

K
S

N
Y

T
X

M
O

ID P
A

H
I

C
O

W
I

T
N

O
K

K
Y

M
T

A
Z

A
K

N
E

O
H

V
A

IL N
C

LA N
D

N
M

A
L

W
V

N
J

M
D

F
L

C
T

A
R

D
E

M
S

R
I

W
Y

M
A

M
I

D
C

M
E

U
T

N
H

V
T

-0.1

-0.05

0

0.05

0.1

0.15

C
ou

nt
er

fa
ct

ua
l G

D
P

W
A

H
I

M
N

M
T

C
A

N
Y

A
K

G
A

T
X

O
K

O
R

S
C

W
V

W
Y

N
V

M
O

K
S

ID F
L

K
Y

C
O

P
A

M
E

N
C

O
H

T
N

N
M

A
R

S
D

N
D

IN W
I

V
T

V
A

A
Z

A
L

N
E

M
I

LA U
T

M
S

IA N
H

M
A

C
T

IL M
D

D
E

N
J

R
I

D
C

-1

-0.5

0

0.5

1

1.5

2

C
ou

nt
er

fa
ct

ua
l I

nf
ec

tio
n 

P
ro

ba
bi

lit
y

10-5

Figure 14: Counterfactual Infection with No Migration Cost Change
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Figure 15: Counterfactual Infection with No Containment Policy
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Tables

Table 1: Summary Statistics

Definition Obs Mean Std.Dev Min Median Max
Panel A. Cross State Human Mobility
Max migration Max of bilateral migration flow between states at bi-weekly frequency 30600 0.011 0.032 0 0.003 0.706
Mean migration Average of bilateral migration flow between states at bi-weekly frequency 30600 0.010 0.030 0 0.003 0.696
Quarantine policy at destination Quarantine policy of destination state 30600 22.60 38.62 0 0 100
Infection rate at origin Infection rate measured at origin state level 30600 0.0009 0.0011 0 0.0005 0.0073
Infection rate at destination Infection rate measured at destination state level 30600 0.0009 0.0011 0 0.0005 0.0073
Distance bilateral distance between states 30600 1981.04 1461.31 37.36 1649.41 8176.1
Border whether two states share border 30600 0.08 0.28 0 0 1
Panel B. Pandemic, Closure, and Exposure to pandemics via migration
Closure US state-level policy index 663 36.80 31.20 0 43.75 100
Number of new cases Number of new cases at state bi-weekly level 663 5828.81 14794.2 1 1227 156041
ln (Number of new cases) Ln (number of new cases) at state bi-weekly level 663 5.79 3.62 0 7.11 11.96∑

j 6=im
max
ji ln(newcasesj) sum of ln (new cases) across other states, weighted by max migration in the initial period 663 3.84 3.43 0 3.28 12.46∑

j 6=im
mean
ji ln(newcasesj) sum of ln (new cases) across other states, weighted by mean migration in the initial period 663 3.58 3.21 0 3.03 11.99∑

j 6=im
max
ji ln(cumulativecasesj) sum of ln (cumulative cases) across other states, weighted by max migration in the initial period 663 4.48 4.09 0 3.71 15.56∑

j 6=im
mean
ji ln(cumulativecasesj) sum of ln (cumulative cases) across other states, weighted by mean migration in the initial period 663 4.16 3.82 0 3.43 14.85

Notes: Panel A summarizes the data for the regressions to generate Table 2 which is at the state-pair bi-weekly level. Panel B summarizes the
data for the regressions to generate Table 3 which is at the state bi-weekly level.
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Table 2: The COVID-19 pandemic and US state-to-state migration

(1) (2) (3) (4)

VARIABLES
Max migration Average migration

PPML PPML
Lagged quarantine policy at destination j 0.000 0.000 0.000 0.000

(0.256) (0.227) (0.195) (0.170)
Lagged infection rate at origin i -1.567 -0.116 -2.647 -1.299

(-0.182) (-0.013) (-0.297) (-0.140)
Lagged infection rate of destination j -19.435*** -19.567*** -15.172*** -15.123***

(-3.625) (-3.654) (-2.778) (-2.788)
Ln(distance) -1.334*** -1.363***

(-41.422) (-40.346)
Shared State Border =1 1.021*** 1.053***

(16.433) (16.529)
Constant 4.452*** -3.204*** 4.499*** -3.256***

(19.795) (-438.794) (19.227) (-428.667)
Observations 30,600 30,600 30,600 30,600
Time FE Yes Yes Yes Yes
Origin FE Yes No Yes No
Destination FE Yes No Yes No
Origin-Destination Pair FE No Yes No Yes

Notes: This table estimates the effect of infection rate in the destination on US state-to-state
migration flows, conditional on quarantine policy at the destination state. We aggregate the daily
cross-state mobility data from PlaceIQ to bi-weekly level. Columns (1) and (2) use the max flow
within the two weeks as the dependant variable, while Columns (3) and (4) uses the average within
the two weeks. The numbers in the parentheses are robust t-statistics with standard error clustered
at the bi-weekly level. Significance levels are indicated by *, **, *** at 0.1, 0.05 and 0.01, respectively.
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Table 3: Cross-state mobility, containment policies and COVID-19 pandemic in the US

(1) (2) (3) (4) (5) (6) (7) (8)
ln (number of new cases) number of new cases

Closure -0.012** -0.012** -0.013** -0.013** -0.016*** -0.016*** -0.020*** -0.021***
(-2.627) (-2.587) (-2.784) (-2.746) (-2.684) (-2.674) (-2.587) (-2.667)∑

j 6=im
max
ji ln(newcasesj) 0.409*** 1.436***

( -25.817) (-13.992)∑
j 6=im

mean
ji ln(newcasesj) 0.433*** 1.512***

(-25.574) (-14.282)∑
j 6=im

max
ji ln(cumulativecasesj) 0.308*** 0.344**

(-13.143) (-2.519)∑
j 6=im

mean
ji ln(cumulativecasesj) 0.325*** 0.399***

(-13.269) (-2.662)
Constant 4.659*** 4.680*** 4.882*** 4.902*** -0.666 -0.465 7.768*** 7.539***

(-27.425) (-27.656) (-19.862) (-20.075) (-0.597) (-0.430) ( -5.605) ( -5.316)
Observations 663 663 663 663 663 663 663 663
R-squared 0.959 0.959 0.955 0.955 - - - -
BiWeek FE Yes Yes Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table estimates the effect of cross-state mobility and containment policies on COVID-19 in the US. The Closure index is based on data
of US state COVID-19 containment policy from CUSP. We follow Hale et al.(2020) to construct a US state-level policy index, which ranged from
0 to 100. We aggregate the daily cross-state mobility data from PlaceIQ to bi-weekly level. mmax

ji is the maximium of the migration share from
state j to i in the initial period, while mmean

ji is the average within period 0. We use these different weights for number of cases of the origin state
j, while the cases are measured in terms ln(new cases) in the previous period or the cumulative number of cases. Columns (1)-(4) are estimated
in OLS while columns (5)-(8) are in PPML. The numbers in the parentheses are robust t-statistics with standard error clustered at the bi-weekly
level. Significance levels are indicated by *, **, *** at 0.1, 0.05 and 0.01, respectively.
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Table 4: Additional model parameters for a three-region economy

Parameters Definition value
Ti Technology 1
χi Scale of infection rate 0.1
φ Matching elasticity of infection rate 1

τij, i 6= j Trade cost 3
µij, i 6= j Migration cost for the Susceptible 3

γRi Recovery rate 0.2
γDi Mortality rate 0.01
ηi,t Effective labor supply for the Infected 0.5
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Appendix

A.1 Algorithm

A.1.1 The model without pandemic

System of Equations, solve for wt (Lt):

πij,t =
Ai(τijwi,t)

−θ∑N
k=1Ak(τkjwk,t)

−θ
(A.1)

witLit =
N∑
j=1

πijtwjtLjt (A.2)

with expressions:

ui,t = ln

(
wi,t
Pi,t

)
Pit = γ(

N∑
k=1

Ak(τkjwk)
−θ)−1/θ

And intertemporal conditions:

Vi,t = exp
(ui,t
κ

) N∑
j=1

V β
j,t+1µ

−1
ij

mij,t =
V β
j,t+1µ

−1
ij∑N

k=1 V
β
k,t+1µ

−1
ik

Lj,t+1 =
N∑
i=1

mij,tLi,t

Hat Algebra
Denote x̂t = xt/xss, then intertemporal conditions:

V̂i,t = exp

(
ui,t − ui,ss

κ

) N∑
j=1

mij,ssV̂
β
j,t+1 (A.3)

mij,t =
mij,ssV̂

β
j,t+1∑N

k=1mik,ssV̂
β
k,t+1

(A.4)

Lj,t+1 =
N∑
i=1

mij,tLi,t (A.5)

Algorithm
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1. Exogenously given {L0}. Evaluate T large enough.

2. Take intial guess
{
V̂

(0)
t

}T
t=1

.

3. For each iteration of
{
V̂

(k)
t

}T
t=1

:

(a) Solve forward for migration matrix {mt−1}Tt=1 from (A.4), and then the labor

distribution {Lt}Tt=1.

(b) In each period t from 1 to T , solve for temporary allocation wt from (A.1)(A.2),
thus get Pt and ut.

(c) Using (A.3) to solve backward to get
{
V̂

(k)′
t

}T
t=1

4. If
{
V̂

(k)′
t

}
is close to

{
V̂

(k)
t

}
, finish. Otherwise, set next guess

{
V̂

(k+1)
t

}
=
{
V̂

(k)′
t

}
.

(What if
{
V̂

(k+1)
t

}
=
{
V̂

(k)
t

}1/2

×
{
V̂

(k)′
t

}1/2

? Will it converge faster?)

A.1.2 Model with Pandemics

System of equations:

πij,t =
Ai(τijwi,t)

−θ∑N
k=1Ak(τkjwk,t)

−θ
(A.6)

wit (ηiIi,t + Si,t +Ri,t) =
N∑
j=1

πijtwjt (ηjIj,t + Sj,t +Rj,t) (A.7)

with expressions:

ui,t =
wi,t
Pi,t

uIi,t = ηi
wi,t
Pi,t

Pit = γ(
N∑
k=1

Ak(τkjwk)
−θ)−1/θ

Actually, when there is no investment, all the labor income is spent on consumption, so
contemporary utility is identical across S and R groups within regions. And intertemporal
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conditions:

V S
it = exp(

uit
κ

)
N∑
j=1

(
V S
j,t+1

)β(1−αj,t+1) (
V I
j,t+1

)βαj,t+1
(
µSij
)−1

V I
it = exp(

uIit
κ

)
N∑
j=1

(
V I
j,t+1

)β(1−γRj −γDj ) (
V R
j,t+1

)βγRj (µIij)−1
V R
it = exp(

uit
κ

)
N∑
j=1

(
V R
j,t+1

)β (
µRij
)−1

mS
ijt =

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1
(
µSij
)−1∑N

k=1

(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µSik)
−1

mI
ijt =

(
V I
j,t+1

)β(1−γRj −γDj ) (
V R
j,t+1

)βγRj (µIij)−1∑N
k=1

(
V I
k,t+1

)β(1−γRj −γDj ) (
V R
k,t+1

)βγRj (µIik)
−1

mR
ijt =

(
V R
j,t+1

)β (
µRij
)−1∑N

k=1

(
V R
k,t+1

)β
(µRik)

−1

Labor evolution conditions:

Si,t =
N∑
j=1

Sj,t−1m
S
ji,t−1 (A.8)

I i,t =
N∑
j=1

Ij,t−1m
I
ji,t−1 (A.9)

Ri,t =
N∑
j=1

Rj,t−1m
R
ji,t−1 (A.10)

Di,t = Di,t−1 (A.11)

Si,t = Si,t − Ti,t (A.12)

Ii,t = Ti,t +
(
1− γRi − γDi

)
I i,t (A.13)

Ri,t = Ri,t + γRi I i,t (A.14)

Di,t = Di,t + γDi I i,t (A.15)

With the assumption of matching function that M (x, y) = χxy, we obtain:

Ti,t = Si,t
χI i,t
Li,t

(A.16)

αj,t = χ
I i,t
Li,t

(A.17)
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Steady State

At steady states, there is no I group, and α = 0. So:

V S
i = exp(

ui
κ

)
N∑
j=1

(
V S
j

)β (
µSij
)−1

V I
i = exp(

uIi
κ

)
N∑
j=1

(
V I
j

)β(1−γRj −γDj ) (
V R
j

)βγRj (µIij)−1
V R
i = exp(

ui
κ

)
N∑
j=1

(
V R
j

)β (
µRij
)−1

mS
ij =

(
V S
j

)β (
µSij
)−1∑N

k=1 (V S
k )

β
(µSik)

−1

mI
ij =

(
V I
j

)β(1−γRj −γDj ) (
V R
j

)βγRj (µIij)−1∑N
k=1 (V I

k )
β(1−γRj −γDj )

(V R
k )

βγRj (µIik)
−1

mR
ij =

(
V R
j

)β (
µRij
)−1∑N

k=1 (V R
k )

β
(µRik)

−1

And labor distribution:

Si =
N∑
j=1

Sjm
S
ji

Ri =
N∑
j=1

Rjm
R
ji

Hat Algebra

Denote x̂t = xt/xss, then intertemporal conditions:

V̂ S
it = exp(

uit − ui,ss
κ

)
N∑
j=1

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j,ss

V S
j,ss

)βαj,t+1

(A.18)

V̂ I
it = exp(

uIit − uIi,ss
κ

)
N∑
j=1

mI
ij,ss

(
V̂ I
j,t+1

)β(1−γRj −γDj ) (
V̂ R
j,t+1

)βγRj
(A.19)

V̂ R
it = exp(

uit − ui,ss
κ

)
N∑
j=1

mR
ij,ss

(
V̂ R
j,t+1

)β
(A.20)
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mS
ijt =

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(
V Ij,ss
V Sj,ss

)βαj,t+1

∑N
k=1m

S
ik,ss

(
V̂ S
k,t+1

)β(1−αk,t+1) (
V̂ I
k,t+1

)βαk,t+1
(
V Ik,ss
V Sk,ss

)βαj,t+1
(A.21)

mI
ijt =

mI
ij,ss

(
V̂ I
j,t+1

)β(1−γRj −γDj ) (
V̂ R
j,t+1

)βγRj
∑N

k=1m
I
ik,ss

(
V̂ I
k,t+1

)β(1−γRj −γDj ) (
V̂ R
k,t+1

)βγRj (A.22)

mR
ijt =

(
V R
j,t+1

)β (
µRij
)−1∑N

k=1

(
V R
k,t+1

)β
(µRik)

−1 =
mR
ij,ss

(
V̂ R
j,t+1

)β
∑N

k=1m
R
ik,ss

(
V̂ R
k,t+1

)β (A.23)

Algorithm

1. Exogenously given {L0}. Evaluate T large enough.

2. Take intial guess
{
V̂
S(0)
t , V̂

I(0)
t , V̂

R(0)
t

}T
t=1

.

3. For each iteration of
{
V̂
S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}T
t=1

:

(a) Given {St−1, It−1, Rt−1, Dt−1}, solve forward simultaneously for {St, It, Rt, Dt, αt}
from (A.8)(A.9)(A.10)(A.11)(A.12)(A.13)(A.14)(A.15)(A.16)(A.17)(A.21)(A.22)(A.23)

(b) In each period t from 1 to T , solve for temporary allocation wt from (A.1)(A.2),
thus get Pt and ut.

(c) Using (A.18)(A.19)(A.20) to solve backward to get
{
V̂ S(k)′, V̂

I(k)′
t , V̂

R(k)′
t

}T
t=1

4. If
{
V̂
S(k)′
t , V̂

I(k)′
t , V̂

R(k)′
t

}
is close to

{
V̂
S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}
, finish. Otherwise, set next

guess
{
V̂
S(k+1)
t , V̂

I(k+1)
t , V̂

R(k+1)
t

}
=
{
V̂
S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}
.

A.2 Extensions

A.2.1 Model with Vaccination

Governments are rolling out vaccination programs which have been shown to be effective
in reducing infection (Chen et al. 2021). In a world with vaccination, we assume that
people get vaccinated will be permanently immune, thus join group R. We further assume
that region i randomly vaccinate a fraction δi of the susceptible population in each period,
so a susceptible person from region i migrating to region j will have a chance of δj directly
transferring to type R. Now the Bellman equation for group S people becomes:

US
i,t(εi,t) =ui,t + max

j

{
βEt

[
(1− δj)(1− αj,t+1)U

S
j,t+1(εj,t+1) + (1− δj)αj,t+1U

I
j,t+1(εj,t+1)

+δjU
R
j,t+1(εj,t+1)

]
− µ̃ijt + εij,t

}
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Correspondingly, when calculating next period demographic dynamics, a fraction δi of the
susceptible will transform into the recovered:

Si,t = (1− δi)
N∑
j=1

Sj,t−1m
S
ji,t−1

Ri,t =
N∑
j=1

Rj,t−1m
R
ji,t−1 + δi

N∑
j=1

Sj,t−1m
S
ji,t−1

Therefore, vaccination can sharply slow down the spread of pandemics directly. If δi = 0,
then model collapses into our benchmark.

A.2.2 Model with Testing

It is more complicated when considering testing, because now comes the problem of iden-
tification. Testing only allows the testees to identify their current types. Those not tested
may be susceptible, infected or recovered. Even if an agent is tested negative for now, it
does not mean he/she would not get infected in the future. Moreover, agents could be
either susceptible or have recovered from asymptomatic infection. These people will not
get infected any more but they still think they may.

We address these issues by redefining groups. Suppose only a δ fraction of people
get tested randomly in each period and are able to identify the current status. With a
little bit abuse of notation, let αi,t denote the fraction of untested people that actually
are infected at the end of period t, which is also the fraction of tested people getting
infected according to the independence across individuals. Suppose US

i,t now denotes the
value function of the tested people that are not infected, UN

i,t the untested people, U I
i,t

the tested people that are infected, and UR
i,t those tested people getting infected but have

recovered. Then we have

US
i,t =ui,t + max

j

{
βEt

[
δ
(
(1− αj,t+1)U

S
j,t+1 + αj,t+1U

I
j,t+1

)
+ (1− δ)UN

j,t+1

]
−µ̃ijt + εij,t}

UN
i,t =ui,t + max

j

{
βEt

[
αi,t
(
(1− γDj )δU I

j,t+1 + (1− γDj )(1− δ)UN
j,t+1 + γDj U

D
)

+(1− αi,t)
(
δ(1− αj,t+1)U

S
j,t+1 + (1− δ)UN

j,t+1 + δαj,t+1U
I
j,t+1

)]
− µ̃ijt + εij,t

}
Now group S includes all tested and uninfected people from previous period’s S group

and N group. Some untested people actually have been infected and died this period.
Those entering I group this period only stands for the population who get both infected
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and tested.Therefore, the law of motion for each group can be written as:

Si,t = δ(1− αi,t)(Si,t +N i,t)

Ni,t = (1− δ)(Si,t +N i,t)− γDi
N∑
j=1

αj,t−1Nj,t−1m
N
ji,t−1

Ii,t = δαi,t(Si,t +N i,t) + (1− γDi − γRi )I i,t

Ri,t = Ri,t + γRi I i,t

Di,t = Di,t + γDi (I i,t +
N∑
j=1

αj,t−1Nj,t−1m
N
ji,t−1)

The infected people can be decomposed into these groups: the newly infected, those
untested but infected from the origin region, those died, tested and infected, and untested
but infected from the perspective of results.

αi,tNi,t + δαi,t(Si,t +N i,t) = (1− γDi )(I i,t +
N∑
j=1

αj,t−1Nj,t−1m
N
ji,t−1) +M(Ai,t, Bi,t)

where Ai,t and Bi,t denote the uninfected and infected density in reality, no matter identi-
fied or not by the test. If we further denote γSi as the self-healing rate, HN

i,t as the number
of untested people who already self heal and HS

i,t as the number of tested people who self
heal, then we have:

(Si,t +N i,t + I i,t +Ri,t)Ai,t =
N∑
j=1

((1− αj,t−1)Nj,t−1 −HN
j,t−1)m

N
ji,t−1 +

N∑
j=1

(Sj,t−1 −HS
j,t−1)m

S
ji,t−1

(Si,t +N i,t + I i,t +Ri,t)Bi,t =
N∑
j=1

αj,t−1Nj,t−1m
N
ji,t−1 + I i,t

HN
i,t = (1− δ)

N∑
j=1

(HN
j,t−1m

N
ji,t−1 +HS

j,t−1m
S
ji,t−1 + γSi αj,t−1Nj,t−1m

N
ji,t−1)

HS
i,t = δ

N∑
j=1

(HN
j,t−1m

N
ji,t−1 +HS

j,t−1m
S
ji,t−1 + γSi αj,t−1Nj,t−1m

N
ji,t−1)

It is worth noticing that when δ = 1, i.e. full testing, the testing model collapse
into our benchmark as well. Obviously, asymmetric information disables population from
identifying their true types and will cause further welfare loss. Model with testing captures
more reality, but contains more parameters and requires a lot more computation.
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A.3 Additional Tables and Figures

Table A.1: The estimation of trade elasticity across US states

(1) (2) (3) (4)

VARIABLES
Trade share in value Trade share in weight

OLS
Ln(Income ratio) -3.239** -2.961*** -2.917** -2.061***

(-2.365) (-5.190) (-2.044) (-3.800)
Ln(Distance) -1.121*** -1.513***

(-30.713) (-36.072)
Border 0.358*** 0.383***

(6.527) (4.735)
Observations 2,601 2,601 2,601 2,601
R-squared 0.042 0.857 0.010 0.779
Origin FE Yes Yes Yes Yes
Destination FE Yes Yes Yes Yes

Notes: This table estimates the parameter of trade elasiticity across US states in equation (3). The
numbers in the parentheses are robust t-statistics with standard error clustered at the state-pair level.
Significance levels are indicated by *, **, *** at 0.1, 0.05 and 0.01, respectively.

Table A.2: The estimation of migration elasticity across US states

(1) (2) (3) (4)

VARIABLES
Migration share

OLS
Real income at next period -0.184*** -0.184*** -0.262*** -0.323***

(-4.749) (-4.855) (-5.203) (-6.711)
Ln(Distance) 0.286*** 0.587***

(5.116) (9.881)
Border -0.897*** -0.564***

(-7.449) (-4.598)
Observations 10,200 10,200 10,200 10,200
R-sqaured 0.002 0.014 0.027 0.045
Destination FE No No Yes Yes

Notes: This table estimates the parameter of migration elasiticity across US states in equation (3).
The numbers in the parentheses are robust t-statistics with standard error clustered at the state-pair
level. Significance levels are indicated by *, **, *** at 0.1, 0.05 and 0.01, respectively.

48



0
.5

1
1
.5

1 1.5 2 2.5 3 3.5
trade_cost

kernel = epanechnikov, bandwidth = 0.0497

Figure A1: Distribution of estimated bilateral trade costs across US states

Notes: The figure plots the distribution of estimated bilateral trade costs, using data from 2017
Commodity Flow Survey (CFS).
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Figure A2: Distribution of estimated migration costs across US states

Notes: The figure plots the distribution of estimated bilateral migration costs, using data from
IPMUS-USA database during 2014 to 2018.
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