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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are an important tool in the
study of business cycles and monetary and fiscal policies. The introduction of a general
framework and local solution methods in Blanchard and Kahn (1980), Uhlig (1999), and
Sims (2002) among others, and the toolbox Dynare, which implements these local meth-
ods, have made it easy to solve and estimate DSGE models and have enabled a large
number of important academic studies and policy applications. However, recent de-
velopments in macroeconomics highlight the importance of solving these models using
global methods. These developments include studies on

• financial crises and highly nonlinear dynamics of the economy during financial
crises, in closed or open economies such as Mendoza (2010), Bianchi (2011), Brun-
nermeier and Sannikov (2014), and Cao et al. (2019);

• implications of rare disasters such as Barro (2006), and Guerrieri et al. (2020) (this
last paper studies the impact of the current COVID-19 pandemic);

• portfolio choices and their implications such as Heaton and Lucas (1996) and Gu-
venen (2009);

• models with occasionally binding constraints (e.g, borrowing constraints and the
zero lower bound on monetary policy) such as Gust et al. (2017), Guerrieri and
Iacoviello (2017), and Cao et al. (2019);

• international finance models with endogenous capital accumulation and/or port-
folio choices such as Bocola (2016), Coeurdacier et al. (2019), and Cao et al. (2020);

• and many more.

Despite these important developments, there has not been a unified framework and
solution method for the global solutions of DSGE models. This paper offers such a
framework and method.

First, we develop a general framework that encompasses many recent well-known
models and their extensions. The framework consists of state variables, policy vari-
ables, and short-run equilibrium conditions, e.g., market clearing conditions and Euler
equations,1 that fully describe sequential equilibrium. A crucial difference between this

1We use an important result in constrained optimization that for globally concave optimization prob-
lems, short-run first-order conditions such as the Euler equations and complementary-slackness conditions
are necessary and sufficient for optimality. Duffie et al. (1994, Proposition 3.2) provide a proof for such a
result in the context of an incomplete markets DSGE model.
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framework and the standard DSGE framework is that the state variables and their global
domain need to be specified, hence we name it G(lobal) DSGE. In the framework, a re-
cursive equilibrium is a mapping from current state variables to current policy variables
(policy function) and future state variables (transition function). In this framework, we
develop a new and general algorithm to to robustly and efficiently solve for recursive
equilibria. The main idea of the algorithm is to solve jointly for policy and transition
functions over the iterations. Hence, we call it Simultaneous Transition and Policy Function
Iterations (STPFI) to differentiate it from the standard Policy Function Iteration (PFI) al-
gorithms in the existing literature (e.g., Coleman (1990, 1991) and Judd (1992)), which
we discuss below.

Second, we develop a toolbox that implements the algorithm. The toolbox is simi-
lar to Dynare in that it allows users to write models using intuitive and simple scripts,
despite requiring users to specify the state and policy variables and the ranges for state
variables explicitly, due to the nature of global solutions. One of the challenges associ-
ated with the implementation of our algorithm is to solve for a large number of nonlin-
ear equations with many unknowns, including future endogenous state variables in the
STPFI algorithm and unknowns that may need to satisfy inequality constraints (e.g. the
Lagrangian multiplier that enters a complementarity-slackness condition). The toolbox
addresses this challenge by using an efficient equation solver that is able to explicitly en-
force bounds of unknowns,2 combined with an automatic differentiation method that is
able to compute the Jacobian matrix up to machine precision with small costs.3 Besides,

2We use a constrained dogleg algorithm developed by Bellavia et al. (2012), which is tailored for nonlin-
ear systems with simple bound constraints imposed on unknowns. The algorithm modifies a conventional
trust-region-dogleg search step (Powell, 1970) by an affine-scaling transformation (Heinkenschloss et al.,
1999), so that the search always stays within the predetermined bounds of unknowns. Adopting such
an algorithm avoids using a general constrained optimization routine to deal with the inequality con-
straints, which is usually less efficient than the dogleg method for solving equations, and avoids using
ad-hoc transformations to convert constrained equations into unconstrained ones (as done in Cao (2018)
and Elenev et al. (2021), for example, x = (sin(y))2 if 0 ≤ x ≤ 1).

3Automatic differentiation (AD) is different from the finite-difference method or analytical differentia-
tion method that are more familiar to economists. AD exploits the fact that every computer program, no
matter how complicated, executes a sequence of elementary arithmetic operations, of which the derivatives
can be evaluated analytically. By applying the chain rule repeatedly to these operations, the derivative of a
complex function can be computed along calculating the value of the function. Because at each step of the
chain rule the derivative is evaluated analytically, AD can calculate gradients up to the machine precision
by using only a constant factor more operations than evaluating the original function, and is thus more
accurate and much faster than the finite-difference method which requires perturbing the function along
each dimension of the arguments with a finite step size. Moreover, because the chain rules are applied
automatically, AD saves the hassle of taking analytical derivatives of a complex function, and applies to
functions whose analytical derivatives are state-dependent (e.g., the max or min operator which enters a
complementarity constraint). Our implementation of AD further utilizes the expression template feature
of C++, so many of the calculations are done at compile time, which significantly increases the efficiency
of gradient evaluations at run time.
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the toolbox implements all actual computations in C++ to maximize the performance,
and provides a MATLAB interface that allows users to specify options and generate
model output conveniently. With such a design, the toolbox is able to solve many classi-
cal models that are well-known for computational challenges with a few lines of toolbox
codes and in a few minutes on a regular laptop (more details on the run-time is provided
in the paper).

The algorithm demonstrates its greatest power, relative to other methods, for mod-
els with endogenous state variables with implicit laws of motion, such as wealth shares
or consumption shares. As we make clear in the applications, these endogenous state
variables help reduce the number of state variables to be kept track of in models with
multiple assets such as Heaton and Lucas (1996), Kubler and Schmedders (2003), and
Cao (2018), or help simplify the feasible region of the endogenous state space in models
with a collateral constraint such as Mendoza (2010) and Cao and Nie (2017). The endoge-
nous state variables also help circumvent multiple equilibria issues as demonstrated in
Cao et al. (2019). Our STPFI algorithm includes the vectors of future realizations of
endogenous state variables in the vector of unknowns to be solved at each collocation
point over the iterations. The additional equations in the system of equations at each
collocation point are the consistency equations that impose the future endogenous state
variables to be consistent with current policy variables.

We provide many examples of existing seminal applications that can be solved easily
using the toolbox. The examples in the paper include Heaton and Lucas (1996), Guvenen
(2009), Mendoza (2010), Bianchi (2011), Barro et al. (2017), and a dynamic stochastic ex-
tension of Guerrieri et al. (2020). Each of the examples listed can be implemented within
200 lines of toolbox code and can be executed in a few minutes on regular laptops. In
many cases, the toolbox algorithm is fundamentally different from the original solution
methods and is either more efficient and faster or more accurate, or both. For exam-
ple, in Guvenen (2009), his solution method is based on the algorithm in Krusell and
Smith (1998) using fixed point iterations over the pricing and aggregate state transition
functions with nested value function iterations. Our algorithm recognizes that because
the agents’ optimization problems are globally concave problems, the first-order condi-
tions are sufficient for optimality (without having to solve the agents’ Bellman equation).
Therefore, we can directly use STPFIs to solve jointly for agents’ optimization problems
and market clearing conditions. As a result, our toolbox’s solution method is signif-
icantly faster and more stable than the original one in Guvenen (2009). The baseline
model in Guvenen (2009) can be solved in less 3 minutes on a regular laptop (MacBook
Air 2.2 GHz Intel Core i7) while it takes about 9 hours 15 minutes (on a MacProWork-
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station with 8-core 3.2 GHz Xeon processors) using the original algorithm in Guvenen
(2009) as reported in Appendix A in his paper.

In another example, Barro et al. (2017) solve an incomplete markets model with rare
disasters and heterogenous risk-aversion using a mixture of projection and perturbation
methods developed in Fernández-Villaverde and Levintal (2018) – while our toolbox’s
algorithm is a purely projection method using wealth share as an endogenous state
variable with an implicit law of motion accommodated by STPFI. As Barro et al. (2017)
discuss in their paper, their solution method is not sufficiently accurate for large values
of risk-aversion coefficients (up to 10). We show that our method can tackle cases with
risk-aversion coefficients as high as 100 effectively and uncover new economic insights
in these cases. We provide many more examples on the toolbox’s website.

Since our toolbox solves explicitly for policy functions and transition functions, we
can conveniently use them to carry out numerical accuracy analyses in terms of Euler
equation errors along the lines in Judd (1992), Judd et al. (2011), and Guerrieri and Ia-
coviello (2015). To illustrate this feature, we provide the toolbox code for these analyses
for our leading example from Heaton and Lucas (1996). The toolbox can also automat-
ically generates Monte Carlo simulations. These simulations are useful to understand
the transmission mechanisms in the models using impulse response functions and to
eventually estimate the models. The code to generate impulse response functions from
the dynamic extension of Guerrieri et al. (2020) is available on the toolbox’s website.

The examples mentioned above are highly nonlinear models which require solutions
with high accuracy but are of small scale (up to three continuous state variables). The
policy and transition functions in these models could be well approximated using spline
approximations. Cao et al. (2019) is a New Keynesian application with five contin-
uous state variables using piece-wise linear approximation. Cubic spline or adaptive
sparse grid approximation does not work well for the model because the policy func-
tions exhibit sharp changes in slopes in regions where the zero lower bound or collateral
constraint switches from non-binding to binding and vice-versa. However, in principle,
our toolbox can accommodate medium scale DSGE models of up to 40 continuous state
variables such as Smets and Wouters (2007) which features around 20 continuous state
variables.4 For these models with larger numbers of state variables, we provide the op-
tion of using the adaptive sparse grid method developed by Ma and Zabaras (2009) and
introduced to economics by Brumm and Scheidegger (2017). This method works well
when the nonlinearity in the models is not as extreme as in Cao et al. (2019).

4Notice that, in general, highly nonlinear models with fewer state variables could potentially be more
difficult to solve than less nonlinear model with more state variables.
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Our approach to solving models with endogenous state variables with implicit laws
of motion is different from the existing approaches in the literature. There are two main
existing approaches. One approach is the nested-fixed point algorithm proposed by
Kubler and Schmedders (2003). The algorithm is based on the existing PFI algorithm.
In each iteration, the authors solve for future endogenous state variables using the con-
sistency equations as an additional fixed point problem. The solution to the fixed-point
problem is then used to formulate a system of equations and unknowns for current pol-
icy variables. This nested-fixed point procedure might be unstable 5 and is not amenable
to a simple and automated toolbox implementation. Another approach to tackle the im-
plicit laws of motion is, in each policy function iteration, to use the transition function
from the previous iteration and only solve for the policy function, instead of solving
for both simultaneously as in our toolbox. Combining the transition function with the
policy function from the previous iteration, one can obtain the forecasts of future vari-
ables. This approach is used in more recent papers such as Elenev et al. (2021). We
call this method transition function iterations (TFI).6 The advantage of our approach is
that the equilibrium in each iteration corresponds to the equilibrium in a finite-horizon
economy. For many models, this property guarantees the existence of solution to the
short-run equilibrium systems. The convergence of the policy functions over the iter-
ations thus reflects the convergence of equilibria in finite-horizon economies to those
of the infinite-horizon economies, consistent with the theoretical proofs for equilibrium
existence in infinite-horizon incomplete markets economies such as Duffie et al. (1994),
Magill and Quinzii (1994), and more recently Cao (2020). The TFI approach does not
always work for the examples considered in the present paper.7

An earlier attempt in providing a general, unified framework for global solutions
of DSGE models is Winschel and Kratzig (2010). Our framework is more general and
allows for endogenous state variables with implicit laws of motion, or equivalently, im-
plicit state transition equations. We also provide a toolbox which only requires users to
provide model files, similar to Dynare. Users do not need to code their model in spe-
cific programming languages such as Java, Fortran, or MATLAB. Winschel and Kratzig

5For example, the nested fixed point problems might not have a solution in early iterations when the
initial guess for policy functions is far from the converged functions.

6Recently, Mendoza and Villalvazo (2020) show that this method yields significant speed improvement
for models with explicit laws of motion, including Mendoza (2010)’s model with natural state variables.

7This is probably because the approach does not allow for feedback from future variables on current
policy variables within each iteration. Some of the feedback effects can be introduced by manually setting
dampening parameters. However, it is possible that for other models, our approach does not work and
the alternative approach does. Therefore, in the toolbox, we allow for the option to use the alternative
approach (The details are provided in Online Appendix A.1, in particular footnote 28).
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(2010)’s algorithm uses PFIs based on earlier work using PFIs for DSGE economies such
as Coleman (1990, 1991) and Judd (1992).

Our framework is more readily applicable to solving, globally, DSGE models with a
finite number of agents or, more precisely, a finite number of agent types.8 Cao (2020)
shows that incomplete markets models with finite agent types are useful special cases
of fully heterogeneous agent, incomplete markets model with both idiosyncratic and
aggregate shocks à la Krusell and Smith (1998). In particular, the former corresponds to
the latter in which idiosyncratic shocks are perfectly persistent. We provide an explicit
comparison between the two models on the toolbox’s website. In addition, the toolbox
can be used to solve the agents’ decision problem and to simulate in the latter given
conjectured laws of motion of the aggregate state variables. Then, with an additional
fixed-point iteration on these laws of motion, which can be coded simply in MATLAB,
the toolbox solution can be used to solve for the DSGE in the latter. In the last section
of the paper, we show how this idea can be used to solve Krusell and Smith’s model in
fewer than 200 lines of code.

The remainder of the paper is organized as follows. In Section 2, we present the
leading example for our toolbox. In Section 3, we provide the general framework and
algorithm. A wide range of examples is presented in Section 4. In Section 5 we discuss
the application of our toolbox to heterogeneous agent models with both idiosyncratic
and aggregate shocks. Section 6 concludes. The design and implementation of the
toolbox are presented in the appendix and on the toolbox’s website.

2 A Leading Example

We use the benchmark model in Heaton and Lucas (1996) as the first illustration of
how to write models in our framework and solve them using the toolbox. We follow
closely the notation in the original paper.

This is an incomplete markets model with two representative agents i ∈ I = {1, 2}
who trade in equity shares and bonds. The aggregate state z ∈ Z, which consists of
capital income share, agents’ income share, and aggregate endowment growth, follows
a first-order Markov process. ps

t(z
t) and pb

t (z
t) denote share price and bond price at time

t and in shock history zt = {z0, z1, . . . , zt}. To simplify the notation, we omit the explicit
dependence on the shock history, e.g., ps

t stands for ps
t(z

t).
Agent i takes the share and bond prices as given and maximizes her inter-temporal

8There is a continuum of price-taking agents within each type and they make identical decisions in
equilibrium.
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expected utility

U i
t = Et

[
∞

∑
τ=0

βτ

(
ci

t+τ

)1−γ

1− γ

]
subject to

ci
t + ps

ts
i
t+1 + pb

t bi
t+1 ≤ (ps

t + dt)si
t + bi

t + Yi
t

and
si

t+1 ≥ 0, bi
t+1 ≥ Kb

t ,

where Ya
t denotes the aggregate income. dt = δtYa

t is total dividend (capital income)
and Yi

t = ηi
tY

a
t is labor income of agent i. Aggregate income grows at a stochastic rate

γa
t =

Ya
t

Ya
t−1

. zt = {γa
t , δt, η1

t } follows a first-order Markov process estimated using U.S.
data. The borrowing limit is set to be a constant fraction of per capita income, i.e.,
Kb

t = K̄bYa
t .

In equilibrium, prices are determined such that markets clear in each shock history:

s1
t + s2

t = 1, and b1
t + b2

t = 0.

As in Kubler and Schmedders (2003), Brunnermeier and Sannikov (2014), and Cao
(2018), we use the normalized financial wealth share

ωi
t =

(ps
t + dt)si

t + bi
t

ps
t + dt

as an endogenous state variable. In equilibrium, the market clearing conditions imply
that ω1

t + ω2
t = 1.

For any variable xt, let x̂t denote the normalized variable: x̂t = xt
Ya

t
(except bi

t for

which b̂i
t =

bi
t

Ya
t−1

). Using this normalization, agent i’s budget constraint can be rewritten
as

ĉi
t + p̂s

ts
i
t+1 + pb

t b̂i
t+1 ≤

(
p̂s

t + d̂t

)
ωi

t + Ŷi
t .

The wealth share is rewritten as

ωi
t =

( p̂s
t + d̂t)si

t +
b̂i

t
γa

t

p̂s
t + d̂t

.

The optimality of agent i’s consumption and asset choices is captured by first-order
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conditions in si
t+1 and bi

t+1:

1 = βEt

( ĉi
t+1

ĉi
t

)−γ (
γa

t+1
)1−γ p̂s

t+1 + d̂t+1

p̂s
t

+ µ̂i,s
t ,

1 = βEt

( ĉi
t+1

ci
t

)−γ (
γa

t+1
)−γ 1

pb
t

+ µ̂i,b
t ,

where µ̂i,s
t ≥ 0 and µi,b

t ≥ 0 are the Lagrangian multipliers on agent i’s short-sale con-
straint and borrowing constraint, respectively. The multipliers and portfolio choices
satisfy the complementary-slackness conditions:

0 = µ̂i,s
t si

t+1,

0 = µ̂i,b
t (b̂i

t+1 − K̄b).

Because the optimization problems of the agents are globally concave optimization prob-
lems, the first-order conditions are necessary and sufficient for optimality.

We solve the model using simultaneous policy and transition function iterations that
we describe in more detail in Section 3: In each iteration, we take the policy functions
solved from the last iteration as given, and look for pricing, allocation, and Lagrange
multipliers as functions of wealth shares and exogenous states that satisfy the market
clearing conditions and first-order conditions. The main challenge of doing so is im-
mediately clear because to evaluate future prices and quantities, which show up in the
first-order conditions, one needs to know the transition of the endogenous state, ω1

t+1 in
the current example. However, ω1

t+1 depends on future prices and allocations which are
themselves functions of the endogenous state variable, or in other words, the law of mo-
tion for the endogenous state variable is implicit. In dealing with such an endogenous
state variable featuring an implicit law of motion, the literature has developed different
methods such as the nested fixed point algorithm (Kubler and Schmedders, 2003) and
the transition function iteration algorithm (Elenev et al., 2021) as surveyed in the intro-
duction. A key innovation in our algorithm is that we incorporate consistency equations
into the system of equations and unknowns so the transition of the endogenous state
variable ω1

t+1 is solved jointly with policy variables. These equations require that the
conjectured future endogenous state variables are consistent with the current portfolio
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choices and future prices:

ω1
t+1 =

(q̂t+1(zt+1, ω1
t+1) + dt+1)k1

t+1 + b̂1
t+1/gt+1

q̂t+1((zt+1, ω1
t+1) + dt+1

.

We discuss these equations in more detail in Subsection 3.2 in the context of our general
framework. The GDSGE code for the model that implements our algorithm is given
in GDSGE code below (the consistency equations correspond to line 68 in the GDSGE
code).

1 % Parameters

2 parameters beta gamma Kb;

3 beta = 0.95; % discount factor

4 gamma = 1.5; % CRRA coefficient

5 Kb = -0.05; % borrowing limit in ratio of aggregate output

6 % Exogenous state variables

7 var_shock g d eta1;

8 % Enumerate exogenous states and transition matrix

9 shock_num = 8;

10 g = [.9904 1.0470 .9904 1.0470 .9904 1.0470 .9904 1.0470];

11 d = [.1402 .1437 .1561 .1599 .1402 .1437 .1561 .1599];

12 eta1 = [.3772 .3772 .3772 .3772 .6228 .6228 .6228 .6228];

13 shock_trans = [

14 0.3932 0.2245 0.0793 0.0453 0.1365 0.0779 0.0275 0.0158

15 0.3044 0.3470 0.0425 0.0484 0.1057 0.1205 0.0147 0.0168

16 0.0484 0.0425 0.3470 0.3044 0.0168 0.0147 0.1205 0.1057

17 0.0453 0.0793 0.2245 0.3932 0.0157 0.0275 0.0779 0.1366

18 0.1366 0.0779 0.0275 0.0157 0.3932 0.2245 0.0793 0.0453

19 0.1057 0.1205 0.0147 0.0168 0.3044 0.3470 0.0425 0.0484

20 0.0168 0.0147 0.1205 0.1057 0.0484 0.0425 0.3470 0.3044

21 0.0158 0.0275 0.0779 0.1365 0.0453 0.0793 0.2245 0.3932

22 ];

23 % Endogenous state variables

24 v a r _ s t a t e w1; % wealth share

25 w1 = linspace(-0.05,1.05,201);

26 % Policy variables and bounds that enter the equations

27 var_policy c1 c2 s1p nb1p nb2p ms1 ms2 mb1 mb2 ps pb w1n[8];

28 inbound c1 0 1;

29 inbound c2 0 1;

30 inbound s1p 0.0 1.0;

31 inbound nb1p 0.0 1.0; % nb1p=b1p-Kb

32 inbound nb2p 0.0 1.0;

33 inbound ms1 0 1; % Multipliers for constraints

34 inbound ms2 0 1;

35 inbound mb1 0 1;

36 inbound mb2 0 1;

37 inbound ps 0 1 adaptive(1.5);

38 inbound pb 0 1 adaptive(1.5);

39 inbound w1n -0.5 1.5;

40 % Other policy variables

41 var_aux equity_premium;

42 % Interpolation variables for state transitions

43 var_interp ps_future c1_future c2_future;

44 i n i t i a l ps_future 0.0;

45 i n i t i a l c1_future w1.*d+eta1;

46 i n i t i a l c2_future (1-w1).*d+1-eta1;

47 ps_future = ps;

48 c1_future = c1;

49 c2_future = c2;

50
51 model;
52 % Evaluate interpolation

53 [psn’,c1n’,c2n’] = GDSGE_INTERP_VEC’(w1n’);
54 % Calculate expectations that enter the Euler Equations

55 es1 = GDSGE_EXPECT{g’^(1-gamma)*(c1n’/c1)^(-gamma)*(psn’+d’)/ps};
56 es2 = GDSGE_EXPECT{g’^(1-gamma)*(c2n’/c2)^(-gamma)*(psn’+d’)/ps};
57 eb1 = GDSGE_EXPECT{g’^(-gamma)*(c1n’/c1)^(-gamma)/pb};
58 eb2 = GDSGE_EXPECT{g’^(-gamma)*(c2n’/c2)^(-gamma)/pb};
59 % Transform bond back

60 b1p = nb1p + Kb;

61 b2p = nb2p + Kb;

62 % Market clearing of shares

63 s2p = 1-s1p;

64 % Budget constraints

65 budget_1 = w1*(ps+d)+eta1 - c1 - ps*s1p - pb*b1p;

66 budget_2 = (1-w1)*(ps+d)+(1-eta1) - c2 - ps*s2p - pb*b2p;

67 % Consistency equations

68 w1_consis’ = (s1p*(psn’+d’) + b1p/g’)/(psn’+d’) - w1n’;

69 % Other policy variables

70 equity_premium = GDSGE_EXPECT{(psn’+d’)/ps*g’} - 1/pb;

71 equations;
72 -1+beta*es1+ms1;

73 -1+beta*es2+ms2;

74 -1+beta*eb1+mb1;

75 -1+beta*eb2+mb2;

76 ms1*s1p;

77 ms2*s2p;

78 mb1*nb1p;

79 mb2*nb2p;

80 b1p+b2p;

81 budget_1;

82 budget_2;

83 w1_consis’;

84 end;
85 end;
86
87 simulate;
88 num_periods = 10000;

89 num_samples = 24;

90 i n i t i a l w1 0.5;

91 i n i t i a l shock 1;

92 var_simu c1 c2 ps pb equity_premium;

93 w1’ = w1n’;

94 end;

The code runs in less than a minute on a regular laptop (about 50 seconds on a
MacBook Air with a 2.2 GHz Intel Core i7 CPU or 7 seconds on a desktop with Intel
2.5 GHz 12-Core CPU). It produces the policy functions, including equilibrium prices

9



and allocation as functions of the endogenous state variable, agent 1’s wealth share ω1,
and exogenous state variable z. Panel (a) in Figure 1 shows the equity premium (the
difference between expected stock and bond returns) as a function of wealth share and
for different combination of exogenous state variables. The kinks in the equity premium
function appear at points where the borrowing and short-sale constraints switch from
being binding to non-binding, or vice versa, as ω1 increases. Panel (b) in Figure 1 shows
the ergodic distribution of the endogenous state variable, ω1.
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Wealth Share of Agent 1
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(a) Policy Function for Equity Premium (b) Ergodic Distribution of Wealth Share

Figure 1: Policy Functions and Ergodic Distribution
Note: The model is solved with 8 realizations of the exogenous states and 201 grid points for the endoge-
nous state. The histogram is based on 24 sample paths and 10,000 periods per sample path, with the first
1,000 periods dropped.

The model can also be solved using consumption share instead of wealth share as a
state variable, as in Dumas and Lyasoff (2012). In this case, the consistency equations
correspond to agents’ future budget constraints: future consumption shares should be
consistent with current portfolio choices and future portfolio choices, which in turn de-
pend on future consumption shares. Dumas and Lyasoff (2012) call these equations
"marketability conditions." Our algorithm is more general and does not rely on their
"kernel conditions" which are derived by assuming that the agents’ unconstrained Euler
equations hold exactly. Our algorithm allows for deviation from the Euler equations due
to binding portfolio constraints, such as borrowing constraints or short-sale constraints.
The details of our implementation using our GDSGE toolbox are provided on the tool-
box’s website. In Section 4.1, we also show how to simplify the feasible region of the
endogenous state-space in Mendoza (2010) using consumption as one endogenous state
variable.

To assess the accuracy and speed of our new algorithm and the toolbox compared
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Table 1: Accuracy and Speed of the Algorithm and Comparisons with Existing Methods

Specification number of
collocation points

Running time
(seconds)

Mean errors Max errors

(1) STPFI 1608 7 2.08E-05 3.40E-03
(2) STPFI, dense grid 8040 24 9.09E-07 5.91E-04
(3) STPFI, adaptive grid 1548 11 9.22E-06 5.78E-04
(4) Transition Function Iteration 1608 47 (not converged) 2.57E-05 3.38E-03

Note: Running time is based on a desktop with an Intel 2.5 GHz 12-Core CPU. The mean and max Euler
equation errors are calculated across 24 sample paths and 10,000 period per sample path, with the same
random number draws across methods. All algorithms are implemented carefully so the performances
can be fairly compared (see the text for detail). STFPI corresponds to the Simultaneous Transition and
Policy Function Iteration algorithm developed in the current paper. All STFPI algorithms converge under
the criterion that the metric between transition functions across two adjacent iterations is below 1E-6.
Transition Function Iteration (TFI) corresponds to the algorithm proposed by Elenev et al. (2021), which at
each time step fixes the transition function constructed from the previous iteration. The TFI algorithm can
only converge under the convergence threshold of 2E-3 (compared to 1E-6 for STPFI) with an appropriate
choice of dampening parameter. Algorithms (1) and (4) use the same grid for collocation points; (2) uses
a denser grid; (3) uses an adaptive grid following Brumm and Scheidegger (2017) implemented by the
toolbox.

with existing methods, we record the running time of solving the model with different
specifications. We calculate the unit-free Euler equation errors for shares and bonds
of agent i ∈ {1, 2} defined below, for a large sample drawn from the model’s ergodic
distribution:9

E s,i
t = −1 + βEt

( ĉi
t+1

ĉi
t

)−γ (
γa

t+1
)1−γ p̂s

t+1 + d̂t+1

p̂s
t

+ µ̂i,s
t ,

E b,i
t = −1 + βEt

( ĉi
t+1

ci
t

)−γ (
γa

t+1
)−γ 1

pb
t

+ µ̂i,b
t .

We then calculate the mean and max errors across all samples.
Table 1 reports the running time and mean and max Euler equation errors for dif-

ferent algorithms and compare them. Algorithm (1) corresponds our benchmark STFI
algorithm which is implemented by the toolbox code listed before and produces the
output in Figure 1. The algorithm uses a grid over ω1 with 201 points and uses cubic
splines to approximate the policy and transition functions. The mean and max unit-
free Euler equation errors are at at the order of 2.1E-05 and 3.4E-03, which, transform

9To do so, we simulate 24 sample paths with 11,000 periods per sample path and drop the first 1000
periods of each sample path to collect a sample of size 24× 10, 000.
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to $0.14 and $23 in $10, 000 consumption levels, respectively.10 By increasing the num-
ber of grid points by 5 times, the Euler equation errors can be reduced by an order of
magnitude, as shown in algorithm (2). However, this can be done more efficiently by
using an adaptive-grid approach developed by Ma and Zabaras (2009) and Brumm and
Scheidegger (2017). Our toolbox implements the algorithm efficiently and as shown in
algorithm (3), with such method the (max) Euler equation errors are reduced by an order
of magnitude, without increasing the number of grid points or increasing the running
time significantly.11

We compare the performance of our algorithm and an alternative algorithm (4), TFI,
used in Elenev et al. (2021). This algorithm is also based on time iterations, but unlike
ours which solves the transition and policy functions jointly in each iteration, theirs fixes
the state function transition implied by the policy functions solved from the previous
iteration.12 We implement this alternative algorithm with the same numerical routines
(including the equation solver and functional approximation procedure) in C++, start-
ing from the same initial transition function,13 and fine-tuned for maximum numerical
efficiency14 so the performance of the two algorithms can be compared fairly. Even with
dampened updating, algorithm (4) can only converge to the level of 2E-3 (measured by
the metric between transition functions in adjacent iterations) compared to the level of
1E-6 for our algorithm. However, the Euler equation errors are comparable to ours un-
der the final (non-converged) state transition function. The speed is significantly slower
than STFPI, mainly because their algorithm fixes the state transition function and does
not allow the future endogenous state (in the current example, future wealth share) to
respond to current policy variables (share and bond choices etc.), which renders finding
a solution to the equilibrium system more difficult.15

10The unit-free errors can be transformed to errors in consumption levels by multiplying them by 1/γ.
11See Section 4.4 for another example which benefits even more from the adaptive-grid method due to

the strong state-dependence of the model.
12Their algorithm can be also implemented using our toolbox. A detailed description of the algorithm

and the implementation with the toolbox can be found in Online Appendix A.1, in particular footnote 28.
We provide a more detailed comparison in the context of this Heaton and Lucas’s model on the toolbox
website: https://www.gdsge.com/example/HL1996/HL1996TFIter.html.

13The initial transition function is generated by the solution to the last-period problem of a finite-horizon
economy.

14For example, for the alternative algorithm we pre-compute the expectation terms that do not depend
on current policy variables under the fixed state transition functions. For the nested fixed point algorithm
we use the solution of policy functions of the previous transition function iteration as “warm-ups“ to
increase the speed of convergence in the inner loop.

15Another reason why their algorithm is slower is because their algorithm needs to first evaluate the
state transition function to get future states and then evaluate the policy functions to get future allocations
and prices, whereas STFPI only needs to evaluate the policy functions as future endogenous states are
solved simultaneously. However, the speed difference due to this reason is mitigated by that the future

12

https://www.gdsge.com/example/HL1996/HL1996TFIter.html


In the next section we present the general framework beyond the specific example
from Heaton and Lucas (1996).

3 General Environment

In this section, we provide the general framework and the solution algorithm (STPFI)
to compute recursive equilibrium in this framework. In Online Appendix A, we present
the design of the toolbox to implement the algorithm. In Section 4, we show that many
recent important models fit exactly in the framework and hence can be solved using the
toolbox. The toolbox’s algorithm is different from the algorithms in the original papers.

3.1 Recursive Equilibrium and Solution Algorithm

We work with models for which the sequential competitive equilibrium of the econ-
omy can be characterized by a system of short-run equilibrium conditions:

F(s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z ) = 0 (1)

where z ∈ Z ⊂ Rdz is a vector of exogenous shocks (aggregate productivity, aggregate
growth rates, dividends, etc.), s ∈ S ⊂ Rds is a vector of endogenous states variables
(aggregate capital, wealth shares, consumption shares, etc.), and x ∈ X ⊂ Rdx is a vector
of endogenous policy variables (asset prices, consumption, portfolio choices, Lagrange
multipliers, etc.). The function

F : Rds+dx+dz ×
(

Rds ×Rdx
)Z

⇒ Rds+dx+dz ×
(

Rds ×Rdx
)Z

,

where Z is the cardinality of Z , consists of optimality conditions, market clearing con-
ditions, and laws of motion for state variables.

For example, in the model in Heaton and Lucas (1996) described above z = (γa, δ, η),
s = (ω1), and x = (ĉ1, s1, b̂1, ĉ2, s2, b̂2, ps, pb).

Notice that the framework allows for general dependence on the future variables,
instead of through common expectations as in Winschel and Kratzig (2010). This gen-
erality is important to include models with state variables with implicit law of motion.
We discuss this feature in more detail in Subsection 3.2. It also allows for non-rational
expectations models including model with belief heterogeneity such as Sandroni (2000)

states and expectation terms can be pre-computed before solving the equilibrium system as they do not
vary with current policy variables.
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and Cao (2018). Lastly, it is necessary to capture nonlinear forms of borrowing con-
straints including the collateral constraints in Kiyotaki and Moore (1997) and Cao and
Nie (2017).16

Models with inequality constraints fit into the general formulation (1) by adding ad-
ditional endogenous policy functions. Indeed, if a recursive model has both equality and
inequality conditions (such as the borrowing constraints in Heaton and Lucas (1996)),

F
(

s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z

)
= 0

G
(

s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z

)
≥ 0,

we can use F̂ =

(
F

G− η

)
with η ≥ 0,17 and x̂ = (x, η) , to write the system with

inequality constraint in form (1) for F̂ and x̂.
In this general framework, we look for recursive equilibria defined below.

Definition A recursive equilibrium is a solution to (1) of the form

x = P(z, s)

and
s′(z′) = T (z, z′, s)

where P and T are equilibrium policy and transition functions, respectively.

The Simultaneous Transition and Policy Function Iteration (STPFI) Algorithm We
solve for a recursive equilibrium of (1) using simultaneous transition and policy function
iterations as follows. The algorithm starts with an initial guess for policy and transition
functions {

P (0)(., .), T (0)(., ., .)
}

Given P (n) and T (n), P (n+1) and T (n+1) are determined by solving the following system
of equations:

F
(

s, x, z,
{

s′(z′),P (n) (z′, s′(z′)
)}

z′∈Z

)
= 0. (2)

16Collateral constraints might involve nonlinear functions of future asset prices (as random variables),
beyond simple functions of expected prices such as the minimum of the price realizations over all possible
future states. Cao and Nie (2017) provide a detailed comparison of different forms of collateral constraints.

17In numerical implementations, we tackle this with an equation solver that respects box constraints of
unknowns.
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with unknowns x and {s′(z′)}z′∈Z for each

(s, z) ∈ C(n) ⊂ Z × S .

The set C(n), which we call the set of collocation points, is a subset of Z × S . We keep
track of a distance between P (n), T (n) and P (n+1), T (n+1) over the iterations and stop
when the distance falls below a preset threshold.

Unlike policy function iterations for Bellman equations for which the Contraction
Mapping Theorem applies, good initial guesses are critical in ensuring that the algorithm
works. Otherwise one might run into situations in which (2) does not have solution for
some (s, z) ∈ C(n) and hence cannot iterate further, or the iterations do not converge. We
find that good typical initial guesses for P (0) correspond to equilibria in the 1-period
economy versions of the models. In this case, the solution for P (n) corresponds to the
equilibrium values of the first period in the (n+1)-period economy. Thus, the numerical
limit of

{
P (n)

}
corresponds to the finite-horizon limit. This limit is shown to be the

equilibrium in the infinite horizon economies in existence proofs for infinite-horizon
incomplete markets economies such as Duffie et al. (1994), Magill and Quinzii (1994),
and more recently Cao (2020).

3.2 Explicit and Implicit State Transitions

Our toolbox demonstrates its greatest power, relative to other methods, for models
with endogenous state variables with implicit state transition equations (laws of motion),
such as wealth shares or consumption shares in the leading Heaton and Lucas’ example.
Here we explain the idea in more detail in the context of the general framework.

The state variables s may consist of state variables s̄ that have explicit transition
equations (laws of motions), and state variables ¯̄s that consist of state variables with
implicit transition equations: s = (s̄, ¯̄s). For s̄, the law of motion can be written explicitly:

s̄′ = ḡ(s, x, z, z′).

This is the specification in Winschel and Kratzig (2010). In our framework, we also allow
for state variables ¯̄s with implicit laws of motion:

0 = ¯̄g
(
s, x, z, ¯̄s′(z′), x′(z′), z′

)
.

Examples of state variables with implicit state transition include wealth shares or con-
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sumption shares, as in Section 2 for Heaton and Lucas (1996).
In this case, the system of equations (1) can be written as

F(s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z ) =

 f
(
s, x, z, {s′(z′), x′(z′)}z′∈Z

)
s̄′ − ḡ(s, x, z, z′)

¯̄g (s, x, z, ¯̄s′(z), x′(z′), z′)

 .

In a recursive equilibrium, the last equation becomes

0 = ¯̄g
(
s, x, z, ¯̄s′(z′),P(z′, (ḡ(s, x, z, z′), ¯̄s′(z′))), z′

)
. (3)

We call these equations consistency equations. It requires future state variables ¯̄s′(z′) to be
consistent with current policies and future policies implied by these future state variables
and the policy function P .18

The state variables with explicit state transitions allow us to reduce the number of
equations and unknowns in each step of the policy function iteration algorithm described
above. Indeed, in the policy function iteration algorithm, by substituting ḡ(s, x, z, z′) for
s̄′, we can work with F̄ which only takes the first and third components from F:

F̄
(

s, x, z,
{

¯̄s′(z′),P (n) (z′, (ḡ(s, x, z, z′), ¯̄s′(z′)
))}

z′∈Z

)
= 0.

The state variables with implicit laws of motion make it difficult to apply standard
policy function iteration methods. Because one cannot easily calculate future state
variables, and hence future equilibrium variables, in order to evaluate inter-temporal
equilibrium conditions. To tackle this issue, the key innovation in our algorithm is, in
(n+ 1)th-iteration, to simultaneously solve for the unknowns x and { ¯̄s′(z′)}z′∈Z given fu-
ture policy function P (n). To do so, we add to the system of equations (2) the consistency
equations (3):

¯̄g
(

s, x, z, ¯̄s′(z),P (n) (z′, (ḡ(s, x, z, z′), ¯̄s′(z′)
))

, z′
)
= 0.

As discussed in the introduction, our approach to solving models with endogenous
state variables with implicit laws of motion is different from the existing approaches
in the literature. For example, Kubler and Schmedders (2003) use wealth shares as en-

18These consistency equations are similar to the consistency equations in the heterogeneous agent in-
complete markets literature, including Huggett (1993, 1997), Aiyagari (1994), Krusell and Smith (1998),
Reiter (2009) and Cao (2020), in which future cross-sectional distributions are consistent with current
distributions and current policy functions.

16



dogenous state variables. These authors solve for future wealth shares using consistency
equations as an additional fixed-point problem for each guess for current policy vari-
ables. The solution to the fixed-point problem is then used to formulate a system of
equations and unknowns for current policy variables. This nested-fixed point proce-
dure might be unstable. For example, the nested fixed point problems might not have
a solution in early iterations when the initial guess for policy functions is far from the
converged functions. In addition, the procedure is not amenable to a simple, automated
toolbox implementation because the system of equations representing the nested-fixed
point problems are completely different from the original equilibrium systems of equa-
tions. Elenev et al. (2021)’s method iterates over transition functions. As described in
Section 2, this method can be implemented in our toolbox but it might not be as accu-
rate and robust as our method. One of the possible reasons for lower accuracy is that
the approach does not allow for feedback from future variables on current policy vari-
ables within each iteration, even though some of the feedback effect can be introduced
by manually setting dampening parameters.

One potential concern with our method is that if the number of possible realizations
of future exogenous shocks z′ is too large, including { ¯̄s′(z′)}z′∈Z and consistency equa-
tions in the system of equations and unknowns to be solved leads to a system that is too
large. For example, if the true exogenous shocks ζ follow a VAR process

ζ ′ = Aζ + ε′,

one needs to approximate this process with a discrete-Markov process z with many
points. To deal with this issue, we include ζ among the endogenous state variables s and
discretize the innovation process ε′ instead. Discretizing the innovation process requires
a smaller number of discretization points and hence a smaller number of consistency
equations.19

In Online Appendix A, we present the design and implementation of our toolbox for
the general framework described above. In the next section, we present several important
applications. Besides Heaton and Lucas (1996), the models from Mendoza (2010) and
Barro et al. (2017) in Subsections 4.1 and 4.2 are other examples featuring state variables
with implicit laws of motion.

19See the RBC model with irreversible investment on the toolbox’s website (http://www.gdsge.com/
example/rbc/rbcIrr.html) for a concrete example.
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4 Applications

In this section, we provide examples of how well-known models can be solved using
our toolbox. The gmod files for these models are provided in Online Appendix B and
on the toolbox’s website. The toolbox algorithm is different from the algorithm provided
in the original papers. These examples could be read independently and the notation
follows closely from the notation in the original papers. We also refer readers to the orig-
inal papers for the important economic motivation of these models. Following up on the
leading example from Heaton and Lucas (1996), the next two examples from Mendoza
(2010) and Barro et al. (2017) feature state variables with implicit laws of motion and
consistency equations.

4.1 Sudden Stops with Asset Price Deflation by Mendoza (2010)

The seminal work by Mendoza (2010) builds a model that generates crises featuring
current account reversals and asset price collapses, resembling those experienced by
many emerging economies. The model has two endogenous assets—capital and bond,
with an occasionally binding borrowing constraint tied to the capital price behind its key
mechanism. The model is highly non-linear and state-dependent, and calls for a global
solution method to study its rich dynamics. Although it has become a workhorse model
in the study of crises in open and closed economies, researchers still find solving and
extending this type of model challenging. We show that the model in Mendoza (2010)
can be easily represented in our current framework, and solved with the toolbox in 200
lines of codes and within a minute on a regular laptop (about 55 seconds on a MacBook
Air 2.2 GHz Intel Core i7).

Even though with the benchmark parameterization in Mendoza (2010), the model can
be solved with capital and bond as the two endogenous states directly, one of the chal-
lenges researchers have frequently countered is that due to the borrowing constraint tied
to the capital price, the feasible state space of capital and bond is not a rectangle and hard
to determine ex-ante.20 Our framework and toolbox addresses this challenge by trans-
forming the endogenous states to those that have simple boundary conditions, and use
consistency equations to specify the implicit transitions of these transformed states. This
strategy frees researchers from trial-and-error guesses for the feasible space of states, a

20In particular, the maximum sustainable debt level that ensures positive consumption is increasing in
capital stock, rendering the feasible space of capital and bond non-rectangle. Furthermore, this boundary
cannot be determined ex-ante since the sustainable debt level depends on the new debt that the economy
can finance, which depends on capital price and other endogenous variables determined in equilibrium.
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procedure that is necessary but usually painful for global solution methods. We first
briefly describe the model and then its representation in our framework. As for other
examples, the toolbox code is provided in Online Appendix B and can be downloaded
from the GDSGE website.

4.1.1 Model Description

Representative consumers in a small-open economy value consumption and leisure,
with preferences represented by

E0

∞

∑
t=0

βt[u (ct − N (Lt))],

where β ∈ (0, 1) is the discount factor, u(·) is the GHH (Greenwood et al., 1988) util-
ity function, ct is consumption, Lt is the labor supply, and N(·) is a convex function
representing the disutility from labor supply. E0 is the expectation operator integrating
aggregate shocks introduced below.

Output is produced by representative firms combining capital kt, labor Lt, and im-
ported inputs vt according to a constant-return-to-scale production function

exp(εA
t )F(kt, Lt, vt),

where εA
t is the aggregate productivity shock. Investment is subject to convex adjustment

costs

it = kt+1 − (1− δ)kt +
1
2

a
(kt+1 − kt)2

kt
, (4)

where a > 0 is a parameter determining the level of adjustment cost. The end-of-period
capital price is competitively determined as

qt =
∂it

∂kt+1
= 1 + a

kt+1 − kt

kt
. (5)

A fraction of the cost of labor and imported inputs needs to be financed by with-in-
period loans obtained from foreign lenders, at the world gross interest rate of Rt =

R exp(εR
t ), where R is the mean interest rate and εR

t is an exogenous shock. The price
of imported goods is pt = p exp(εp

t ), where p is the mean price and εt is an exogenous
shock. (εA

t , εR
t , ε

p
t ) are the shocks in the economy and follow first-order Markov processes.

Consumers can trade a one-period state non-contingent bond bt+1 (a negative value

19



of bt+1 denotes borrowing) with the rest of the world, at price qb
t = 1

Rt
. Therefore, the

budget constraint of the consumers reads:

ct + it = exp(εA
t )F(kt, Lt, vt)− ptvt − φ (Rt − 1) (wtLt + ptvt)− qb

t bt+1 + bt,

of which the left hand side is domestic consumption and investment, and the terms on
the right hand side are in order (1) domestic gross output, (2) minus costs of imported
goods, (3) minus interest payments from working capital loans, (4) minus costs of bond
holding into the future period, and (5) plus current bond payments. It is assumed that
the inter-temporal borrowing is subject to a collateral constraint:

qb
t bt+1 − φRt (wtLt + ptvt) ≥ −κqtkt+1,

which says that total debt, including debt in one–period bonds and working capital
loans, does not exceed κ fraction of the market value of end-of-period capital. The
representative consumers maximize the utility specified earlier, subject to the budget
and collateral constraints described above. We next represent the model equilibrium
with a system of equations, which are enabled by that the optimality conditions are
replaced with first-order and complementary slackness conditions.

A sequential competitive equilibrium is stochastic sequences {µt, ct, wt, Lt, vt, bt+1, kt+1}∞
t=0

such that

ct + it = exp(εA
t )F(kt, Lt, vt)− ptvt − φ (Rt − 1) (wtLt + ptvt)− qb

t bt+1 + bt,

− qb
t λt + µtqb

t + βEtλt+1 = 0,

βEtλt+1 exp(εA
t+1)F1(kt+1, Lt+1, vt+1)− βEtλt+1

∂it+1

∂kt+1
− λtqt + µtκqt = 0,

[qb
t bt+1 − φRt (wtLt + ptvt) + κqtkt+1]µt = 0, µt ≥ 0,

exp(εA
t )F2(kt, Lt, vt) = wt(1 + φ(Rt − 1) +

µt

λt
φRt),

exp(εA
t )F3(kt, Lt, vt) = pt(1 + φ(Rt − 1) +

µt

λt
φRt),

wt = N′(Lt),

where, λt = u′(ct − N(Lt)), it is given by equation (4), and qt is given by equation
(5). Among the unknowns, µt is the Lagrangian multiplier placed on the collateral con-
straint. In the system of equations, the first is the budget constraint; the second the
Euler equation for bond; the third the Euler equation for capital; the fourth the com-
plementary slackness condition for the collateral constraint; the fifth and sixth are the
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optimality conditions for using labor and imported inputs, taking into account the inter-
est payments on working capital loans and the shadow prices arising from the collateral
constraint; the last is the optimality condition for labor supply. The equilibrium system
can be casted in a recursive form with capital and bond as the endogenous states. Before
describing the representation of the model using our framework, we discuss the state
transformation and the associated consistency equations.

The motivation for state transformation, as described earlier, is that the feasible set
of capital kt and bond bt may not be a rectangle, and the fact that the borrowing con-
straint depends on equilibrium capital price renders determining the feasible set ex-ante
difficult. Instead, by noticing that the exact boundary condition of the feasible set is the
consumption-labor bundle, c̃t ≡ ct − N(Lt), being non-negative, we can transform the
endogenous states from (kt, bt) to (kt, c̃t). Unlike bt, for which the period-(t + 1) bond is
a policy variable and thus admits an explicit transition, the transition of c̃t is implicitly
imposed by the condition that c̃t+1 should be consistent with the choice of bt+1 via the
future budget constraint. These conditions are precisely the consistency equations (equa-
tions (3) in the general framework) that should be included as part of the system of
equations to be solved in each iteration. Therefore, with such transformation, the equa-
tion system described before should be modified to include the vector of c̃t+1 for each
realization of future shocks as unknowns, and correspondingly to replace the current
budget constraint with the future budget constraints for each realization of shocks.

4.1.2 Computation

We use the functional forms and parameterization from the benchmark calibration
in Mendoza (2010).21 The first set of results concerns about the motivation for the state
transformation discussed earlier. The left panel of Figure 2 projects the endogenous
state c̃, over the natural state space (k, b).22 As shown, for the rectangle state space
defined over (k, c̃), the implied space of (k, b) is not rectangle—in fact, the value of
b that is consistent with the same value of c̃ is increasing in k. Choosing a uniform
lower bound for b too low may result in equilibrium non-existence for low values of k,
since no positive consumption may exist at such collocation points. On the other hand,
choosing a uniform lower bound for b too high may miss some combinations of (k, b)

21More detailed comparisons between the current results and those in Mendoza (2010), such as on
business cycle moments, can be found on the toolbox website.

22Notice that the equilibrium is solved over the endogenous states (k, c̃). For each combination of (k, c̃)
and realization of exogenous shocks, there is a value of b that is consistent with equilibrium conditions.
We can therefore project policy functions defined over (k, c̃) to the space of (k, b) as long as b is monotone
in c̃ given k and realizations of exogenous shocks, which is validated by the solution.
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Figure 2: State Transformation and the Ergodic Distribution
Note: The figure is generated using the baseline parameters in Mendoza (2010). The model is
solved with 80 grid points over the endogenous state k and 80 grid points over the endogenous
state c̃. The policy function corresponds to the first of the 8 realizations of exogenous shocks,
i.e., all of εA, εR, εp take their lower values of the two realizations, respectively. The ergodic set
is based on a simulated panel of 24 time series, each with 50,000 periods.

that appear in the model’s ergodic set, as suggested by the right panel of Figure 2 that
the economy spends its time in high levels of debt with high frequencies. The above
discussions echo the challenge faced by researchers in choosing the state space of bonds
without knowing the actual equilibrium properties, and highlight the usefulness of the
state transformation strategy which is enabled by the consistency equation method in
the current framework.

Figure 3 plots the policy functions for capital price and the multiplier associated
with the collateral constraint. As shown, the collateral constraint tends to bind when the
debt level is high (bond is more negative) and capital is low; capital price drops sharply
in debt level when the collateral constraint binds, while it drops only modestly when
the collateral constraint does not bind. These nonlinear regions appear in the model’s
ergodic set as shown in Figure 2, highlighting the importance of solving the current
model with global methods.

4.1.3 Mapping into the General Setup

For the model in Mendoza (2010) described above, the correspondence with our gen-
eral setup of the toolbox is z = (εA, εR, εp), s = (k, c̃) , and x = (µ, w, L, v, b′, k′).
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Figure 3: Policy Functions
Note: The figure is generated using the baseline parameters in Mendoza (2010). The model is
solved with 80 grid points over the endogenous state k and 80 grid points over the endogenous
state c̃. The policy functions are then generated by projecting the variables over the natural
state space (k, b). The policy functions correspond to the first of the 8 realizations of exogenous
shocks, i.e., all of εA, εR, εp take their lower values of the two realizations, respectively.

4.2 Safe Assets by Barro et al (2017)

Barro et al. (2017) incorporate heterogeneous risk-aversion into the model with rare
disasters in Barro (2006) to study the endogenous creation of safe asset. Their model
features incomplete markets: agents can only trade in a stock and a bond as in Heaton
and Lucas (1996). They solve their model using a mixture of projection and perturbation
methods developed in Fernández-Villaverde and Levintal (2018). Our toolbox’s algo-
rithm is a purely projection method. It uses wealth shares as endogenous state variables.
As Barro et al. (2017) discuss in their paper, their solution method is not sufficiently
accurate for large values of risk-aversion coefficients.23 We show below that our method
can tackle these cases effectively and uncover new economic insights in these cases. For
the more risk-averse agent’s risk-aversion coefficient of 50, our toolbox solves the model
within a minute on a regular laptop (about 40 seconds on a MacBook Air 2.2 GHz Intel
Core i7).

4.2.1 Model and Normalization

There are two groups of agents, i = 1, 2 in the economy. Agents have an Epstein and
Zin (1989)-Weil (1990) utility function. The coefficients of risk aversion satisfy γ2 ≥ γ1 >

0, i.e., agents 1 are less risk-averse than agents 2. The other parameters between these

23See Table 2 in their paper.
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two groups are the same. There is a replacement rate υ at which each type of agents
move to a state that has a chance of µi of switching into type i. Taking the potential type
shifting into consideration, their utility function can be written as

Ui,t =

{
ρ + υ

1 + ρ
C1−θ

i,t +
1− υ

1 + ρ

[
Et

(
U1−γi

i,t+1

)] 1−θ
1−γi

}1/(1−θ)

. (6)

In this economy, there is a Lucas tree generating consumption good Yt in period t
consumed by both agents. Yt is subject to identically and independently distributed
rare-disaster shocks. With probability 1− p, Yt grows by the factor 1 + g; with a small
probability p, Yt grows by the factor (1 + g) (1− b). Thus the expected growth rate of
Yt in each period is g∗ ≈ g− pb. Denote agent i’s holding of the tree as Kit. The supply
of the Lucas tree is normalized to one; Pt denotes its price. The gross return of holding
equity is Re

t = Yt+Pt
Pt−1

. Agents also trade a risk-free bond, Bit, whose net supply is zero,

and the gross interest rate is R f
t .

Denote the beginning-of-period wealth of agent i by Ait. Each agent’s budget con-
straint is

Cit + PtKit + Bit = Ait.

Considering the type shifting shock, the law of motion of Ait is

Ait = (Yt + Pt) [Kit−1 − υ (Kit−1 − µi)] + (1− υ) R f
t Bit−1.

As in Cao (2018, Appendix C.3, Extension 3), we normalize the utility Uit and con-
sumption Cit by Ait and write equation (6) as follows:

u1−θ
it =

ρ + υ

1 + ρ
c1−θ

i,t +
1− υ

1 + ρ
(1− cit)

1−θ
(

Et

[
(Ri,t+1uit+1)

1−γi
]) 1−θ

1−γi , (7)

in which uit = Uit/Ait, cit = Cit/Ait, and

Ri,t+1 = xitRe
t+1 + (1− xit) R f

t+1

is the average return of agent i’s portfolio, and

xit =
PtKit

PtKit + Bit

is the equity share of agent i’s portfolio holding. The FOCs for consumption and portfo-
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lio choices are

(ρ + υ) c−θ
i,t = (1− υ) (1− cit)

−θ
[
Et (Ri,t+1uit+1)

1−γi
] 1−θ

1−γi , (8)

and

Et


(

Re
t+1 − R f

t+1

)
uit+1

(Ri,t+1uit+1)
γi

 = 0. (9)

The choices of cit and xit are identical across agents of the same type i, and the portfolio
choices of agents i is

Kit = xit (1− cit) (1 + pt) /ptωit,

bit = (1− xit) (1− cit) (1 + pt)ωit.

In equilibrium, prices are determined such that markets clear:

C1t + C2t = Yt, (10)

K1t + K2t = 1, (11)

B1t + B2t = 0. (12)

To achieve stationarity, we normalize variables {Bit, Pt} by Yt. We define the wealth
share of agent i as

ωit = Kit−1 − υ (Kit−1 − µi) +
(1− υ) R f

t bit−1

(1 + pt) (1 + gt)
. (13)

We see that given the market clearing conditions (11) and (12),

ω1t + ω2t = 1, ∀t.

4.2.2 Log Utility

For much of the analysis in Barro et al. (2017), the intertemporal elasticity of substi-
tution θ is set at 1. In this case, agents consume a constant share of their wealth, and
equation (8) is replaced by

cit =
ρ + υ

1 + ρ
.
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Using this relationship for i = 1, 2, and the market clearing conditions (10), (11) and (12),
we obtain

pt =
1− υ

ρ + υ
.

The utility function (7) is replaced by

ln uit =
ρ + υ

1 + ρ
ln cit +

1− υ

1 + ρ
ln (1− cit) (14)

+
1− υ

1 + ρ

1
1− γi

ln
[
Et (Ri,t+1uit+1)

1−γi
]

.

To solve the model, we use the endogenous state variable ω1t - wealth share of agents
1. This is a state variable with implicit law of motion given by (13), which correspond
to equations (3) in the general framework. In each iteration and collocation point, the
system of equations to be solved consists of five unknowns – {x1t, x2t, R f

t , ωit+1(zt+1)}
(two values for ωt+1 for two future realizations) – and five equations (9) for i = 1, 2, the
market clearing condition for bond (12) and the consistency equations (13).

Since the growth shock is i.i.d., ω1 is the only state variable. The policy functions and
stationary distributions of ω1are given in Figure 4.
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Figure 4: Ergodic Distribution and Policy Functions
Note: The figure is generated using the baseline parameters in Barro et al. (2017).
For annual data, ρ = 0.02, υ = 0.02, µ = 0.5, γ1 = 3.3, and γ2 = 5.6. The growth rate
in normal times is 0.025. Rare disasters happen with probability 4%, and once a rare
disaster happens, productivity drops by 32%. The model period is one quarter.

In Table 2 of Barro et al. (2017), the values for risk aversion parameters γ1 and γ2 are
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calibrated to target an average annual interest rate R̄ f = 1.01. The implicit reasoning is
that, for each γ1, R̄ f is decreasing in γ2, and there exists a value of γ2 such that R̄ f = 1.01.
Table 2 of their paper presents γ2 as a function of γ1 following this procedure. However,
when γ1 = 3.1, the authors set γ2 = 10 while acknowledging that their numerical
solutions in this region were insufficiently accurate.

Using our toolbox, we can solve this problem for a wider range of γ2. For smaller
values of γ2 our results coincide with the results in Table 2 of Barro et al. (2017). But
for larger values our results differ from theirs. In Figure 5(a), we plot R̄ f corresponding
to different values of γ2 up to 100. In particular, we find that R̄ f is a non-monotone
function of γ2. In addition, R̄ f = 1.01 cannot be reached when γ1 = 3.1 since R̄ f is
increasing in γ2 when γ2 is greater than 8.
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(a) Interest Rate and Wealth Share of Agent 1 (b) Comparing Cases with Different γ2

Figure 5: Interest Rate with Different γ2
Note: The figure is generated using the baseline parameters in Barro et al. (2017). In particular, we fix
γ1 = 3.1 and change the value of γ2 to generate the results. In Figure (a), we plot the average interest
rate and wealth share of agent 1 as we vary γ2. In Figure (b), we compare the policy functions of R f and
ergodic distributions when γ2 = 8 and 10.

The non-monotonicity is driven by two opposing forces. First, as γ2 becomes larger,
agents 2 become more risk-averse, and demand more of the safe asset (bond). This
higher demand pushes down R̄ f . Second, an increase in γ2 also leads agent 1 to borrow
more and become more leveraged. Since the return to equity is significantly higher than
bond’s return, the wealth share of agents 1, ω1 tends to be larger. Larger ω1 leads to more
relative supply of safe asset and pushes up R̄ f . Whether R̄ f decreases or increases in γ2

depends on which force dominates. Figure 5 shows that when γ2 is below 8, the first
force dominates and R̄ f is decreasing in γ2 as implicitly assumed in Barro et al. (2017).
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However, when γ2 is greater than 8, the second force dominates and R̄ f is increasing in
γ2. When γ2 is greater than 20, R̄ f is not responsive to γ2 since the distribution of ω1

becomes almost degenerated at its upper limit. See Figure 5(b) for a comparison of two
cases: γ2 = 8 versus γ2 = 10.

4.2.3 Mapping into the General Setup

For the model in Barro et al. (2017) described above, the correspondence with our
general setup of the toolbox is z = (g), s = (ω1), and x =

(
c1, c2, x1, x2, R f , K1, b1, p

)
.

4.3 Asset Pricing with Heterogeneous IES by Guvenen (2009)

Guvenen (2009) constructs a two-agent model to explain several salient features of
asset pricing moments, such as a high equity risk premium, a low and relatively smooth
interest rate, and countercyclical movements in the equity risk premium and Sharpe
ratio. Two key ingredients of his model are limited stock market participation and het-
erogeneity in the elasticity of intertemporal substitution in consumption (EIS).

The solution algorithm in Guvenen (2009) is very different from ours. His is based
on the algorithm in Krusell and Smith (1998): starting from a conjectured law of motion
for state variables and pricing functions, he solves the agents’ Bellman equation and the
agents’ policy functions using standard value function iterations. Then, he uses these
policy functions and temporary market clearing conditions to obtain new laws of motion
and new pricing functions. These functions are again used as conjectured functions to
obtain new functions. He keeps iterating until the new functions are close enough to the
conjectured functions.

Our algorithm recognizes that because the agents’ optimization problems are globally
concave problems, the first-order conditions are sufficient for optimality (without having
to solve the agents’ Bellman equation). Therefore, we can directly use policy function
iterations to solve jointly for agents’ optimization problems and market clearing condi-
tions. With this algorithm, our toolbox solves the baseline model in Guvenen (2009) in
less 3 minutes on a regular laptop (about 2.9 minutes on a MacBook Air 2.2 GHz Intel
Core i7) while it takes about 9 hours 15 minutes (on a MacProWorkstation with 8-core
3.2 GHz Xeon processors) using the original algorithm in Guvenen (2009) as reported in
Appendix A in his paper.
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4.3.1 Model Description

There are two types of infinitely-lived agents: stockholders (h) with measure µ, and
non-stockholders (n) with measure 1− µ. Agents have Epstein-Zin utility functions

Ui,t =

{
(1− β) c1−ρi

i,t + β
[
Et

(
U1−α

i,t+1

)] 1−ρi
1−α

}1/(1−ρi)

. (15)

for i = h, n. Most importantly, ρh < ρn, i.e., the non-stockholders have lower EIS,
which is inversely proportional to ρi, and thus, they have higher desire for consumption
smoothness. Each agent has one unit of labor endowment.

Stockholders can trade stock st and bond bh,t at prices Ps
t and P f

t , respectively. Their
budget constraint is

ch,t + P f
t bh,t+1 + Ps

t st+1 ≤ bh,t + st (Ps
t + Dt) + Wt,

where Wt is the labor income, and the borrowing constraint is bh,t+1 ≥ −B. In the
calibration B is set at six times of the average monthly wage rate. Non-stockholders are
subject to the same constraints. In addition, they are restricted from trading stocks.

A representative firm produces the consumption good using capital Kt and labor Lt

based on a Cobb-Douglas production function:

Yt = ZtKθ
t L1−θ

t ,

and the technology evolves according to an AR(1) process:

ln Zt+1 = φ ln Zt + εt+1, ε
i.i.d.∼ N

(
0, σ2

ε

)
.

The firm maximizes its value Ps
t expressed as the sum of its future dividends

{
Dt+j

}∞
j=1

discounted by the shareholders’ marginal rate of substitution process:

Ps
t = max
{It+j,Lt+j}

Et

[
∞

∑
j=1

βj Λh,t+j

Λh,t
Dt+j

]
. (16)

The firm accumulates capital subject to a concave adjustment cost function in investment:

Kt+1 = (1− δ)Kt + Φ

(
It

Kt

)
Kt, (17)
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with the functional form for Φ from Jermann (1998). Each period, the firm sells one-
period bonds at price P f

t . The bond supply is constant and equals to a fraction χ of its
average capital stock K̄. Thus, dividend Dt can be written as

Dt = ZtKθ
t L1−θ

t −WtLt − It −
(

1− P f
t

)
χK̄.

A sequential competitive equilibrium is given by sequences of allocations

{ci,t, bi,t+1, st+1, It, Kt+1, Lt}

i = h, n and prices
{

Ps
t , P f

t , Wt

}
such that (i) given the price sequences, {ci,t, bi,t+1, st+1}

i = h, n solve the stockholders’ and non-stockholders’ optimization problems; (ii) given
the wage sequence {Wt} and the law of motion for capital (17), {Lt, It} are optimal for
the representative firm; and (iii) all markets clear:

µbh,t+1 + (1− µ) bn,t+1 = χK̄, (18)

µst+1 = 1, (19)

Lt = 1,

µch,t + (1− µ) cn,t + It = Yt.

4.3.2 Computation

We use {Kt, Bn
t , Zt} as the aggregate state variables, where Bn

t = (1− µ) bn,t is the total
bond holding by the non-stockholders. The optimization problems of the households
and the representative firm are globally concave maximization problems, so the first-
order conditions are necessary and sufficient for optimality. With this observation and
the aforementioned state variables, the competitive equilibrium in this model can be
represented by a system of short-run equilibrium conditions (1) required by the general
framework. This system consists of 8 unknowns: {ch,t,cn,t,It,Bn

t+1,λh,t,λn,t,Ps
t ,P f

t }, and 8
equations:

1. Euler equations for bond holding:

P f
t = β (1 + λi,t)Et

(
Λi,t+1

Λi,t

)
, ∀i = h, n.
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2. Euler equations for the stockholders’ demand of equity:

Ps
t = βEt

[
Λh,t+1

Λh,t

(
Ps

t+1 + Dt+1
)]

.

3. Complementary-slackness conditions:

λi,t (bi,t+1 + B) = 0, λi,t ≥ 0, ∀i = h, n.

4. The budget constraints (imposing st+1 = 1/µ):

ch,t + P f
t bh,t+1 +

Ps
t

µ
= Ps

t + Dt +
χK̄− Bn

t
µ

+ Wt,

cn,t + P f
t bn,t+1 =

Bn
t

1− µ
+ Wt.

5. Firm’s optimal capital accumulation Kt+1:

qt = βEt

{
Λh,t+1

Λh,t

[
θZtKθ−1

t − It+1

Kt+1
+ qt+1

(
1− δ + Φ

(
It+1

Kt+1

))]}
, (20)

in which capital price qt is the Lagrangian multiplier on the capital formation (17)
and satisfies

qtΦ
′
(

It

Kt

)
= 1. (21)

The auxiliary variables can be determined by the utility function (15), market clearing
conditions, (17) and the following two equations:

Wt = (1− θ) Zt

(
Kt

Lt

)θ

,

and

β
Λi,t+1

Λi,t
= β

1−α

1−ρi

(
ci,t+1

ci,t

)−ρi


Ui,t+1

ci,t[(
Ui,t
ci,t

)1−ρi

− (1− β)

]1/(1−ρi)


ρi−α

.

Having represented the equilibrium in the required form (1), we can then use the
toolbox to solve for a recursive equilibrium. In period t, the 6 future variables, ch,t+1,
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cn,t+1, Ps
t+1 + Dt+1, It+1/Kt+1, Uh,t+1, and Un,t+1 are functions of

{
Kt+1, Bn

t+1, Zt+1
}

and
are solved from the previous iteration. Similar to Guvenen (2009), the initial guesses for
these functions are obtained by solving a version of the model with no leverage (χ = 0,
B = 0).24
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Figure 6: Asset Pricing Policy Functions in Guvenen (2009)
Note: The figure plots the annual equity premium and interest rate as functions of
{K, Bn}. We use the same parameter values as in Table 1 of Guvenen (2009), and set
Zt = 1.

In Figure 6, we plot the annual equity premium and interest rate as functions of
{K, Bn} by fixing Zt = 1. The equity premium is increasing in Bn and interest rate is
decreasing in Bn. This is because stockholders, having higher IES and tolerating more
non-smooth consumption, insure non-stockholders against aggregate shocks. As Bn in-
creases, stockholders become less wealthy, relative to non-stockholders, so they demand
a higher premium to hold equity and to bear more volatility in consumption. At the
same time, non-stockholders’ aggregate precautionary saving increases and it pushes
down interest rate. Figure 7 plots the ergodic distributions of capital and the financial
wealth share of stockholders.

24It is relatively simple to implement this algorithm in the toolbox. Users can solve the no-leverage
version first and after convergence, use its policy functions as the initial guesses for the full model. The
toolbox allows users to override parameters and to provide their own initial guess functions using the
“WarmUp” option. Thus they do not need to write separate codes for different model versions. See the
codes on the toolbox’s website for detail. Furthermore, the functions provided can be defined on different
grid points from the state variables, which offers users much flexibility. For example, a user can solve a
model with coarse grids for speed first and then use its converged policy functions as the initial guess for
the same model with finer grids.
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Figure 7: Ergodic Distributions of Capital and Wealth Share
Note: The Ergodic Distributions are generated by simulation. We use the same pa-
rameter values as in Table 1 of Guvenen (2009).

4.3.3 Mapping into the General Setup

For the model in Guvenen (2009) described above, the correspondence with our gen-
eral setup of the toolbox is z = (Z), s = (K, Bn) , and x = (ch, cn, I, Bn′, λh, λn, Ps, P f , q, Uh, Un).

4.4 Sudden Stops in an Open Economy by Bianchi (2011)

Bianchi (2011) studies an incomplete-markets open economy model that can gener-
ate competitive equilibria featuring sudden stop episodes, mimicking those experienced
by many emerging economies. A sudden stop episode features a large output drop
and current account reversals, which are at odds with the prediction of a standard
incomplete-markets model with precautionary saving motives. A key feature for the
model in Bianchi (2011) is to introduce feedback of the price of non-tradable goods to
the borrowing constraint: a negative external shock that lowers the equilibrium price
of non-tradable goods tightens the borrowing constraint and forces reducing the con-
sumption of tradable goods, which further lowers the price of non-tradable goods. The
competitive equilibrium is inefficient since agents do not take into account the effects of
non-tradable price on the borrowing constraint in the event of a sudden stop crisis. This
leads to ex-ante over-borrowing and calls for policy interventions.

The borrowing constraint is occasionally binding in the equilibrium’s ergodic set,
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and the equilibrium policy and state transition functions are highly non-linear when the
borrowing constraint binds. Therefore, a global and non-linear solution is essential to
capture the model’s rich dynamics. We now describe how this class of models can be
robustly and efficiently solved by the toolbox, using the exact model and calibration in
Bianchi (2011) as an example.

To compute the competitive equilibrium, Bianchi (2011) uses a policy function it-
eration algorithm. His algorithm treats cases with binding or non-binding constraint
separately, while the toolbox uses the Lagrange multiplier on the constraint and the
complementary slackness condition to write these cases using the same system of equa-
tions. This seemingly minor detail is important in allowing the model to be written and
solved in the same general framework as other models. We also illustrate the use of the
adaptive grid method that automatically puts more points in regions of the state space
with more nonlinearity because of binding borrowing constraint.

4.4.1 Model Description

In a small-open economy, the representative consumer derives utility from the con-
sumption of tradable goods cT

t and of non-tradable goods cN
t according to

E
[ ∞

∑
t=0

βt c1−σ
t

1− σ

]
with the composite consumption

ct = A
(

cT
t , cN

t

)
≡ [ω(cT

t )
−η + (1−ω)(cN

t )
−η]
− 1

η ,

where ω ∈ (0, 1) and η > −1 are parameters. β ∈ (0, 1) is the discount factor, and σ is
the coefficient of relative risk-aversion. E is the expectation operator to integrate shocks
below.

Borrowing is via a state non-contingent bond in tradable goods at a constant world
interest r. The endowments of tradable goods yT

t and non-tradable goods yN
t follow

exogenous stochastic processes. The consumer faces the following sequential budget
constraint:

bt+1 + cT
t + pN

t cN
t = bt(1 + r) + yT

t + pN
t yt,

where bt+1 is the bond-holding determined at period t. Tradable good is the numeraire,
and pN

t is the equilibrium price of non-tradable goods, taken as given by consumers.
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A key feature of the model is that borrowing is subject to a borrowing constraint tied
to the non-tradable good price as follows:

bt+1 ≥ −(κN pN
t yN

t + κTyT
t ),

which says that the borrowing cannot exceed the sum of a fraction κN of the value of
non-tradable goods, plus a fraction κT of the value of tradable goods, with parameters
κN, κT > 0, determining the collateralizability of the non-tradable and tradable endow-
ments, respectively.

A sequential competitive equilibrium corresponds to stochastic sequences

{bt+1, cT
t , cN

t , ct, pN
t }∞

t=0

such that {bt+1, cT
t , cN

t } solve the households optimization problem and markets clear:

cN
t = yN

t ,

cT
t = yT

t + bt(1 + r)− bt+1.

Because the households’ maximization problem is a globally concave problem, the
first-order conditions are necessary and sufficient for optimality: there exists stochastic
processes for the Lagrange multiplier, {µt, λt}, such that, together with {bt+1, cT

t , cN
t },

the following conditions are satisfied:

pN
t =

(1−ω

ω

)( cT
t

cN
t

)η+1
,

λt = β(1 + r)Etλt+1 + µt,

µt
[
bt+1 + (κN pN

t yN
t + κTyT

t )
]
= 0, µt ≥ 0,

bt+1 + cT
t + pN

t cN
t = bt(1 + r) + yT

t + pN
t yN

t ,

where

λt = c−σ
t

∂A(cT
t , cN

t )

∂cT
t

= c−σ
t [ω(cT

t )
−η + (1−ω)(cN

t )
−η]
− 1

η−1
ω[cT

t ]
−η−1.

With these observations, the equilibrium in this economy can be represented in the
form (1) required to apply the toolbox.
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4.4.2 Computation

For computation, we use the exact parameters as in the benchmark calibration in
Bianchi (2011). The equilibrium can be input into the toolbox by discretizing the exoge-
nous endowments process yN

t and yT
t . Following the parameterization and discretization

used by Bianchi (2011), we discretize the joint process of (yN
t , yT

t ) into 16 states. The nat-
ural endogenous state variable of the economy is bt.

Like previous examples, a time step of policy iterations is to solve the equilibrium
system defined above, for each collocation point of exogenous and endogenous states,
taking the state transition function implicitly defined in λt+1(yN

t+1, yT
t+1, bt+1) as given.

After each time step, λt(yN
t , yT

t , bt) is compared with λt+1(yN
t+1, yT

t+1, bt+1) to check for
convergence under certain criteria.

While it is possible to specify an exogenous discrete grid for bt, since the model is
highly non-linear, we illustrate the use of function approximations with the adaptive grid
method provided by the toolbox, which automatically places more points in the region
of the state space that features a high degree of non-linearity.25 The equilibrium policy
functions for pN

t and bt+1, and the ergodic distribution of bt are presented in Figure 8.
As shown in the left panel, the policy functions are highly nonlinear: when the bor-

rowing constraint binds, the price of non-tradable goods declines sharply in the level of
exist borrowing; future borrowing declines, instead of increasing, as the economy goes
further in debt, implying current account reversals. If the borrowing constraint does
not bind, then the price movement is much milder as we vary the level of existing debt,
and current account reversals do not happen. The right panel displays the ergodic dis-
tribution of bond holdings, showing that non-linear regions do exist in the equilibrium
ergodic set and thus cannot be ignored. But due to precautionary motives, the frequency
of the economy being in these regions cannot be determined ex-ante, highlighting the
necessity of using a global solution method.

The markers on the policy functions indicate the grid points automatically placed by
the adaptive grid method and show that the method adds more points to the state space
where the policy and state transition functions become highly nonlinear. Importantly, the
method accommodates the possibility that these highly nonlinear regions differ across
exogenous states, as shown in the figure. This result illustrates the effectiveness of the
adaptive grid method for this class of models, as these highly nonlinear regions of state

25As described in the user manual on the toolbox’s website, users only need to specify one option in
the toolbox to switch to the adaptive grid method. The adaptive grid method is based on Ma and Zabaras
(2009) and Brumm and Scheidegger (2017), and features sparsity for multi-dimensional problems, and it
thus can accommodate models with a high-dimensional state space.
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(a) Policy Functions (b) The Ergodic Distribution of Bond

Figure 8: Ergodic Distribution and Policy Functions of Bianchi (2011)
Note: The policy functions are for exogenous states fixing yN

t to be the lowest of the 4 realiza-
tions, and yT

t to be the highest or lowest of the 4 realizations respectively. The markers indicate
the grid points automatically generated by the adaptive-grid method. The histogram is based
on 100 sample paths of 1000-period simulations, burning the first 500 periods of each path.

space cannot be determined ex-ante. Without the method, it would require very dense
exogenous grids or painstaking manual configurations.

4.4.3 Mapping into the General Setup

For the model in Bianchi (2011) described above, the correspondence with our general
setup of the toolbox is z = (yT, yN), s = (b), and x = (b′, cT, cN, c, µ, λ, pN).

4.5 Macroeconomic Implications of COVID-19 by Guerrieri et al (2020)

In this timely and important contribution, Guerrieri et al. (2020) analyze the effects
of large supply shocks such as shutdowns, layoffs, and firm exits due to COVID-19.
The authors show that in a two-sector model, these supply shocks can trigger changes
in aggregate demand larger than the shocks themselves, leading to a decrease in the
equilibrium interest rate. This is the case when the elasticity of substitution across sectors
is not too large and the inter-temporal elasticity of substitution is sufficiently high.

Their model is deterministic and the supply shock is a one time, unexpected shock.
They also assume maximally tight borrowing constraint. We extend their model to allow
for stochastic, recurrent shocks and more relaxed borrowing constraint. This extension
can be solved relatively easily using our toolbox. This extension shows that because these
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supply shocks are rare, the precautionary saving motive does not significantly change
the results in the original model with a one time unexpected shock. The recurrent shocks
lead to a very persistent reduction in the wealth of workers more directly affected by the
shocks.

4.5.1 The Model

We follow closely the notation in Guerrieri et al. (2020). The total population is
normalized to one, with a fraction φ of agents working in sector 1 and the remaining
fraction 1 − φ of agents working in section 2. We assume that workers are perfectly
specialized in their sector. Sector 1 is the contact-intensive sector that is directly affected
by the supply shock.

The labor endowment of workers in sector 2 is constant and is set to n̄, while the
labor endowment of workers in sector 1 follows a two-point Markov process with state
in {1, 2}, where 1 corresponds to normal times and 2 corresponds to pandemics. During
normal times, their labor endowment is n1t = n̄, while when a supply shock hits, their
labor endowment drops to n1t = δn̄ with δ < 1. In the COVID-19 example, sector 1 is
contact-intensive, and a fraction δ of its production is shut down when the pandemic
hits. On the other hand, sector 2 is unaffected. The transition matrix between these two
states is [

π1 1− π1

1− π2 π2

]
,

in which 1− π1 is a small probability for the economy to enter the supply-driven crisis,
and π2 is the probability for the crisis to last for one more period.

The production technology is linear in both sectors: Yjt = Njt for j = 1, 2. Competitive
firms in each sector j hire workers at wage Wjt and sell their products at price Pjt. Prices
are flexible, and given the market structure we have Pjt = Wjt. The consumer’s utility
function is

E0

[
∞

∑
t=0

βt C1−σ
t

1− σ

]
, (22)

in which Ct =
(

φρc1−ρ
1t + (1− φ)ρ c1−ρ

2t

) 1
1−ρ features constant elasticity of substitution

1/ρ between the two goods and constant intertemporal elasticity of substitution 1/σ.
As in Guerrieri et al. (2020), here we set good 2 to be the numeraire, i.e., P2t ≡ 1.
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Workers in sector j maximize (22) subject to

P1tc
j
1t + cj

2t +
aj

t+1
1 + rt

≤Wjtn
j
t + aj

t, (23)

where they allocate their labor income and bond holding from the previous period, aj
t

among consumption goods produced in the two sectors and bond holding into the next
period. Interest rate rt is determined competitively.

In addition, we assume that the workers are subject to the following borrowing con-
straint: aj

t+1 ≥ −Ā.
Denote sector j workers’ Lagrangian multiplier for the budget constraint (23) by βtλ

j
t

and the multiplier for the borrowing constraint by βtµ
j
t. The first-order conditions for

the workers’ optimal decision are:

λ
j
t =

(
Cj

t

)ρ−σ
(1− φ)ρ

(
cj

2t

)−ρ
,

P1t =

(
cj

1t/φ

cj
2t/ (1− φ)

)−ρ

, (24)

− λ
j
t

1 + rt
+ µ

j
t + βEt

(
λ

j
t+1

)
= 0, (25)

µ
j
t

(
aj

t+1 + Ā
)
= 0. (26)

We also have the market clearing conditions for bond and consumption good 2:

φa1
t+1 + (1− φ) a2

t+1 = 0,

φc1
2t + (1− φ) c2

2t = (1− φ) n̄.

The market clearing condition for consumption good 1 is implied by Walras’ law.
We use a1

t as the endogenous state variable and look for a recursive equilibrium as a
mapping from a1

t to the allocation and prices that satisfy the first-order conditions and
market clearing conditions above.

Notice that by the pricing equation (24), c1
1t

c2
1t
=

c1
2t

c2
2t

, which means that the consumption
shares of workers in sector 1 are the same between these two consumption goods. Denote
the consumption share of workers in sector 1 as c̃1t; then

c1
1t = c̃1tn1t, c2

1t = (1− c̃1t) φn1t/ (1− φ) ,

c1
2t = c̃1t (1− φ) n̄/φ, c2

2t = (1− c̃1t) n̄,
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which lead to
C1

t =
c̃1t

φ
Yt, and C2

t =
1− c̃1t

1− φ
Yt,

where Yt =
[
φn1−ρ

1t + (1− φ) n̄1−ρ
] 1

1−ρ , and

λ1
t =

(
c̃1t

φ
Yt

)−σ (Yt

n̄

)ρ

, and λ2
t =

(
1− c̃1t

1− φ
Yt

)−σ (Yt

n̄

)ρ

.

Overall, for each a1
t (and the exogenous state of the economy), the minimal equilib-

rium system can be represented by five unknowns, namely,
{

c̃1t, a1
t+1, µ1

t , µ2
t , rt+1

}
, and

can be solved by a system of five equations, namely, the budget of workers in sector 1,
equation (23), the FOC in equation (25), and the complementary-slackness condition in
equation (26) for j = 1, 2.

4.5.2 Calibration and Results

We use quarters for model periods and standard parameters in the literature. For
preferences, we use β = 0.99 as the quarterly discount factor. The inverse inter-temporal
elasticity of substitution is set at σ = 0.5 (strictly less than 1, as required by the analytical
results in Guerrieri et al. (2020) for supply shocks to trigger even larger aggregate de-
mand responses). We vary the inverse intra-temporal elasticity of substitution ρ between
0.1 and 0.9.

For labor market parameters, we normalize n̄ at 1. The share of the contact-intensive
sector φ is set to 0.2. We assume that when the pandemic shocks hit, labor supply
in the contact-intensive sector declines by 50% (roughly consistent with the increase in
unemployment claims in the U.S. during the pandemics). We assume that the pandemics
last for 2 quarters on average, equivalently, π2 = 0.5. π1 is chosen so that the economy
stays in pandemics in approximately 0.5% of the times (consistent with the historical
frequency reported in Jordà et al. (2020)). Borrowing limit Ā is set at 30% of the wage in
normal times, a standard value in the literature.

For the benchmark results, we use ρ = 0.75 > σ = 0.5. The upper panel in Figure
9(a) shows the interest rate as a function of the endogenous state variable a1

t in normal
times (z = 1) and during pandemics (z = 2). Interest rate is lower during pandemics,
which reflects the result in Guerrieri et al. (2020) that the aggregate demand response
outweighs the supply shock. In addition, the figure also shows that the effect is stronger
when the net worth of workers in the contact-sensitive sector is low. The lower panel
plots the ergodic distribution of bond holding of workers in sector 1. The possibility of
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pandemics leads to these workers’ precautionary saving, sometimes up to the borrowing
limit of workers in sector 2. However, the precautionary saving does not undo the results
in Guerrieri et al. (2020). Because this is a dynamic extension of the model, we can
study the dynamic responses of the economy to pandemic shocks. Figure 9(b) shows
the impulse responses of interest rate and the wealth of sector 1 workers to a pandemic
shock. While interest rate reverses relatively quickly to pre-pandemic level after the
shock, workers in sector 1 suffers from a persistent, long-lasting wealth lost.

(a) Interest Rate Policy Function and the Ergodic Distribution (b) Impulse Response Functions

Figure 9: Policy Function, Ergodic Distribution, and IRFs
Note: We use ρ = 0.75 > σ = 0.5 and other parameters described in the main text

To further investigate the robustness of the results in Guerrieri et al. (2020), Figure 10
plots the average interest rate before and after the pandemic shocks hit the economy as
we vary ρ. The figure shows that when ρ > σ (more precisely 1/ρ < 1/σ), interest rate
drops when the pandemic shock hits, while it rises when ρ < σ (1/ρ > 1/σ). This is
exactly the result emphasized in Guerrieri et al. (2020).

4.5.3 Mapping into the General Setup

For the extension of the model in Guerrieri et al. (2020) described above, the cor-
respondence with our general setup of the toolbox is z = (n1), and s = (a1), and
x =

(
c̃1, µ1, µ2, r

)
.
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Figure 10: Interest Rate before and after Pandemics
Note: We use σ = 0.5 and other parameters described in the main text. The dashed curve corresponds to
the interest rate when the shock switches from normal to pandemic, averaged in the model’s ergodic set.
The solid curve corresponds to the average interest rate prior to the period in which the pandemic shock
hits.

5 Heterogeneous Agent Models with Aggregate Shocks

The framework is more readily applicable to solving GDSGE models with a finite
number of agents, or, more precisely, a finite number of agent types. This is because in
these models, the equilibrium conditions can be represented as a system of a finite num-
ber of equations and unknowns. The solutions to these systems lie in finite-dimensional
spaces. The policy and transition functions are mappings from finite-dimensional state
spaces to these finite-dimensional spaces. In contrast, in fully heterogeneous agent in-
complete markets models à la Krusell and Smith (1998) with both idiosyncratic and
aggregate shocks, both state spaces, such as spaces of wealth distributions, and equilib-
rium objects, such as policy and value functions, are infinite-dimensional objects. This
point is emphasized in Cao (2020).

However, Cao (2020) shows that incomplete markets models with finite agent types
are useful special cases of the fully heterogeneous agent incomplete markets model in
Krusell and Smith (1998). In particular, the former corresponds to the latter in which
idiosyncratic shocks are perfectly persistent. We provide an explicit comparison between
the two models on the toolbox’s website. The dynamics of the aggregate variables in
the two models are similar. This comparison suggests that, in general, the solution
of the finite-agent models can be useful in understanding the properties of the fully
heterogeneous agent models and can be solved at low cost using the toolbox.

In addition, the toolbox can be used to solve the agents’ decision problem by observ-
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ing that given a conjectured law of motion for the aggregate capital, the households’
Euler equation, together with the complementary-slackness condition, is necessary and
sufficient for optimality:

u′(ct) = E
[
u′(ct+1)(1− δ + rt+1)

]
+ λt,

where λt is the Lagrangian multiplier on households’ borrowing constraint and rt+1 is
the rental rate of capital at t + 1. The toolbox can also be used to simulate the implied
dynamics of the cross-sectional wealth distribution and aggregate capital. Then, with
an additional fixed-point iteration on their laws of motion, which can be coded simply
in MATLAB, the toolbox solution can be used to solve for a recursive equilibrium. This
idea can be used to solve Krusell and Smith’s baseline model in less than 100 lines of our
toolbox code and 100 lines of MATLAB code. We also provide these codes, as well as the
implementation for Krusell and Smith’s model with heterogeneous discount factors, on
the toolbox’s website.

Similarly, we can use the toolbox to compute stationary recursive equilibrium in het-
erogeneous agent models without aggregate shocks such as Huggett (1993) and Aiyagari
(1994), and transitional path equilibrium in Huggett (1997). The codes for these models
are also available on the toolbox’s website.

6 Conclusion

We provide a unified framework and a toolbox for solving DSGE models using global
methods. The toolbox proves to work efficiently and robustly for a large class of highly
nonlinear models, covering macro-finance, international finance, and asset pricing mod-
els. In principle, any dynamic problems characterized by systems of equations and state
transition functions can readily fit in the toolbox, such as the decision rules in hetero-
geneous agent models (Huggett, 1993; Aiyagari, 1994; Krusell and Smith, 1998). The
toolbox uses a policy function iteration methods and hence can be used to solve for
stochastic transition paths as in Storesletten et al. (2019). Lastly, the toolbox generates
Monte-Carlo simulations from model solutions. These simulations can be used for model
estimation with the Generalized Method of Moments or Bayesian Estimation Methods.
This is the natural next step which we leave for future developments of the toolbox.
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Online Appendix

A The Design of the GDSGE Toolbox
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Figure 11: Toolbox Design and Implementations

In this section, we described in detail how the toolbox is designed and implemented.
The design of the toolbox is depicted in Figure 11. Users create and edit their own
gmod file that describes the dynamic equilibrium of their model in the general form
(1) of the general framework. Gmod stands for global model. The structure of the
gmod file is given in Subsection A.1. The gmod files can be uploaded to the toolbox’s
website, and the toolbox compiles the files into MATLAB script files and C++ dynamic
libraries that solve for recursive equilibria using policy function iterations and simulate
the equilibrium dynamics. The functions of the complied files, which consist of solving
system of equations, discretizing, and approximating policy functions, are described in
Subsection A.2

The MATLAB script files and C++ dynamic libraries should run locally on users’
computers. After they finish running, they return the policy and state transition func-
tions from converged time iterations and the Monte Carlo simulation samples.

A.1 User Inputs: the gmod Files

The toolbox asks users to provide gmod files that contain the equilibrium system
(1) of their models. In this subsection, we provide the description for a minimal gmod
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file such as that for the leading example in Section 2, and refer readers to the toolbox’s
website for a detailed user manual. A minimal gmod file should contain the following
components:

parameters. Exogenous parameters that do not vary across states or over time.
var_shock. Exogenous state variables z in system (1). These states need to be specified

as discretized points.26

shock_num. The number of discretized points for var_shock. For multidimensional
var_shock, this should be the size of the Cartesian products of the discretized sets for all
dimensions.

shock_trans. The Markov transition matrix for exogenous state variables.
var_state. Endogenous state variables s in system (1). The toolbox requires users to

specify the grid for each of these variables.27

var_policy. Policy variables x in system (1). For state variables with implicit laws of
motion, we include vectors of these variables in future states among the policy variables.

var_aux. Some policy variables can be directly computed as relatively simple, explicit
functions of other variables in x, s, x′, s′. We use the keyword var_aux for these variables.
We exclude them from the var_policy in order to reduce the number of equations and
unknowns to be solved in each policy function iteration.

var_interp. These are policy variables x that appear in equilibrium system (1) as future
states x′(z′). In the policy iteration at step n, x′(z′) can be evaluated by interpolating the
policy function solved in the last iteration, i.e., P (n−1)(z′, s′).28 Even though the general

26To accommodate exogenous continuous shocks such as AR(1) processes, treat continuous shocks as
endogenous state variables and approximate the shock processes with discretized innovations as exoge-
nous states.

27For function approximations using fixed-grid discretization such as splines, the grids will be used by
default; for the adaptive sparse grid method, the two end points of the grids will be used as the range of
the state variables.

28As emphasized in Section 3.2, our framework allows for state variables with implicit state transitions,
denoted by ¯̄s following the notation in the section. This is made possible by including the future values of
these state variables, ¯̄s′, as unknowns and supplying additional consistency equations that ¯̄s′ need to satisfy
in equilibrium. Therefore, it only requires a single-step interpolation to evaluate P (n−1)(z′, (s̄′, ¯̄s′)) and ob-
tain future policy variables x′ that are necessary in evaluating the current equation system. An alternative
approach to deal with implicit state transitions, adopted by Elenev et al. (2021) for example, is to first use
the transition function T (n−1)(z, z′, s) solved in the last iteration to forecast ¯̄s′ = T (n−1)

¯̄s′ (z, z′, s), and then
evaluate P (n−1)(z′, (s̄′, ¯̄s′)) to get future policy variables x′. This alternative approach can be implemented
in our toolbox by declaring future values of these state variables as var_interp, and interpolate T (n−1) and
P (n−1) sequentially as described above. This alternative approach, however, does not solve some of our
examples. The reason is outlined in the introduction and should be clearer now—this alternative approach
directly uses the last-period transition function T (n−1) to evaluate ¯̄s′ as a function of current state variables
only, and does not allow the current policy variables to affect ¯̄s′. In the context of the Heaton and Lucas
(1996) example, this approach basically does not allow the current choice of bonds and shares to affect the
future wealth share, which is slightly at odds with equilibrium properties. However, using dampening,
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formulation allows any policy variable in x to appear as a future state, in practice not all
of them are necessary. Here, we only include those variables that need to be interpolated
in the policy function iteration steps. When the time iteration converges, var_interp also
delivers the state transition functions.

The updates of each var_interp after each time iteration should be specified after
declaring the var_interp. The updates can use functions of solutions of policy variables
in var_policy or var_aux, combining any parameters or exogenous states.

The model block. The model definition is enclosed in a block starting with model; and
ending with end;. The model block should include an equations block, in which each
line represents one equation of the equilibrium system (1) to be solved. Other variables
required to be evaluated in these equations should be put into the model block preceding
the equations block. A variable followed by a prime (’) indicates that the variable is a
vector of length shock_num, and it is usually used to represent future states, z′ or s′, or
future policies, x′, in the notation for the general framework. The model block can use
the following built-in functions.

GDSGE_EXPECT. Calculate the conditional expectation of the model objects using the
default transition matrix specified in shock_trans. This function can also accommodate
a different transition matrix than shock_trans so that the toolbox can be used to solve
models with heterogeneous beliefs (see Cao (2018) and the associated gmod file in the
toolbox’s website for an example).

GDSGE_INTERP_VEC. Evaluate function approximations specified in var_interp. This
function, when followed by a prime (’), indicates that the approximation is evaluated for
a vector of arguments of length shock_num; accordingly, the input and output variables in
this case should also be followed by a prime. The output is thus a vector corresponding
to s′(z′) or x′(z′) in system (1) for all possible realizations of exogenous states z′.

The simulate block. This optional block specifies the Monte Carlo simulations after
the convergence of time iterations. It should specify num_samples for the number of
sample paths, num_periods for the number of simulation periods of each path, initial
for initial values of endogenous and exogenous states, var_simu for the variables to be
recorded in the simulation, and the transitions for each endogenous state (the transition
for exogenous states are handled automatically by the toolbox).

By default, the simulation resolves the system of equations (with s′(z′) and x′(z′)
given by the converged policy and state transition functions) at each time step. This min-
imizes numerical errors within a time step. We also implement the conventional and fast,

the method can still solve Heaton and Lucas’s model with reasonable accuracy. We provide its GDSGE
implementation on the toolbox’s website.
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albeit less accurate, simulation method based on interpolating the policy and state tran-
sition functions directly. To use this method, the users should specify SIMU_INTERP=1
and declare interpolated variables in var_output. See the user manual on the toolbox’s
website for details.

These simulations are important to compute stationary recursive equilibria, i.e., re-
cursive equilibria with an ergodic distribution over the state variables, from which the
model moments are calculated (the rigorous definition is provided in Duffie et al. (1994)
and Cao (2020)). They can also be used to calculate nonlinear impulse response func-
tions (see Cao and Nie (2017) for example) to understand the transmission mechanisms,
or to estimate the models.

A.2 Implementations

Once a gmod file is processed by the toolbox, it returns MATLAB files that can be
run locally in the user’ computer to solve and simulate their model.

General Implementations The gmod file is first parsed into an internal model struc-
ture, based on which the toolbox generates the C++ and MATLAB source codes. The
toolbox then compiles the C++ source code to a dynamic library that MATLAB can call.
All the actual computations are implemented in the native C++ code to achieve maxi-
mum performance and are contained in the dynamic library, while the MATLAB script
file provides a convenient interface to print, debug, and specify options. To reach max-
imum computation efficiency, the actual calculations including equation solver, inter-
polation, automatic differentiation, and parallel computation, are implemented in C++.
Below we discuss each of them in detail.29

Equation Solver The time iteration step requires solving the systems of equations
(2) at collocation points in the state space. Since evaluating the function to be solved is
rather costly, it is crucial that we design an efficient equation solver. We implement the
Powell’s dogleg algorithm augmented with an projection-based interior-point method to
respect the box constraints (Powell, 1970; Coleman and Li, 1996; Bellavia et al, 2012).30

We also provide interfaces to commercial optimization software SNOPT and Knitro
for users with licenses.31 The equation solvers are supplemented with randomization

29For each of the implementation details, we also provide a separate library when possible so that they
can be used independently of the toolbox.

30It is important that the equation solver can respect box constraints for unknowns, as the toolbox needs
to deal with inequality conditions such as complementary slackness conditions where the unknowns are
imposed to have a sign restriction.

31Our own implementation of the algorithm turns out to be more efficient both in terms of number
of function calls and overhead, for a large class of test problems. This is partly because the algorithm
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over initial guesses at each collocation point.
Automatic Differentiation Since we use a gradient-based equation solver and the

function evaluation is expensive, it is crucial to calculate the gradients efficiently. We
adapt the automatic differentiation method implemented by Adept (Hogan, 2014). This
library utilizes the expression template feature of C++, and hence much of the differ-
entiation is accomplished at compile time, bringing the computational cost on par with
evaluating analytical gradients.

Interpolation The time iteration step (2) involves function approximations because
(z′, s′(z′)) might fall outside the set of collocation points, C(n). The default option is
multidimensional linear interpolation or splines. We also implement a multidimensional
adaptive sparse grid method with hierarchical hat basis functions developed in Ma and
Zabaras (2009) and recently applied in economic applications by Brumm and Scheideg-
ger (2017). We provide analytical gradients to these approximation procedures, which
complement the automatic differentiation method to achieve maximum performance.

Parallel Computation Within a policy function iteration, the systems of equations
(2) are independent of each other, while they share a large chunk of data for function
approximations. To utilize this structure, we use multi-threaded parallel computation,
thus all problems share a same block of memory for function approximation parameters,
minimizing the overhead for data communications. When we evaluate the interpolations
with splines or the adaptive sparse grid method, we design the data structure such that
it can exploit the single-instruction-multiple-data (SIMD) CPU instructions. This design
of parallelism turns out to be efficient—the program executes fast on a single processor
and scales well with the number of CPU cores.

B Example Toolbox Codes

In this appendix, we provide the gmod files for the models discussed in Section 4.
These codes can also be downloaded from the toolbox’s website, together with the gmod
codes for many other models.

we implement is designed for solving equations, while these commercial softwares target a more general
class of optimization problems. Besides, the equation solver we implement targets small to medium scale
problems (less than 1000 unknowns), which are adequate for most applications in economics while these
commercial softwares accommodate much larger problems and thus incurs more overhead.
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B.1 Mendoza (2010)
1 % Parameters

2 parameters gamma sigma omega beta alpha eta delta a phi kappa tau;

3 parameters flow_scale;

4
5 beta = 0.92; % Discount factor

6 sigma = 2; % CRRA

7 omega = 1.846; % Labor elasticity

8 gamma = 0.306; % Capital share

9 alpha = 0.592; % Labor share

10 eta = 0.102; % Intermediate share

11 delta = 0.088; % Depreciation rate

12 a = 2.75; % Capital adjustment cost

13 phi = 0.26; % Working capital exernal finance share

14 kappa = 0.2; % Tightness of collateral constraint

15 tau = 0.17; % Consumption tax

16
17 flow_scale = 1e4; % Budget normalization factor

18
19 % Toolbox options

20 PrintFreq = 10;

21 SaveFreq = inf;

22 SIMU_RESOLVE=0; SIMU_INTERP=1; % Use interp for fast simulation

23
24 % Shocks

25 var_shock A R p;

26 shock_num = 8;

27 % Markov process of shocks (from Mendoza AER (2010):

28 shock_trans = [0.51363285, 0.16145114, 0.07773228, 0.02443373, 0.16145114, 0.03201937, 0.02443373, 0.00484575;...

29 0.03201937, 0.64306463, 0.00484575, 0.09732026, 0.16145114, 0.03201937, 0.02443373, 0.00484575;...

30 0.07773228, 0.02443373, 0.51363285, 0.16145114, 0.02443373, 0.00484575, 0.16145114, 0.03201937;...

31 0.00484575, 0.09732026, 0.03201937, 0.64306463, 0.02443373, 0.00484575, 0.16145114, 0.03201937;...

32 0.03201937, 0.16145114, 0.00484575, 0.02443373, 0.64306463, 0.03201937, 0.09732026, 0.00484575;...

33 0.03201937, 0.16145114, 0.00484575, 0.02443373, 0.16145114, 0.51363285, 0.02443373, 0.07773228;...

34 0.00484575, 0.02443373, 0.03201937, 0.16145114, 0.09732026, 0.00484575, 0.64306463, 0.03201937;...

35 0.00484575, 0.02443373, 0.03201937, 0.16145114, 0.02443373, 0.07773228, 0.16145114, 0.51363285];

36 AMean = 7 % Scale to match average output with SCU preference in Mendoza (2010)

37 A = AMean*[0.986595988257; 1.013404011625; 0.986595988257; 1.013404011625; 0.986595988257; 1.013404011625; 0.986595988257;

1.013404011625];

38 R = [1.064449652804; 1.064449652804; 1.064449652804; 1.064449652804; 1.106970405389; 1.106970405389; 1.106970405389; 1.106970405389];

39 p = [0.993455002946; 0.993455002946; 1.062225686321; 1.062225686321; 0.993455002946; 0.993455002946; 1.062225686321; 1.062225686321];

40
41 % State

42 v a r _ s t a t e cTilde k;

43
44 cTilde_min = 100;

45 cTilde_max = 300;

46 cTilde_shift = 10;

47 cTilde_pts = 30;

48 cTilde = linspace(cTilde_min,cTilde_max,cTilde_pts);

49
50 k_min = 600;

51 k_max = 900;

52 k_shift = 10;

53 k_pts = 30;

54 k = linspace(k_min,k_max,k_pts);

55
56 % Initial period

57 var_policy_init L v;

58 inbound_init L 0 1000;

59 inbound_init v 0 1000;

60
61 var_aux_init flow q d;

62
63 model_init;
64 % Some trivial equations

65 w = L^(omega-1)*(1+tau);

66 Y = A* k^gamma * L^alpha * v^eta;

67 F_1 = gamma*Y/k;

68 F_2 = alpha*Y/L;

69 F_3 = eta*Y/v;

70
71 NL = L^omega/omega;
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72 flow = Y - p*v - phi*(R-1)*(w*L+p*v) - NL*(1+tau);

73
74 lambda = cTilde^(-sigma);

75 q = 1;

76 d = F_1-delta;

77
78 equations;
79 F_2 - w*(1+phi*(R-1));

80 F_3 - p*(1+phi*(R-1));

81 end;
82 end;
83
84 % Interpolation

85 var_interp flow_interp q_plus_d_interp;

86 % Initial

87 i n i t i a l flow_interp flow/flow_scale;

88 i n i t i a l q_plus_d_interp q + d;

89 % Transition

90 flow_interp = flow/flow_scale;

91 q_plus_d_interp = q + d;

92
93 % Policy

94 ADAPTIVE_FACTOR = 1.5;

95 var_policy L v mu nbNext kNext cTildeNext[8];

96 inbound L 0 1000 adaptive(ADAPTIVE_FACTOR);

97 inbound v 0 1000 adaptive(ADAPTIVE_FACTOR);

98 inbound mu 0 1;

99 inbound nbNext 0 2000 adaptive(ADAPTIVE_FACTOR);

100 inbound kNext 0 1000 adaptive(ADAPTIVE_FACTOR);

101 inbound cTildeNext 0.0 500 adaptive(ADAPTIVE_FACTOR);

102
103 % Extra variables returned

104 var_aux lambda flow q d c Y bNext b inv nx gdp b_gdp nx_gdp lev wkcptl;

105 var_output c Y cTildeNext q mu inv kNext bNext b v nx gdp b_gdp nx_gdp lev wkcptl;

106
107 model;
108 % Output and marginal product

109 Y = A* k^gamma * L^alpha * v^eta;

110 F_1 = gamma*Y/k;

111 F_2 = alpha*Y/L;

112 F_3 = eta*Y/v;

113 w = L^(omega-1)*(1+tau);

114
115 % Some calculations

116 lambda = cTilde^(-sigma)/(1+tau);

117 inv = kNext - k*(1-delta) + a/2*(kNext-k)^2/k;

118 q = 1+a*(kNext-k)/k;

119 d = F_1 - delta + a/2*(kNext-k)^2/(k^2);

120 qb = 1/R;

121
122 % Transform back bNext

123 bNext = (nbNext + phi*R*(w*L+p*v) - kappa*q*kNext)/qb;

124
125 % Interpolation

126 [flow_future’,q_plus_d_future’] = GNDSGE_INTERP_VEC’(cTildeNext’,kNext);

127 flow_future’ = flow_future’*flow_scale;

128
129 % some named equations

130 lambda_future’ = cTildeNext’^(-sigma)/(1+tau);

131 euler_bond_residual = -1 + mu + beta*GNDSGE_EXPECT{lambda_future’}/(qb*lambda);

132 euler_capital_residual = -1 + kappa*mu + beta*GNDSGE_EXPECT{lambda_future’*q_plus_d_future’}/(q*lambda);

133 % consistency equation

134 cTilde_consis’ = flow_future’ + bNext - cTildeNext’*(1+tau);

135
136 % Extra variables returned

137 NL = L^omega/omega;

138 flow = Y - p*v - phi*(R-1)*(w*L+p*v) - qb*bNext - inv - NL*(1+tau);

139 c = cTilde + NL;

140 b = cTilde*(1+tau) - flow;

141 gdp = Y-p*v;

142 b_gdp = b / gdp;

143 nx = qb*bNext - b + phi*(R-1)*(w*L+p*v);

144 nx_gdp = nx / gdp;

145 lev = (qb*bNext-phi*R*(w*L+p*v)) / (q*kNext);
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146 wkcptl = phi*(w*L+p*v);

147
148 equations;
149 euler_bond_residual;

150 nbNext*mu;

151 euler_capital_residual;

152 F_2 - w*(1+phi*(R-1)+mu*phi*R);

153 F_3 - p*(1+phi*(R-1)+mu*phi*R);

154 cTilde_consis’;

155 end;
156 end;
157
158 simulate;
159 num_periods = 50000;

160 num_samples = 24;

161 i n i t i a l cTilde 200;

162 i n i t i a l k 800;

163 i n i t i a l shock ceil(shock_num/2);

164
165 var_simu c Y q inv b mu bNext v nx gdp b_gdp nx_gdp lev wkcptl;

166 cTilde’ = cTildeNext’;

167 k’ = kNext;

168 end;

B.2 Barro et al. (2017)

1 % Parameters

2 parameters rho nu mu gamma1 gamma2;

3 period_length=0.25; % a quarter

4 rho = 0.02*period_length; % time preference

5 nu = 0.02*period_length; % replacement rate

6 mu = 0.5; % population share of agent 1

7 P = 1-exp(-.04*period_length); % disaster probability

8 B = -log(1-.32); % disaster size

9 g = 0.025*period_length; % growth rate

10 gamma1 = 3.1;

11 gamma2 = 50;

12
13 % Shocks

14 var_shock yn;

15 shock_num = 2;

16 shock_trans = [1-P,P;

17 1-P,P];

18 yn = exp([g,g-B]);

19
20 % States

21 v a r _ s t a t e omega1;

22 Ngrid = 501;

23 omega1 = [linspace(0,0.03,200),linspace(0.031,0.94,100),linspace(0.942,0.995,Ngrid-300)];

24
25 p = (1-nu)/(rho+nu);

26 pn = p;

27 Re_n = (1+pn)*yn/p;

28 % Endogenous variables, bounds, and initial values

29 var_policy shr_x1 Rf omega1n[2]

30 inbound shr_x1 0 1; % agent 1’s equity share

31 inbound Rf Re_n(2) Re_n(1); % risk-free rate

32 inbound omega1n 0 1.02; % state next period

33
34 % Other equilibrium variables

35 var_aux x1 x2 K1 b1 c1 c2 log_u1 log_u2 expectedRe;

36
37 % Implicit state transition functions

38 var_interp log_u1future log_u2future;

39 log_u1future = log_u1;

40 log_u2future = log_u2;

41 i n i t i a l log_u1future (rho+nu)/(1+rho)*log((rho+nu)/(1+rho)) + (1-nu)/(1+rho)*log((1-nu)/(1+rho));

42 i n i t i a l log_u2future (rho+nu)/(1+rho)*log((rho+nu)/(1+rho)) + (1-nu)/(1+rho)*log((1-nu)/(1+rho));

43
44 model;
45 c1 = (rho+nu)/(1+rho);

46 c2 = (rho+nu)/(1+rho);
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47 p = (1-nu)/(rho+nu);

48 pn = p;

49
50 log_u1n’ = log_u1future’(omega1n’);

51 log_u2n’ = log_u2future’(omega1n’);

52 u1n’ = exp(log_u1n’);

53 u2n’ = exp(log_u2n’);

54
55 Re_n’ = (1+pn)*yn’/p;

56 x1 = shr_x1*(Rf/(Rf - Re_n(2)));

57
58 % Market clearing for bonds:

59 b1 = omega1*(1-x1)*(1-c1)*(1+p);

60 b2 = -b1;

61 x2 = 1 - b2/((1-omega1)*(1-c2)*(1+p));

62 K1 = x1*(1-c1)*omega1*(1+p)/p;

63 K2 = x2*(1-c2)*(1-omega1)*(1+p)/p;

64
65 R1n’ = x1*Re_n’ + (1-x1)*Rf;

66 R2n’ = x2*Re_n’ + (1-x2)*Rf;

67
68 % Agent 1’s FOC wrt equity share:

69 eq1 = GDSGE_EXPECT{Re_n’*u1n’^(1-gamma1)*R1n’^(-gamma1)} / GDSGE_EXPECT{Rf*u1n’^(1-gamma1)*R1n’^(-gamma1)} - 1;

70
71 % Agent 2’s FOC wrt equity share:

72 log_u2n_R2n_gamma’ = log_u2n’*(1-gamma2) - log(R2n’)*gamma2;

73 min_log_u2n_R2n_gamma = GDSGE_MIN{log_u2n_R2n_gamma’};
74 log_u2n_R2n_gamma_shifted’ = log_u2n_R2n_gamma’ - min_log_u2n_R2n_gamma;

75 eq2 = GDSGE_EXPECT{Re_n’*exp(log_u2n_R2n_gamma_shifted’)} / GDSGE_EXPECT{Rf*exp(log_u2n_R2n_gamma_shifted’)} - 1;

76
77 % Consistency for omega:

78 omega_future_consis’ = K1 - nu*(K1-mu) + (1-nu)*Rf*b1/(yn’*(1+pn)) - omega1n’;

79
80 % Update the utility functions:

81 ucons1 = ((rho+nu)/(1+rho))*log(c1) + ((1-nu)/(1+rho))*log(1-c1);

82 ucons2 = ((rho+nu)/(1+rho))*log(c2) + ((1-nu)/(1+rho))*log(1-c2);

83 log_u1 = ucons1 + (1-nu)/(1+rho)/(1-gamma1)*log(GDSGE_EXPECT{(R1n’*u1n’)^(1-gamma1)});
84 log_u2 = ucons2 + (1-nu)/(1+rho)/(1-gamma2)*( log(GDSGE_EXPECT{R2n’*exp(log_u2n_R2n_gamma_shifted’)}) + min_log_u2n_R2n_gamma );

85
86 expectedRe = GDSGE_EXPECT{Re_n’};
87
88 equations;
89 eq1;

90 eq2;

91 omega_future_consis’;

92 end;
93 end;
94
95 simulate;
96 num_periods = 10000;

97 num_samples = 50;

98 i n i t i a l omega1 .67;

99 i n i t i a l shock 1;

100
101 var_simu Rf K1 b1 expectedRe;

102
103 omega1’ = omega1n’;

104 end;

B.3 Guvenen (2009)

1 % Parameters

2 parameters beta alpha rhoh rhon theta delta mu xsi chi a1 a2 Kss Bbar bn_shr_lb bn_shr_ub varianceScale;

3
4 beta = 0.9966; % discount factor

5 alpha = 6; % risk aversion

6 rhoh = 1/.3; % inv IES for stockholders

7 rhon = 1/.1; % inv IES for non-stockholders

8 theta = .3; % capital share

9 delta = .0066; % depreciation rate

10 mu = .2; % participation rate

11 xsi = .4; % adjustment cost coefficient
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12 chi = .005; % leverage ratio

13 a1 = (((delta^(1/xsi))*xsi)/(xsi-1));

14 a2 = (delta/(1-xsi));

15 Kss = ((1/beta-1+delta)/theta)^(1/(theta-1));

16 Bbar = -0.6*(1-theta)*Kss^theta; %borrowing constraint

17 varianceScale = 1e4;

18
19 TolEq = 1e-4;

20 INTERP_ORDER = 4; EXTRAP_ORDER = 4;

21 PrintFreq = 100;

22 SaveFreq = inf;

23
24 % Shocks

25 var_shock Z;

26 shock_num = 15;

27 phi_z = 0.984; % productivity AR(1)

28 mu_z = 0;

29 sigma_e = 0.015/(1+phi_z^2+phi_z^4).^0.5;

30 [z,shock_trans,~]=tauchen(shock_num,mu_z,phi_z,sigma_e,2);

31 Z = exp(z);

32
33 % States

34 v a r _ s t a t e K bn_shr;

35 K_pts = 10;

36 K = exp(linspace(log(.84*Kss),log(1.2*Kss),K_pts));

37
38 bn_shr_lb = (1-mu)*Bbar/(chi*Kss);

39 bn_shr_ub = (chi*Kss - mu*Bbar)/(chi*Kss);

40 b_pts = 30;

41 bn_shr = linspace(bn_shr_lb,bn_shr_ub,b_pts);

42
43 % Last period

44 var_policy_init c_h c_n;

45
46 inbound_init c_h 1e-6 100;

47 inbound_init c_n 1e-6 100;

48
49 var_aux_init Y W vh vn vhpow vnpow Ps Pf Div Eulerstock Eulerbondh Eulerbondn Inv dIdK Eulerf;

50
51 model_init;
52 Y = Z*(K^theta);

53 W = (1-theta)*Z*(K^theta);

54 resid1 = 1 - (W + (bn_shr*chi*Kss/(1-mu)))/c_n; % c_n: individual consumption

55 resid2 = 1 - (W + (Div/mu) + ((1-bn_shr)*chi*Kss/mu))/c_h; % c_h: individual consumption

56 vh = ((1-beta)*(c_h^(1-rhoh)))^(1/(1-rhoh));

57 vn = ((1-beta)*(c_n^(1-rhon)))^(1/(1-rhon));

58 vhpow = vh^(1-alpha);

59 vnpow = vn^(1-alpha);

60 Pf = 0;

61 Ps = 0;

62 Div = Y - W - (1-Pf)*chi*Kss; % investment is zero

63
64 Eulerstock = (vh^(rhoh-alpha))*(c_h^-rhoh)*(Ps + Div);

65 Eulerbondh = (vh^(rhoh-alpha))*(c_h^-rhoh);

66 Eulerbondn = (vn^(rhon-alpha))*(c_n^-rhon);

67
68 Inv = 0;

69 Knext = 0;

70 dIdK = (Inv/K) - (1/a1)*(xsi/(xsi-1))*(Inv/(K*((1/a1)*((Knext/K)-(1-delta)-a2))))*(Knext/K);

71 Eulerf = (vh^(rhoh-alpha))*(c_h^-rhoh)*(theta*Z*(K^(theta-1)) - dIdK);

72
73 equations;
74 resid1;

75 resid2;

76 end;
77 end;
78
79 var_interp EEulerstock_interp EEulerbondh_interp EEulerbondn_interp EEulerf_interp Evh_interp Evn_interp EPD_interp EPD_square_interp;

80 i n i t i a l EEulerstock_interp shock_trans*reshape(Eulerstock,shock_num,[]);

81 i n i t i a l EEulerbondh_interp shock_trans*reshape(Eulerbondh,shock_num,[]);

82 i n i t i a l EEulerbondn_interp shock_trans*reshape(Eulerbondn,shock_num,[]);

83 i n i t i a l EEulerf_interp shock_trans*reshape(Eulerf,shock_num,[]);

84 i n i t i a l Evh_interp shock_trans*reshape(vhpow,shock_num,[]);

85 i n i t i a l Evn_interp shock_trans*reshape(vnpow,shock_num,[]);
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86 i n i t i a l EPD_interp shock_trans*reshape(Div,shock_num,[]);

87 i n i t i a l EPD_square_interp shock_trans*reshape(Div.^2,shock_num,[]) / varianceScale;

88
89 EEulerstock_interp = shock_trans*Eulerstock;
90 EEulerbondh_interp = shock_trans*Eulerbondh;
91 EEulerbondn_interp = shock_trans*Eulerbondn;
92 EEulerf_interp = shock_trans*Eulerf;
93 Evh_interp = shock_trans*vhpow;
94 Evn_interp = shock_trans*vnpow;
95 EPD_interp = shock_trans*(Ps+Div);
96 EPD_square_interp = shock_trans*(Ps+Div).^2 / varianceScale;

97
98 % Endogenous variables, bounds, and initial values

99 var_policy c_h c_n Ps Pf Inv bn_shr_next lambdah lambdan;

100
101 inbound c_h 1e-3 100;

102 inbound c_n 1e-3 100;

103 inbound Ps 1e-3 500;

104 inbound Pf 1e-3 10;

105 inbound Inv 1e-9 100;

106 inbound bn_shr_next bn_shr_lb bn_shr_ub;

107 inbound lambdah 0 2;

108 inbound lambdan 0 2;

109
110 % Other equilibrium variables

111 var_aux Y W b_h b_n Div dIdKp Eulerstock Eulerbondh Eulerbondn dIdK Eulerf vhpow vnpow omega PDratio Rs R_ep vh vn Knext std_ExcessR

SharpeRatio;

112
113 model;
114 Y = Z*(K^theta); % output

115 W = (1-theta)*Z*(K^theta); % Wage = F_l

116 Div = Y - W - Inv - (1-Pf)*chi*Kss; % dividends

117
118 Knext = (1-delta)*K + (a1*((Inv/K)^((xsi-1)/xsi))+a2)*K;

119 dIdKp = (1/a1)*(xsi/(xsi-1))*(Inv/(K*((1/a1)*((Knext/K)-(1-delta)-a2))));

120
121 b_h = (1-bn_shr)*chi*Kss/mu;

122 b_n = bn_shr*chi*Kss/(1-mu);

123
124 [EEulerstock_future,EEulerbondh_future,EEulerbondn_future,EEulerf_future,Evh_future,Evn_future,EPD_future,EPD_square_future] =

GDSGE_INTERP_VEC(shock,Knext,bn_shr_next);
125 EPD_square_future = EPD_square_future*varianceScale;

126
127 vh = ((1-beta)*(c_h^(1-rhoh)) + beta*(Evh_future^((1-rhoh)/(1-alpha))))^(1/(1-rhoh));

128 vn = ((1-beta)*(c_n^(1-rhon)) + beta*(Evn_future^((1-rhon)/(1-alpha))))^(1/(1-rhon));

129
130 Eulerstock = (vh^(rhoh-alpha))*(c_h^-rhoh)*(Ps + Div);

131 Eulerbondh = (vh^(rhoh-alpha))*(c_h^-rhoh);

132 Eulerbondn = (vn^(rhon-alpha))*(c_n^-rhon);

133
134 dIdK = (Inv/K) - (1/a1)*(xsi/(xsi-1))*(Inv/(K*((1/a1)*((Knext/K)-(1-delta)-a2))))*(Knext/K);

135 Eulerf = (vh^(rhoh-alpha))*(c_h^-rhoh)*(theta*Z*(K^(theta-1)) - dIdK);

136
137 vhpow = vh^(1-alpha);

138 vnpow = vn^(1-alpha);

139
140 omega = (Ps+Div+ mu*b_h)/(Ps+Div+chi*Kss);

141 PDratio = Ps/Div;

142 Rs = EPD_future/Ps;

143 R_ep = Rs - 1/Pf;

144 % The following inline implements

145 % std_ExcessR = (GDSGE_EXPECT{(PD_future’/Ps - Rs)^2})^0.5;

146 std_ExcessR = (EPD_square_future/(Ps^2) + Rs^2 - 2*EPD_future*Rs/Ps)^0.5;

147 SharpeRatio = R_ep/std_ExcessR;

148
149 % Equations:

150 err_bdgt_h = 1 - (W + (Div/mu) + b_h - Pf*(chi*Kss*(1-bn_shr_next)/mu))/c_h; % these are individual consumptions

151 err_bdgt_n = 1 - (W + b_n - Pf*(bn_shr_next*chi*Kss/(1-mu)))/c_n;

152 foc_stock = 1 - (beta*EEulerstock_future*(Evh_future^((alpha-rhoh)/(1-alpha))))/((c_h^(-rhoh))*Ps);

153 foc_bondh = 1 - (beta*EEulerbondh_future*(Evh_future^((alpha-rhoh)/(1-alpha))) + lambdah)/((c_h^(-rhoh))*Pf);

154 foc_bondn = 1 - (beta*EEulerbondn_future*(Evn_future^((alpha-rhon)/(1-alpha))) + lambdan)/((c_n^-rhon)*Pf);

155 foc_f = 1 - (beta*EEulerf_future*(Evh_future^((alpha-rhoh)/(1-alpha))))/((c_h^(-rhoh))*dIdKp);

156
157 slack_bn = lambdan*(bn_shr_next - bn_shr_lb); %mun_lw*bn_shr_next;
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158 slack_bh = lambdah*(bn_shr_ub - bn_shr_next); %mun_up*(1-bn_shr_next);

159
160 equations;
161 err_bdgt_h;

162 err_bdgt_n;

163 foc_stock;

164 foc_bondh;

165 foc_bondn;

166 foc_f;

167 slack_bn;

168 slack_bh;

169 end;
170
171 end;
172
173 simulate;
174 num_periods = 10000;

175 num_samples = 100;

176
177 i n i t i a l K Kss;

178 i n i t i a l bn_shr 0.5;

179 i n i t i a l shock 2;

180
181 var_simu Y c_h c_n Inv Ps Div Pf bn_shr_next Knext omega PDratio Rs R_ep SharpeRatio std_ExcessR;

182
183 K’ = Knext;

184 bn_shr’ = bn_shr_next;

185 end;

B.4 Bianchi (2011)

1 % Toolbox options

2 USE_ASG=1; USE_SPLINE=0;

3 AsgMaxLevel = 10;

4 AsgThreshold = 1e-4;

5
6 % Parameters

7 parameters r sigma eta kappaN kappaT omega beta;

8 r = 0.04;

9 sigma = 2;

10 eta = 1/0.83 - 1;

11 kappaN = 0.32;

12 kappaT = 0.32;

13 omega = 0.31;

14 beta = 0.91;

15
16 % States

17 v a r _ s t a t e b;

18 bPts = 101;

19 bMin=-0.5;

20 bMax=0.0;

21 b=linspace(bMin,bMax,bPts);

22
23 % Shocks

24 var_shock yT yN;

25 yPts = 4;

26 shock_num=16;

27
28 yTEpsilonVar = 0.00219;

29 yNEpsilonVar = 0.00167;

30 rhoYT = 0.901;

31 rhoYN = 0.225;

32
33 [yTTrans,yT] = markovappr(rhoYT,yTEpsilonVar^0.5,1,yPts);

34 [yNTrans,yN] = markovappr(rhoYN,yNEpsilonVar^0.5,1,yPts);

35
36 shock_trans = kron(yNTrans,yTTrans);

37 [yT,yN] = ndgrid(yT,yN);

38 yT = exp(yT(:)’);

39 yN = exp(yN(:)’);

40
41 % Define the last-period problem
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42 var_policy_init dummy;

43 inbound_init dummy -1.0 1.0;

44
45 var_aux_init c lambda;

46 model_init;
47 cT = yT + b*(1+r);

48 cN = yN;

49 c = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta);

50 partial_c_partial_cT = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta-1) * omega * cT^(-eta-1);

51 lambda = c^(-sigma)*partial_c_partial_cT;

52
53 equations;
54 0;

55 end;
56 end;
57
58 % Implicit state transition functions

59 var_interp lambda_interp;

60 i n i t i a l lambda_interp lambda;

61 lambda_interp = lambda;

62
63 % Endogenous variables, bounds, and initial values

64 var_policy nbNext mu cT pN;

65 inbound nbNext 0.0 10.0;

66 inbound mu 0.0 1.0;

67 inbound cT 0.0 10.0;

68 inbound pN 0.0 10.0;

69
70 var_aux c lambda bNext;

71 var_output bNext pN;

72
73 model;
74 % Non tradable market clear

75 cN = yN;

76
77 % Transform variables

78 bNext = nbNext - (kappaN*pN*yN + kappaT*yT);

79 % Interp future values

80 lambdaFuture’ = lambda_interp’(bNext);

81
82 % Calculate Euler residuals

83 c = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta);

84 partial_c_partial_cT = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta-1) * omega * cT^(-eta-1);

85 lambda = c^(-sigma)*partial_c_partial_cT;

86 euler_residual = 1 - beta*(1+r) * GDSGE_EXPECT{lambdaFuture’}/lambda - mu;

87
88 % Price consistent

89 price_consistency = pN - ((1-omega)/omega)*(cT/cN)^(eta+1);

90
91 % budget constraint

92 budget_residual = b*(1+r)+yT+pN*yN - (bNext+cT+pN*cN);

93
94 equations;
95 euler_residual;

96 mu*nbNext;

97 price_consistency;

98 budget_residual;

99 end;
100 end;
101
102 simulate;
103 num_periods = 1000;

104 num_samples = 100;

105 i n i t i a l b 0.0

106 i n i t i a l shock 1;

107 var_simu c pN;

108 b’ = bNext;

109 end;

B.5 Guerrieri et al. (2020)

1 % Parameters

60



2 parameters beta rho sigma phi nbar delta Abar;

3 beta = 0.99; % discount factor

4 rho = 0.75; % 1/rho intratemporal elasticity

5 sigma = 0.5; % 1/sigma intertemporal elasticity

6 phi = 0.2; % share of sector 1

7 nbar = 1; % normal labor endowment

8 delta = 0.5; % fraction of labor endowment during crisis

9 Abar = 0.3; % borrowing limit

10 TolEq = 1e-8; % Solve with high adccuracy

11
12 % Shocks

13 var_shock n1;

14 shock_num = 2;

15 pi2 = 0.5; % the pandemic lasts for 2 quarters

16 freq = 0.005; % frequency of pandemic: 0.5 percent of the time.

17 pi1 = 1 - (freq/(1-freq))*(1-pi2);

18 shock_trans = [pi1,1-pi1;

19 1-pi2,pi2];

20 n1 = [nbar,delta*nbar];

21
22 % Endogenous States

23 v a r _ s t a t e a1;

24 Ngrid = 301;

25 a1_lb = -Abar;

26 a1_ub = (1-phi)*Abar/phi;

27 a1 = linspace(a1_lb,a1_ub,Ngrid);

28
29 % Last period

30 var_policy_init c1_shr;

31 inbound_init c1_shr 0 1;

32 var_aux_init P1 log_lambda1 log_lambda2;

33
34 model_init;
35 c1_1 = c1_shr*(phi*n1)/phi;

36 c2_1 = (1-c1_shr)*(phi*n1)/(1-phi);

37 c1_2 = c1_shr*((1-phi)*nbar)/phi;

38 c2_2 = (1-c1_shr)*((1-phi)*nbar)/(1-phi);

39
40 Y = (phi*n1^(1-rho) + (1-phi)*nbar^(1-rho))^(1/(1-rho));

41 lambda1 = (c1_shr/phi*Y)^(-sigma)*(Y/nbar)^rho;

42 lambda2 = ((1-c1_shr)/(1-phi)*Y)^(-sigma)*(Y/nbar)^rho;

43 log_lambda1 = log(lambda1);

44 log_lambda2 = log(lambda2);

45
46 % price of good 1

47 P1 = ((c1_1/phi)/(c1_2/(1-phi)))^(-rho);

48 % wage of sector 1

49 W1 = P1;

50 budget1_resid = P1*c1_1 + c1_2 - W1*n1 - a1;

51
52 equations;
53 budget1_resid;

54 end;
55 end;
56
57 var_interp log_lambda1_interp log_lambda2_interp;

58 i n i t i a l log_lambda1_interp log_lambda1;

59 i n i t i a l log_lambda2_interp log_lambda2;

60 % Updates

61 log_lambda1_interp = log_lambda1;

62 log_lambda2_interp = log_lambda2;

63
64 % Endogenous variables, bounds, and initial values

65 var_policy c1_shr a1n mu1 mu2 r;

66 inbound c1_shr 0 1;

67 inbound a1n -Abar (1-phi)*Abar/phi;

68 inbound mu1 0 1;

69 inbound mu2 0 1;

70 inbound r -0.5 0.5;

71
72 % Other equilibrium variables

73 var_aux a2 P1 log_lambda1 log_lambda2;

74
75 model;
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76 a2 = -a1*phi/(1-phi);

77 c1_1 = c1_shr*(phi*n1)/phi;

78 c2_1 = (1-c1_shr)*(phi*n1)/(1-phi);

79 c1_2 = c1_shr*((1-phi)*nbar)/phi;

80 c2_2 = (1-c1_shr)*((1-phi)*nbar)/(1-phi);

81
82 Y = (phi*n1^(1-rho) + (1-phi)*nbar^(1-rho))^(1/(1-rho));

83 lambda1 = (c1_shr/phi*Y)^(-sigma)*(Y/nbar)^rho;

84 lambda2 = ((1-c1_shr)/(1-phi)*Y)^(-sigma)*(Y/nbar)^rho;

85 log_lambda1 = log(lambda1);

86 log_lambda2 = log(lambda2);

87
88 % price of good 1

89 P1 = ((c1_1/phi)/(c1_2/(1-phi)))^(-rho);

90 % wage of sector 1

91 W1 = P1;

92
93 log_lambda1Future’ = log_lambda1_interp’(a1n);

94 log_lambda2Future’ = log_lambda2_interp’(a1n);

95 lambda1Future’ = exp(log_lambda1Future’);

96 lambda2Future’ = exp(log_lambda2Future’);

97
98 budget1_resid = P1*c1_1 + c1_2 + a1n/(1+r) - W1*n1 - a1;

99 euler_residual = 1 - beta*(1+r) * GDSGE_EXPECT{lambda1Future’}/lambda1 - mu1;

100 euler_residua2 = 1 - beta*(1+r) * GDSGE_EXPECT{lambda2Future’}/lambda2 - mu2;

101
102 a2n = -a1n*phi/(1-phi);

103 slackness1 = mu1*(a1n + Abar);

104 slackness2 = mu2*(a2n + Abar);

105 equations;
106 budget1_resid;

107 euler_residual;

108 euler_residua2;

109 slackness1;

110 slackness2;

111 end;
112 end;
113
114 simulate;
115 num_periods = 10000;

116 num_samples = 20;

117 i n i t i a l a1 0;

118 i n i t i a l shock 1;

119
120 var_simu a2 P1 r c1_shr;

121
122 a1’ = a1n;

123 end;

C User Manual

The user manual, online compiler, gmod files and other examples can be found on
the toolbox’s website: http://www.gdsge.com.
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