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Abstract

We document a series of new facts about the very first firms and patents that form new
edges in the directed citation networks across patent categories. We call them pathfinder firms
and patents. First, the typical pathfinder firms are very larger firms. Second, the average
pathfinder patents have higher quality than other patents in different quality measures. Third,
firms innovate faster, market value, profit and productivity increase in the future, when they in-
vent a large number of pathfinder patents or are cited by pathfinder patents currently. Fourth,
new citation links generate positive externalities to peer firms that innovate in nearby tech-
nology space. We then build a dynamic formation model of knowledge network, where new
citations form through both quality based preferential attachment, exact and mutated copying
of parent patent’s citations. The model rationalizes the firm level empirical facts. After cali-
brated to the patent citation data, the model sheds lights on the causes of productivity show
down: rising number of citation per patent, marginal cost of patent quality and research wage
have driven up the cost to innovate since 1976. Effective R&D policies need to decrease these
cost factors.
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1 Introduction

Innovating firms build the cross sector knowledge networks, they also rely on this networks to
create, absorb knowledge and expand into new areas of the technology space. How do firms build
the knowledge networks? What kind of firms are more likely to build cross sector new links in the
knowledge networks? Do firms benefit from the new knowledge links built by themselves and
other firms? What kind of dynamic formation process of the knowledge networks can generate
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the topology of the real knowledge networks and the cross sector knowledge flows observed in
the patent citation data?

To answer the above questions, we focus on a special type of patents, pathfinder patents, and
their implication to patenting firms’ performances. Patent A in sector i that cites a patent B in
sector j is called a pathfinder patent, if A is the first patent in sector i that has ever cited a sector j
patent. We call patent B a path-receiver patent. The owner firm of patent A (B) is called pathfinder
(path-receiver) firm. One example of pathfinder patent is US Patent NO. 9,116,285 filed by 3M
Innovative Properties Company in 2015, this light directing film is used in applications such as TV,
computer and cell phones displays to increase brightness and reduce the overall thickness. This
patent is the first in class 362 (Illumination) that cited another patent NO. 7,140,812 in class 407
(Cutter). Patent 7,140,812 owned by the same firm is a Diamond cutting tool with a multi-tipped
diamond. The diamond cutting tool in Figure 2 is used to cut the surface of the light directing
film shown in Figure 3, this design simplifies and improves the creation of a micro-replication tool
using a diamond.

The cross-category citation networks are built step by step by such pathfinder patents and
firms over time. Studying pathfinder patents help us understand the dynamic formation pro-
cess of knowledge networks and the implications of knowledge network dynamics on innovating
firms. Changes to knowledge network structure affect firms who innovation at neighbourhood
location in the technology space, because they absorb innovation input and receive royalty pay-
ment through knowledge linkages. In the previous example, not only 3M benefit from this new
citation path from class 362 to class 407. On one hand, peer firms in class 362 will learn to use
diamond cutting tool in the fabrication of light directing films, hence make their light directing
films brighter and thinner in the future; On the other hand, peer firms in class 407 expect that their
knowledge on other diamond cutting tools has potential to be applied in the manufacturing of
light directing films. Therefore other class 407 patents become more valuable.

In this paper we first present empirical facts on the the real consequences of knowledge net-
works dynamics using matched Compustat and USPTO data. Then we construct a firm innova-
tion model, where new citations are made by both quality attracted preferential attachment and
exact or mutated copy of parental citations, to explain the empirical firm level facts. Lastly, the
calibrated model helps us diagnose the reasons for productivity slow down and design effective
R&D policy.

In the empirical section, we document several facts about pathfinder patents and their real
impact on innovating firms. First, Pathfinder patents have higher quality in different measures
than average patents. They receive 57% more forward citations, score 52% higher in originality
and 16% higher in generality, span 0.16 more CPC patent classes, cite 1.9 year younger patents,
cite 27% more scientific literature than average patents. However, pathfinder patents score lower
than average in backward-citations’ pedigree, grant lag and novel word count, because pathfinder
patents’ novelty comes from combining a new set of knowledge inputs together to make an exist-
ing product better, instead of citing other popular patents and proposing a brand new idea. Path-
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receiver patents have similar or even higher quality measures in all dimensions as pathfinder
patents, except for a fewer backward citations to scientific literature. That is because inventors
prefer well established and simple patents that are far away from research frontier, when they use
knowledge input from a new sector for the first time. Second, pathfinder firms are very large firms
in the patent dataset. On average pathfinder firms own 251 patent stocks and have patented in 6
technology categories; while average firms in the patent data own 46 patents and have patented in
1.84 technology categories. Path-receiver firms are even larger than pathfinder firms, on average
they own 415 patents and have patented in 8 technology categories.

Third, a patenting firm’s innovate rate is higher in the future 5 years, when there are more new
cross-category inward and outward citation links made on this firm’s technology space either by
itself or peer firms in current year. The new cross-category citation links mainly help firms expand
into new technology categories, rather than grow intensive within existing categories. Fourth, in
linked CRSP/Compustat data, we find that public listed firm’s real performances, such as market
value, employment, capital, sales, profit and TFP, increase in the coming 5 years, when there are
more new cross-category inward and outward links made on the firm’s technology space either by
itself or peer firms in current financial year. Fifth, we find that citation counts across technology
categories, like goods flow across countries, follow a gravity model, which is positively related to
the patent stocks in both categories. Sixth, firm growth becomes more volatile, when the firm’s
innovation concentrates in fewer technology categories.

These empirical evidences suggest that a firm innovation model has to explain a series of ques-
tions. Why do pathfinder and path-receiver patents have higher quality than average? Why are
firms’ future growth dependent on dynamics of the knowledge networks? How does the positive
growth momentum spillover to peer firms? How do knowledge flows across sectors aggregate
up?

We then build a tractable firm innovation model, featuring an endogenous network formation
process at the patent level, that connects patent quality, citation formations and innovating firm
performances. We describe the formation of a patent citation network as a node copying process
with random copying errors, which is mathematically equivalent to a hybrid of the preferential at-
tachment mechanism and a partially random formation mechanism, similar to Jackson and Rogers
(2007), among others. Firm innovation results in new patents as new nodes (vertices) in the net-
work. New patents cite existing ones and hence form new outgoing edges. Each patent has an
endogenous quality that depreciates over time. A new patent exactly copy a fixed share of parent
patent citations, erroneously copy another fixed share of parent patent citations with mutation to
a random patent in the same cited sector, and randomly attach the rest of citations to any other ex-
isting patents with probability proportional to cited patent quality. A new patent of higher quality
allocates a greater proportion of citations to random attachment and smaller share to follow par-
ent’s citations. An existing patent of high quality and many existing citations (indegree) is more
likely to attract citations from new patents, either by being chosen as parent patent or through
gaining random attached citation.
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As a result, a new patent of high quality in one category is more likely to form edges with
high-quality patents in a never-before-cited category through random attachment. That is why
the expected patent quality of pathfinder (citing) and path-receiver (cited) patents are higher than
average patent, which corresponds to Fact 1 of the empirical section. Once a pathfinder patent is
granted by the patent office, the news reveal the quality information about both citing and cited
patents, hence raise both pathfinder firm and path-receiver firm’s profit and market value. This
rationalizes pathfinder patent’s impact on pathfinder firm and path-receiver firm in Facts 3 and 4
of the empirical section.

The mutation probability when copying parent patents explains the positive externality to peer
firms that innovate in the same sector as the path-receiver patent, because future new patents will
follow the new cross-sector citation path established this year, but the future new citations may
deviate from the exact path-receiver patent and land in any other patents in the same cited sector.
Peer firms in the pathfinder patent’s sector (citing sector) also benefit because their new patents
can choose the pathfinder patent as parent, follow the newly discovered citation path, and absorb
knowledge from a new sector. These together explains the positive externality to peer firms in
Facts 3 and 4 of the empirical section.

As new patents are born with no citations, it is the endogenously chosen patent quality that
ultimately determines the citation dynamics in expectations. The law of motion of a patent’s
expected citation has a convenient closed-form solution. Moreover, the cross-sectional distribution
of patent citations has an empirical consistent power-law right tail, as a standard preferential
attachment model predicts, which we use to discipline model parameters in the calibration. The
evolution of patent citation dynamics acts as demand function of knowledge in firm’s innovation
decision.

We group patents by sector and bundle the citation flows accordingly to produce an aggre-
gated citation network. The aggregated network has a fixed number of nodes and growing counts
of edges. Sectors with large knowledge stocks tend to attract as well as make more citations. Be-
tween two sectors, the form of the likelihood resembles gravity model, proportional to the product
of patent numbers in both sectors. This aggregation result is consistent with our finding of Fact 5.
Moreover, child-parent connections in the model generate a “home bias” that new patents tend to
cite more existing ones in the same sector, consistent with the data.

Firm decisions in this model remain in line with the literature exemplified by Klette and Kor-
tum (2004) and Lentz and Mortensen (2008). The main difference is that when making innovation
decisions, forward looking firms take into consideration the future citation dynamics of their new
patents. Firms need to decide on an additional margin — patent quality — that drives the cita-
tion dynamics and affects the demand for the corresponding product. High quality is costly but
it generates profits on the product market and attracts future citations. When an existing patent
gets a citation from a new patent, the owner firm of the existing patent receives a payment from
the owner firm of the new one. The citation payment captures the application value of existing
knowledge in a reduced form.
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The new margin of firm innovation decision generates a positive impact of new knowledge on
older patents, which we call the innovation complementarity effect. Existing knowledge has applica-
tion value to new patents. Firms benefit from such application value when the older patents they
own get new citations. A faster pace of aggregate knowledge growth increases the chance of an
old patent receiving new citations, and it therefore increases the innovation incentives for forward
looking firms as new knowledge now brings citation payments in the future. Owner firms of older
patents still lose their market shares due to increased competition when new patents and hence
new products are born, which is in line with the conventional creative destruction effect. Whether
the net effect of aggregate knowledge growth on individual firm innovation decision is positive
or negative depends on which effect dominates.

Firm’s optimal innovation decision follows a cutoff rule, firm f innovates in sector j at t only
when its innovation efficiency is sufficiently high. Firms with larger technology spaces are more
likely to draw at least one innovation efficiency above the threshold, and then produce patents
with high realized quality. Therefore, these firms are bigger and more likely to become pathfind-
ers, which generates Fact 2 of the empirical section.

We assume that innovation is not purely random such that firms make sector-specific inno-
vation decisions. This assumption reflects the observation that firms tend to specialize in their
technology spaces. For example, a pharmaceutical firm is more likely to innovate in medicine re-
lated fields than in mining. A consequence of this assumption is that firm growths, even growths
of firms with large knowledge stocks, can be volatile. When firms specialize in a handful of sec-
tors, the within-firm Herfindahl indices are high, which capture the knowledge stock concentra-
tion within each firm. This agrees with Fact 6 of the empirical section. We call it the within-firm
granularity, as a firm-level analogy to the economy-wide granularity by Gabaix (2011).

With the structured model that connects knowledge network formation and growth, we use
Generalized Method of Moments (GMM) to estimate the model parameters by bringing data into
general equilibrium conditions in the model. Some key model parameters change over time, such
as average patent quality, number of citations per patent, within sector mutation rate of citation,
royalty payment per citation, fixed cost of R&D per period, and marginal cost of increasing patent
quality. We observe in the patent data that the quality adjusted growth rate of patents declines
over time, which happens simultaneously with the productivity slow down of aggregate economy.
Can our model help us understand the causes of innovation slow down? We employ counterfac-
tual analysis by setting some model parameters at their 1976 initial level and solving the quality
adjusted growth rate predicted by model, see if the counterfactual growth rate can restore 1976’s
high level. The culprit that counterfactual analysis finds out is the rising cost of R&D in the fol-
lowing three aspects: number of citations per patent, marginal cost of patent quality and research
wage rate. Rising number of citations per patent may reflect the increasing rent protection effort
in Dinopoulos and Syropoulos (2007) that increases that cost of new innovation. The rising cost
of research quality agrees with the empirical evidence found in Bloom, Jones, Van Reenen, and
Webb (2020) that research productivity has been declining in many sectors, such as Moore’s Law,
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agriculture and medical innovations.
At the end of this paper, we summarize the model’s policy implications according to firm level

empirical evidences and results of counterfactual exercises. First, pathfinder patents build new
connections in the knowledge networks, where firms absorb knowledge and receive reward of
high quality patent. Not only the pathfinder firms and path-receiving firms benefit from the in-
vention of such patents, peer firms which innovate in nearby technology space also enjoy positive
spillovers. Therefore R&D subsidies to this type of high quality research need to be comparable to
its positive externality. Second, R&D and IPR policies that reduce the rising cost of R&D can help
reinstall high innovate rate, especially the number of citation per patent, which measures the cost
of knowledge input in research. Note that the patent system has stopped adding new technol-
ogy categories for decades. When the existing technology space get more crowded as more and
more new inventions appear, each patent makes a smaller contribution and contains less intrinsic
knowledge. It also makes new patents harder to prove originality. New patents are forced to cite
more related prior arts to show respect and prevent future dispute. The larger quantity of knowl-
edge stock in narrowly defined space may bring more burden than knowledge spillovers to new
innovations. We share the same opinion as Boldrin and Levine (2013) that the IPR policy need
to encourage the emergence of brand new technology categories that enlarge the dimension of
technology space, instead of protecting large stakeholders in existing technology space. Third, we
also find that average quality of patents, measured by the ability to attract random citations, has
been declining since 1976. The model attributes this fact to the increasing marginal cost of patent
quality in the innovation production function. Therefore, we suggest R&D subsidy target high
quality research programs that tend to be more risky and time consuming than average projects.
Lastly, immigration policy that welcomes high skilled workers provides abundant labor supply to
R&D sector and keep research wage cost down.

2 Literature

This paper stands on the shoulders of four strands of literature. Firstly, more and more research
focus on the dynamic formation process of the production and input network into the production
network, such as, Bak, Chen, Scheinkman, and Woodford (1993), Vázquez (2003), Jackson and
Rogers (2007), Chaney (2014), Oberfield (2018), Elliott, Golub, and Jackson (2014), Carvalho and
Voigtländer (2014), Baqaee (2018), König (2016), Acemoglu and Azar (2017), Grassi et al. (2017),
Taschereau-Dumouchel (2017) and Lim et al. (2017), etc. Among them, Vázquez (2003), Jack-
son and Rogers (2007), Chaney (2014) and Carvalho and Voigtländer (2014) assume that existing
connections in the network help nodes establish new connections. This paper focuses on how
citation network formation is related to quality of both citing and cited patents. A pathfinding
patent is the first of its kind that connects knowledge in two previously isolated technology cate-
gories, therefore, our pathfinder patent measure of patent quality is close to the interdisciplinary
and cutting edge measures in Higham, de Rassenfosse, and Jaffe (2020). This paper’s theoretical
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model is therefore customized to explain the high quality of pathfinding patents and their posi-
tive externality to peer firms, adding quality based preferential attachment to standard dynamic
network formation model. Many papers in the network formation literature are pure theoretical
endeavour, this paper also provide empirical evidence on knowledge network dynamics and firm
performance indices, such a market value, productivity, profit and innovation rate.

Secondly, this paper speaks to the literature of cross-sector knowledge diffusion. For example,
Griliches (1957), Helpman (1998) and Jovanovic and Rousseau (2005) focus on General Purpose
Technology (GPT), such as the electricity and semiconductor industry, the technologies of these
industries have been widely used by other industries, creating an era of high growth rate and
have become long-term growth engines. Akcigit, Celik, and Greenwood (2016) study the role of
knowledge network in cross-firm transaction of intellectual property rights. Cai and Li (Forthcom-
ing) study how cross-sector knowledge networks determine firms’ expansion path across-sectors
and the sectoral R&D intensity. Huang et al. (2018a) and Huang et al. (2018b) also pay atten-
tion to knowledge spillovers across industries and apply them to optimal R&D policy design and
corporate mergers and acquisitions. Cai, Li, and Santacreu (2019) study the interaction between
cross-country-sector knowledge spillovers and trade affect endogenous formation of comparative
advantage and welfare gain from trade. They measure cross-sector knowledge spillovers by cross-
country-sector patent citations. As far as we know, there is no empirical investigation to examine
the link between knowledge diffusion networks and input and output table.

Third, this paper adds to the literature on firms market value and their patenting activities. See
(Pakes and Schankerman (1984), Austin, 1993; Hall, Jaffe, and Trajtenberg (2001), Hall, Jaffe, and
Trajtenberg (2005); Nicholas, 2008 andKogan, Papanikolaou, Seru, and Stoffman (2017)). These
papers try to measure the economic value of patents. Some of them use citations received as a
measure of patent quality. Our paper is closer to Kogan, Papanikolaou, Seru, and Stoffman (2017),
which use the stock market reaction after patent announcement as a means to construct appropri-
ate measure of patent quality to study within- as well as between-industry reallocation and growth
dynamics. They find positive knowledge spillovers or business stealing effects to peers as well as
in Bloom, Schankerman, and Van Reenen (2013). Our pathfinder patent predicts higher firm per-
formance measures for both the citing and cited firm involved; it also brings positive externality
to peer firms in nearby technology space of the new citation link. Our work are also related to the
papers that study the impact of innovation on firm productivity and growth (Caballero and Jaffe,
1993; Akcigit and Kerr, 2010; Acemoglu, Akcigit, Alp, Bloom, and Kerr (2018)).

Fourth, this paper is related to the literature that construct and compare different patent quality
measures summarized by Higham, de Rassenfosse, and Jaffe (2020), starting from Trajtenberg,
Henderson, and Jaffe (1997) to Higham, Governale, Jaffe, and Zülicke (2019), and Marx and Fuegi
(2020). Since we define high quality patents as being more likely to cite and be cited by other high
quality patents through random attachment, instead of following parent citations, our quality
definition is close to forward citation count but excluding citations from relative patents. Our
definition of pathfinder patent is similar to the identification of the first patent that used a novel
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word in the patent application text in Balsmeier, Assaf, Chesebro, Fierro, Johnson, Johnson, Li,
Lück, O’Reagan, Yeh et al. (2018) in the sense of finding the very first patent of its kind. The
definition of pathfinder patents by nature is also related to interdisciplinary and cutting edge
measures in Higham, de Rassenfosse, and Jaffe (2020), because they build new links between
previous disconnected patent classes.

The rest of this paper proceeds as the following. In Section 3, we describe the Patent data we
use, compare pathfinder patents and pathfinder firms with peers, and present firm level evidences
on pathfinder patent’s impact on pathfinder firms, path-receiver firms and peer firms. In Section
4, we build the firm innovation model with dynamics of knowledge networks that explain the em-
pirical facts found in previous section. In Section 5, we calibrate the model and run counterfactual
analysis to detect the factors that contribute to quality weighted innovation rate slow down from
1976. Lastly, we provide policy implications and conclude.

3 Empirics

In this section, we first describe the patent database and matched patent data with Compustat
data. Then we present several empirical facts related to pathfinder, path-receiver firms and peer
firms’ real performances in response to knowledge network dynamics, citation flow across tech-
nology class and firm growth volatility.

3.1 Data

USPTO Patent Data. The empirical analysis draws from the USPTO Patent Database 2015 ver-
sion. The dataset contains detailed information on 5.9 million utility patents granted by the U.S.
Patent and Trademark Office between the years 1976 and 2015. A patent has to cite another patent
when the former has content related to the latter. When patent A cites patent B, this particular
citation becomes both a backward citation made by A to B and a forward citation received by B
from A. Moreover, the patent data contains US patent class code for each patent that helps identify
where it lies in the technology space.

We use patent citation data to identify if a patent A in category i that cites a patent B in category
j at year t is the first patent that cites from i to j in the history. We call A a pathfinder patent and
B a path-receiver patent. Then we find A (B)’s owner firm and call it a pathfinder (path-receiver)
firm in year t. Other firms that do not own any pathfinder patent nor path-receiver patent in year
t are called peer firms.

Compustat North American Fundamentals (Annual). In order to assess the impact of patents
and their technological distance on firm moments, such as stock market valuation, the PDP patent
data is linked to Compustat firms. The focus is on the balance sheets of Compustat firms between
the years 1974-2006, retrieved from Wharton Research Data Services. The Compustat database
and the NBER PDP database are connected using the matching procedure provided in the PDP
data. When testing if market value changes with patent grants, we use matched US Patent and
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Compustat North American Fundamentals dataset provided by Kogan, Papanikolaou, Seru, and
Stoffman (2017). Firm level total factor productivity is taken from İmrohoroğlu and Tüzel (2014).

3.2 Pathfinder Patents and Firms

We find that pathfinder patents score higher in several quality measures in the literature, such
as originality, generality (Trajtenberg, Henderson, and Jaffe (1997)), number of forward citations,
number of Collaborated Patent Classification (CPC) technology class memberships, backward-
citations’ pedigree, average age of backward citations, grant lag, and number of backward cita-
tions to scientific literature used in Higham, de Rassenfosse, and Jaffe (2020).1 Citation to scientific
literature data is taken from Marx and Fuegi (2020).

More over, pathfinder and path-receiver firms are much larger than average firms in the patent
data base, both in terms of total patent counts and number of patent categories. This fact helps
explain in the coming facts, why citation network dynamics some times have stronger impact on
peer firms, that are much smaller, than on super large pathfinder and path-receiver firms.

Fact 1. Path-finder patents receive more forward citations, have higher generality and original-
ity score, wider CPC technology class memberships, lower backward-citations’ pedigree, cite
younger patents, shorter grant lags, more backward citations to scientific literature and fewer
novel word than average patents.

All Patents Pathfinder Patents Pathreceiver Patents

Originality 0.52 0.79 0.59
Generality 0.55 0.64 0.72
# Forward citations received 11.05 17.24 22.49
# CPC technology class memberships -1 0.94 1.10 1.01
Backward-citations’ pedigree 1.60 1.38 1.48
Average age of backward citations 11.81 9.90 9.12
Grant lag 2.63 2.51 2.15
# Backward citations to scientific literature (front page) 14.86 18.82 3.96
#Novel word per patent 0.41 0.29 0.21

In most quality measures, pathfinder patents have higher quality than average as defined by
the literature, except for backward-citations’ pedigree, grant lag and novel word count. For ex-
ample, Higham, de Rassenfosse, and Jaffe (2020) think lower backward-citations’ pedigree and
shorter grant lag predict lower quality of patents. Balsmeier, Assaf, Chesebro, Fierro, Johnson,
Johnson, Li, Lück, O’Reagan, Yeh et al. (2018) use weighted novel word count to evaluate the
originality of a patent. The discrepancy happens because pathfinder patents’ novelty comes from
neither citing other popular patents (as captured by backward-citations’ pedigree) nor being the
first to create a new idea (novel word); instead, pathfinder patents are novel because they use a
new combination of knowledge or material inputs to produce an existing product in a better way.

1Backward-citations’ pedigree measure is granted from Higham, Governale, Jaffe, and Zülicke (2019). We thank
Kyle Higham for sharing the pedigree data with us.
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Moreover, the novelty of pathfinder patents is also obvious to judge, hence they are quicker to be
granted.

Another interesting finding is that path-receiver patents have similar quality measures as
pathfinder patents, except for number of backward citations to scientific literature. Since back-
ward citations to scientific literature measures a patent’s relation to frontier scientific research,
lower score in this measure means path-receiver patents are relatively well established and easy
to be understood by outsiders compare to average patents. This is reasonable, because when in-
ventors utilize knowledge from a new sector for the first time, they start from those simple and
tested patents, instead of fancy and frontier ones.

Fact 2. Pathfinder and path-receiver firms own greater number of patents and innovate in larger
set of technology categories than average firms.

All Patenting Firms Pathfinder Firms Path-receiver Firms

Mean Patent stock 45.72 250.86 451.30
Mean Patent categories 1.84 5.99 7.75

3.3 Citation Network Dynamics and Firm Innovation

Fact 3. A firm’s innovate rate is higher in future 5 year, when there are more new cross-category
inward and outward links made on firm’s technology space either by self firm or peer firms,
especially so for firm’s extensive growth into new technology categories.

In this subsection, we test in the patent data if firms’ rate of innovation changes, when there
are new cross-sector citation links made to or from the patents categories that they have patented
before. First, we find that firms innovate faster, when they made new cross-category citation links
by themselves. Then, we further discover that firms’ innovation rate receives externalities from
new citation links made by peer firms.

log(
ps f ,t+τ

ps f ,t
) =βp,τ log(ps f ,t) + βn,τ log(nonclass f ,t)+

β
sel f
p f ,τ log(wp f sel f

f ,t + 1) + β
peer
p f ,τ log(wp f peer

f ,t + 1)+

β
sel f
pr,τ log(wprsel f

f ,t + 1) + β
peer
pr,τ log(wprpeer

f ,t + 1)+

D f ,τ + Dt,τ + Dind,τ + Dt,τ + ε f ,t,τ

(1)

where τ is the growth time horizon in years, ps f ,t is the total number of patents granted to firm
f by time t; nonclass f ,t is the number of technology categories that firm f has patent application
at time t, it measures firm f’s patent scope; wp f sel f

f ,t is the patent stock weighted number of new
outward cross-category citations links made by firm f at time t (or paths found), it measures firm
f’s ability to find new knowledge source and make high quality innovation; wprsel f

f ,t is the patent
stock weighted number of new inward cross-category citation links received by firm f at time t
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(or paths received), it measures firm f’s ability to attract citation from and find knowledge ap-
plication at a new source; wprpeer

f ,t is the weighted number of inward citation links made to firm
f’s technology space made by peer firms, it measures firm f’s technology space’s ability to find
applications in new areas; and wp f peer

f ,t is the weighted number of outward citation links made
to firm f’s technology space made by peer firms, it measures firm f’s technology space’s strength
in obtaining knowledge from new sources. D f ,τ, Dind,τ and Dt,τ are firm, industry and year time
dummies. The following equations give calculation details of these variables.

wprsel f
f ,t =

J

∑
j=1

psj
f ,t

ps f ,t
newindegreesel f

j,t , (2)

wp f sel f
f ,t =

J

∑
j=1

psj
f ,t

ps f ,t
newoutdegreesel f

j,t , (3)

wprpeer
f ,t =

J

∑
j=1

psj
f ,t

ps f ,t
newindegreepeer

j,t , (4)

and

wp f peer
f ,t =

J

∑
j=1

psj
f ,t

ps f ,t
newoutdegreepeer

j,t (5)

where newindegreesel f
j,t is the number of new inward cross-category citation links made to cat-

egory j at time t by firm f itself, newoutdegreesel f
j,t is the number of new outward cross-category

citation links made from category j at time t by firm f itself. newindegreepeer
j,t is the number of new

inward cross-category citation links made to category j at time t by other firms, newoutdegreepeer
j,t is

the number of new outward cross-category citation links made from category j at time t by other
firms.

psj
f ,t is firm f’s number of patent stock in patent category j by time t. ps f ,t is firm f’s total

number of patent stock in all categories by time t. Even for firms that compete in the same prod-
uct market, they may still own various combinations of patent stocks as documented by Bloom,

Schankerman, and Van Reenen (2013). {
psj

f ,t
ps f ,t
} represents firms’ heterogeneity in their portfolio of

patent stocks across different technology categories, we use it to measure firms’ various exposure
to citation network dynamic changes at a given time t.

We present the regression results in Tables 2, 3 and 4. We find that the ability to make or receive
new cross-category citation links gives firms a positive long lasting boost in future innovation.
Moreover, the number of new citation links received lwprsel f has much stronger impact on growth
rate than number of citation links sent out lwp fsel f . Maybe because lwprsel f is a stronger indicator
of firm f’s patents’ quality and potential applications than lwp fsel f . When peer firms made or
received new links, firms also also innovate faster in the future, even though the impact is one
order smaller than that of self made or received new links.
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To find out the mechanism through which knowledge networks dynamics affects firm innova-
tion rate, we split firm growth rate in patent number into extensive growth and intensive growth.
Extensive growth captures a firm’s patent application growth in new technology categories that
this firm has never patented before. Intensive growth measures a firm’s patent application growth
in existing categories. In Table 3, we show that both inward and outward new links that happened
to own or peer firms predict long lasting higher future extensive growth rate at firm level. How-
ever, in Table 4, firms’s intensive growth reacts negatively to peer’s new links of both types, even
to own firm’s inward link after 1 year. Both types of new links associated with own firms increase
firm intensive growth rate for 1 or 2 years in the short run only. Overall, we conclude that new
cross-category citation links promote firm innovation rate mainly by helping firms to expand into
new categories.

3.4 Citation Network Dynamics and Firm Real Performances

Fact 4. A public listed firm’s market value, employment, capital, sales, profit and TFP is larger in
the future 5 years, when there are more new cross-category inward and outward links made on
firm’s technology space either by self firm or peer firms.

In this subsection, we test in linked patent and CRSP/Compustat data, if firms’ stock mar-
ket value, employment, capital, sales, profit and TFP changes, in response to new cross-category
citation links made in the citation networks. First, we show that firms’ market value, labor and
capital inputs, profit, sales and TFP increase, when there are new cross-category citation links in
their technology space made by themselves. Then, we find that firms receive consistently positive
externalities from new cross-category citation links made by other firms.

log(
X f ,t+τ

X f ,t
) =βp,τ log(ps f ,t) + βn,τ log(nonclass f ,t)+

β
sel f
p f ,τ log(wp f sel f

f ,t ∗ 105 + 1) + β
peer
p f ,τ log(wp f peer

f ,t ∗ 105 + 1)+

β
sel f
pr,τ log(wprsel f

f ,t ∗ 105 + 1) + β
peer
pr,τ log(wprpeer

f ,t ∗ 105 + 1)+

log(tsm f ,t) + log(tcw f ,t) + Z f ,t + D f ,τ + Dt,τ + Dind,τ + ε f ,t,τ,

(6)

where X f ,t can be market value, total employment, capital stock, profit, sales and TFP2 of firm f
at time t. tsm f ,t is total dollar value of innovation produced by firm f in year t, based on stock
market (sm); and tcw f ,t is a measure of the output of innovation produced by a firm using its
citation-weighted (cw) patents. We take these two measures from Kogan, Papanikolaou, Seru,
and Stoffman (2017). Z f ,t is the set of size controls, such as log scaled firm f’s total employment,
capital and X f ,t itself at time t (if X f ,t is not employment or capital). D f ,τ, Dind,τ and Dt,τ are
firm, industry and year time dummies. All variables are standardized so that coefficients are

2Taken from İmrohoroğlu and Tüzel (2014)’s web posted firm TFP data. See
https://sites.google.com/usc.edu/selale-tuzel/home?authuser=2
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comparable across them. The coefficients now means when the correspondent variable increases
one standard deviation, how many percent growth rate in X f ,t changes.

We present our regression results in Tables 5 to 10. In Table 5, a firm’s market value in stock
market increases 1.88-4.64% in the first year, when this firm is granted one standard deviation
more pathfinder patents; market value increases 0.33-0.40% in the first year, when other firms
are granted one standard deviation more pathfinder patents. Likewise, a firm’s market value in
stock market increases 6.1% in the first year, when this firm’s patents received one standard devi-
ation more pathfinder citations from pathfinder patents; but we do not find significant externality
when peer firms receive pathfinding citations. When we control industry fixed effects only, the
knowledge network dynamics’ impact on firm value can persist after up to 5 years, with grad-
ually fading coefficients. However, when we control firm fixed effect, the positive impacts only
exist for the first year and only for pathfinder patents.

In Tables 6 and 7, firms’ production inputs, both labor and capital, increases in the range of
1-4% in response to one standard deviation increase in the grant of pathfinder patents to own firm
and peer firms. The positive impacts are also long lasting, in many cases coefficients increase over
time. The impact of own pathfinder patents tend to be larger than peer firm pathfinder patents.
In Tables 8 and 9, we observe that firms’ profit and sales behave in similar manner as labor and
capital inputs. In Table 10, we find that firms’ TFP response positively to own pathfinder and
path-receiver patents, but not to peer pathfinder and path-receiver patents.

Overall, we find that dynamics in the knowledge networks have positive real impact on firm
market value, labor and capital inputs, sales, profit and TFP, not only to the pathfinder firms
themselves, but also to peer firms who innovate in the neighbourhood technology space. In
the Appendix, we conducted robustness checks using alternative measures of firms’ exposure to
knowledge network dynamics. New citation links every year are weighted by edge betweenness
centrality of a new link to capture the various importance of new citation links to the network
topology. Similar empirical results still hold in Tables 13 and 18.

3.5 Citation Flows across Categories

Fact 5. Citation counts across technology categories follow a gravity model, which is positively
related to the patent stocks in both categories.

In the following two equations, we regress citation flow between citing and cited patent cate-
gories on the patent stocks of citing category and cited category, controlling different combinations
of fixed effects.

log(citationcd,t) = βc log(psc,t) + βd log(psd,t) + Dc + Dd + Dt (7)

log(citationcd,t) = βc log(psc,t) + βd log(psd,t) + Dt + Dcd (8)
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In Table 11 we show that citation flow between sectors follows a gravity type model that is
widely used to study trade and immigration flow across countries and sectors.

3.6 Firm Growth Volatility and Innovation Concentration across Sectors

Fact 6. Firm growth volatility is larger when the firm’s innovation concentrates in a few technol-
ogy categories.

We measure growth volatility g vol5 using variance of growth rates in the future 5 years and
innovation concentration with the Herfindahl index of patent share across categories.

Her f indahl f ,t =
J

∑
j=1

(psj
f ,t/ps f ,t)

2 (9)

Then adjust for the number of categories nonclass f ,t,

Her f indahla
f ,t =

Her f indahl f ,t − 1/nonclass f ,t

1− 1/nonclass f ,t
(10)

Then we run the following regression and present the result in Table 19. Firms with larger
patent stock experience lower growth volatility, while firms with more concentrated patent port-
folio have more turbulent growth paths.

log(g vol5 f ,t) = βv
plog(ps f ,t) + βv

nlog(nonclass f ,t) + βv
hHer f indahla

f ,t + D f + Dt (11)

4 Theoretical framework

We rationalize our empirical findings in a firm innovation model featuring the endogenous dy-
namics of a patent citation network.

Time is continuous with an infinite horizon. The economy is populated by a unit-mass con-
tinuum of identical price-taking households who work and consume. The economy has a fixed
continuum F of firms with mass F > 0. Firms hire in a perfectly competitive labor market, and
they produce and innovate. Let J be the set of all J sectors.3 Define the technology space of a firm
f as J f ⊆ J , ∀ f ∈ F . Firm innovation entails developing new patents over time in each sector
of the firm’s technology space.4 Assume that every sector lies in the technology spaces of a con-
tinuum of firms. A patent corresponds to a product variety and its production technology. Only
the owner firm of a patent can produce and sell the corresponding product. Product markets are
monopolistically competitive.

3Each sector j ∈ J can be viewed as one technological category or a set of them in the data.
4We fix J f for each firm f ∈ F , as we abstract away from firms’ decisions to expand their technology space or to

exit the economy.
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The set of available product varieties for household consumption is therefore endogenous,
denoted as N (t) at any time t, which also represents all existing patents at t. Every patent has
an industry classification j ∈ J and belongs to a firm f ∈ F . At time t, n f

j (t) is the number of

firm f ’s patents in industry j, and the number of sector-j varieties f produces, such that n f
j (t) = 0

if j /∈ J f . Firm f ’s knowledge stock is given as n f (t) = ∑j∈J f n f
j (t); sector j has Nj(t) available

varieties at t, with Nj(t) =
∫

f∈F n f
j (t). The aggregate knowledge stock N(t) is the cardinality of

N (t), satisfying N(t) = ∑j∈J Nj(t) =
∫

f∈F n f (t).
In what follows, subsection 4.1 describes the simple problem of the households. Then, subsec-

tion 4.2 introduces a network formation model of patent citations, where the network is a growing
digraph at the patent level, with each vertex being a patent and each directed edge a citation. Next,
subsection 4.3 and subsection 4.4 discuss firm decisions in detail, where firms rationally anticipate
the patent-level network dynamics. We close the model in subsection 4.5 and define an equilib-
rium. The analytical form of a firm’s value function is in subsection 4.6. Firm and sectoral growths
are discussed in subsection 4.7. Lastly, subsection 4.8 considers network aggregation.

4.1 Household preferences

The identical households discount the future at rate ρ > 0. A representative household can fully
summarize their behavior, with the following life-time preferences:

U =
∫ ∞

0
e−ρt log C(t)dt,

where C(t) is the consumption compound such that it aggregates all available varieties with con-
stant elasticity of substitution (CES), given as

C(t) =
( ∫

ω∈N (t)
z(ω, t)

1
ν c(ω, t)

ν−1
ν dω

) ν
ν−1

,

where c(ω, t) is the consumption of variety ω at t, z(ω, t) is the quality of variety ω at t, and ν > 1
is the substitution elasticity among varieties. Quality z(ω, t) results from each firm’s endogenous
choice, which the households take as given. Household income consists of labor income and profit
payments as firm owners. Labor is in fixed supply and consists of production labor L > 0 and
research labor R > 0. Henceforth, we choose the production labor as the numeraire and denote the
wage rate of research labor as wR(t). We look for an equilibrium with a fixed research wage rate
wR(t) = wR and a fixed aggregate profit generated by all firms Π(t) = Π, ∀t. The representative
household’s budget constraint at any t then reduces to

∫
ω∈N (t) p(ω, t)c(ω, t)dω = L + wRR + Π.

Given the qualities and market prices of all varieties {z(ω, t), p(ω, t)}ω∈N (t), standard cost
minimization yields the demand function of each product variety such that

c(ω, t) = z(ω, t)C(t)
(

p(ω, t)
P(t)

)−ν

, (12)
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where P(t) is the ideal price index, given as

P(t) =
( ∫

ω∈N (t)
z(ω, t)p(ω, t)−(ν−1)dω

)− 1
ν−1

.

The market clearing condition for each ω at t is y(ω, t) = c(ω, t), where y(ω, t) is the output level.

4.2 Dynamics of the patent citation network

We describe the dynamics of the patent network as the continuous limit of a growing network
with discrete vertices, in the same spirit of the “mean-field” approximation by Jackson and Rogers
(2007). At any time, the set of all patents and the citation flows among them form a digraph, where
each patent is a vertex or node and each citation is a directed edge from the citing patent to the
cited patent.5 The network grows over time as firm innovation results in new nodes as well as
new edges. An existing patent gets new cites only at the birth of new patents; symmetrically, only
the newborn patents add new citation edges to other patents. All citation edges are permanent
and cannot be removed or rewired once established.

The goal of this section is to describe the evolution dynamics of patent citations. More specif-
ically, we look for two things. One is the law of motion of the number of citations a patent is
expected to receive over time. As will become clear in subsection 4.4, this law of motion is payoff-
relevant to innovating firms. It will serve a similar role to the product demand in eq. (12) as a
“demand curve” for a firm’s new knowledge in the firm’s decision. The other is the cross-sectional
distribution of citations. Following standard practice, we focus on a stationary cross-sectional ci-
tation distribution in this growing network. This distribution will confront its data counterpart,
and help to discipline model parameters.

Suppose that the network grows at a constant rate g > 0, such that the increment in network
size from t to t + dt satisfies N(t+dt)

N(t) = 1 + gdt + o(dt) for small dt. The initial size N(0) =

N0 is given. For any node ω ∈ N (t), define its indegree as the total number of inward edges
(citations received) by t and its outdegree as the number of outgoing edges (citations made). A
node’s indegree may increase over time whereas its outdegree is fixed. Let x > 0 be the exogenous
and constant number of citations a new patent is expected to make, then x is the average in- or
out-degree of the network at any time.

Each patent has an intrinsic feature z upon birth, referred to as the quality, such that z ∈
[zmin, zmax] with 0 < zmin < zmax < 1. Over time, quality depreciates at an exogenous rate
δ > 0. If a patent ω has an initial quality z upon birth at time t, then its quality at age τ is
z(ω, t + τ) = ze−δτ. Quality depreciation reflects knowledge obsolescence over time. It also im-
plies that, ceteris paribus, households prefer newer varieties. Let each new patent’s initial quality z
be random draws from a fixed distribution Z over support [zmin, zmax] with mean z.

The network growth rate g and the quality depreciation rate δ jointly determined the average

5In this paper, we use “vertex” and “node” interchangeably, as well as “edge” and “link”.
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quality zo(t) of all existing (o for old) patents. Without loss of generality, suppose that at time 0, the
average quality is zo(0) = z g

g+δ . Then, at any time t, the average quality zo(t) remains unchanged
at zo ≡ z g

g+δ . This is because zo is the limit of average quality as t→ ∞, such that

zo =
∫ ∞

0
ge−gτze−δτdτ = z

g
g + δ

,

where ge−gτ is the limit cross-sectional probability density function (PDF) of patent age τ ≥ 0. All
sectors share the common zo.

At this stage, it suffices to treat the initial quality distribution Z, its mean z, and the network
size growth rate g as exogenous. We endogenize them in subsection 4.4 as the equilibrium out-
come.

Matching between every new patent and existing ones to form new citation links follows an
imperfect node copying process, where a new patent can replicate an existing one’s citations with
copying errors (mutations).6 Figure 1 illustrates the four ways of forming new edges. When a firm
innovates in a sector j, it creates new sector-j patents based on existing ones in j. An existing node
becomes the base upon which a new patent is developed at random, with probability proportional
to the existing node’s current quality. Then the existing node is referred to as the parent of the new
one (child). A child must cite its parent. It is also expected to cite x − 1 other existing nodes.
Suppose the child has an initial quality z. The child cites zx − 1 nodes that are neither its parent
nor cited by its parent. The probability that each of these nodes is picked is proportional to their
quality. The child distributes the remaining (1− z)x citations by randomly replicating the parent’s
citations with equal probability. We allow the replication to mutate within a sector, with probability
η ∈ [0, 1]. Without mutation, the child cites the same node as the parent does; with mutation, the
child cites an alternative node that is in the same sector of the node its parent cites. The alternative
node is chosen with probability proportional to its quality.

Patent quality z plays two more roles in the growth of a citation network, in addition to affect-
ing the demand for the corresponding variety on the product markets. First, upon birth, a patent’s
quality determines its originality in the sense that a higher-quality new patent shares fewer simi-
larities with its parent patent, reflected by a smaller set of common citations. Second, after birth, a
patent’s quality determines the expected rate at which it attracts citations from newer patents.

We are ready to characterize the expected growth of an arbitrary patent’s citations, i.e., the
indegree of a node. Consider an existing patent named ω in sector j with initial quality z, age τ,
and current indegree d at time t. This node’s current quality is z(ω, t) = ze−δτ. A new node is
expected to have initial quality z and make x citations. Symmetrically to Figure 1, node ω receives
new cites from a newborn node at t in four ways. The first way is to become the parent node, with
probability density ze−δτ/[N(t)zo]. This is because the new node belongs to sector j with probabil-
ity Nj(t)/N(t), and then it finds node ω as its parent with probability ze−δτ/[Nj(t)zo]. The second
way is via exact citation replication. Node ω connects to d other existing ones, each of which has

6For a simpler textbook description of the node copying process, see section 13.5 of Newman (2018).
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Figure 1: Four ways for a newborn node to form new edges: an illustration.
Each marker style represents patents in the same sector. A new node adds new edges to the network by (i) citing
its parent node, (ii) replicating its parent’s citations with (iii) possible mutations, and (iv) independently citing other
existing nodes.

a 1/N(t) probability density of being the new node’s parent, and the new node replicates this ci-
tation with probability (1− z)(1− η). The third way is due to mutated replication. The new node
is expected to make x(1− z)η citations (outgoing edges) by mutated replications. Without muta-
tion, each of such edges would go to a node in sector j other than ω with probability Nj(t)/N(t);
and after mutation, the edge goes to ω with probability ze−δτ/[Nj(t)zo]. Combined, the expected
number of new cites that node ω gets due to mutated replication is ze−δτx(1− z)η/[N(t)zo]. The
last way is that node ω gets original new cites untied to the new node’s parent. Each of such cites
occurs with probability density ze−δτ/[N(t)zo], and the new node makes xz− 1 such citations in
expectation. Therefore, when a new node is born at time t following the imperfect node copying
process, the expected number of new citations that node ω in sector j with age τ and initial quality
z gets is as follows

ze−δτ

N(t)zo + d
(1− η)(1− z)

N(t)
+ ze−δτ x(1− z)η

N(t)zo + ze−δτ xz− 1
N(t)zo

=
1

N(t)

[
ze−δτ

zg/(g + δ)
x(1− r) + dr

]
,

(13)

where, for convenience, r ≡ (1− η)(1− z) summarizes the probability of an exact replication. The
intuition is that replication rate r determines the citation growth driven by existing citations d, and
the complement rate 1− r sets the rate at which a patent’s relative quality attracts new citations.
It is straightforward to verify that when a new node is born at time t, the total number of new
citations that all existing patents ω ∈ N (t) expect to receive is indeed x. Notably, the network
formation model we present here is equivalent to a hybrid mechanism of preferential attachment
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and quality-dependent random matching.
The law of motion of a patent’s expected number of citations has an analytical solution. Let

k(z, τ) be the unconditional expectation of indegree or number of citations a patent with initial
quality z has at age τ. In particular, we have k(z, 0) = 0, ∀z, because a newborn patent has not yet
received any citations. Moreover, constant network growth means that k(z, τ) is independent of
the node’s time of birth.

Proposition 1. (Law of motion of expected indegrees.) Consider a growing patent citation network where
new patent nodes are born at an expected rate g > 0, following the imperfect node copying process described
above. Regardless of the time of birth, a patent with initial quality z expects to get k(z, τ) citations at age
τ, such that k(z, τ) solves a differential equation given as

∂τk(z, τ) =
ze−δτ

z/(g + δ)
x(1− r) + k(z, τ)gr, (14)

with initial condition k(z, 0) = 0, ∀z. Notation ∂τk(z, τ) is shorthand for ∂k(z,τ)
∂τ . Therefore, the uncondi-

tional expectation of a node’s indegree k(z, τ) at age τ is a linear function of its initial quality z, satisfying

k(z, τ) =ze−δτ x(1− r)(g + δ)

z(gr + δ)

[
e(gr+δ)τ − 1

]
. (15)

It follows that ∂τk(z, τ) is also linear and strictly increasing in z.

In this proposition, eq. (14) shows that new citations are more likely attracted to existing
patents that have relatively high current quality (ze−δτ) and are already widely cited (k(z, τ)). Ul-
timately, it is the intrinsic quality of a patent that determines the level and growth of its expected
number of citations, as eq. (15) shows. A patent with z > 0 accumulates citations as it ages; but
the citation growth rate ∂τk(z,τ)

k(z,τ) = ∂τ (log k(z, τ)) is strictly decreasing in age τ, more so if quality
depreciates at a higher rate δ.

The network formation process helps the full model to capture Fact 1 and Fact 4. Suppose
a patent ωj in sector j receives a citation from a new patent ωi in sector i, and this is the first
citation from i to j. The new node ωi is hence the pathfinder patent. Conditional on establishing
a new path, ωj is likely of high quality and so is ωi. The reason is that such an event rules out all
the other ways for ωi to cite ωj except for random attachment driven by ωj’s high quality — two
patents in different sectors cannot form parent-child link and neither exact nor mutated replication
is possible for the first cross-sector citation. For the same reason, random attachment is more likely
to occur when the citing patent ωi is of high quality and hence makes more independent citations
untied to its parent. This positive relation between being a pathfinder and having high quality
is consistent with Fact 1. Consequently, if quality is payoff relevant, a pathfinding event is good
news for both the pathfinder firm and the receiver firm, and their market value should increase.
Meanwhile, the impact of a pathfinding event spills over to other firms due to mutation. Consider
a firm f1 that also innovates in j but does not own ωj. When ωj is born and cites ωi, the immediate

19



impact on firm f1 is negative due to diluted market share and a lower chance of getting cited in the
future. However, there is a positive indirect effect. Now that the pathway from j to i is established,
if a future patent of f1 identifies ωj as the parent, then it is can utilize the pathway through exact
or mutated replication. The same reason applies to a firm f2 that innovates in i but does not own
ωi. Eventually, the new pathway increases the chance of f2’s patents in i getting cited through
mutated replication. These are consistent with Fact 4.

The next task is to characterize the stationary cross-sectional distribution of indegrees when
the network size is sufficiently large. The focus is the shape of the distribution’s right tail, when
indegrees become larger. The benchmark is a Pareto distribution whose counter cumulative distri-
bution function (CCDF, right tail) has an exponent a > 1, such that the probability that a patent’s
indegree is at least k is proportional to k−a. A smaller exponent indicates a heavier right tail. The
degree distribution’s power-law tail is a property of a standard preferential attachment model of
network formation. Our model has two complication factors: the additional dimension of het-
erogenous quality z among nodes and, more importantly, the depreciation of z over time. We use
the mean-field approximation approach to analyze the tail property of the stationary marginal
distribution of indegrees. Detailed proofs are relegated to Appendix B.2.

Proposition 2. (Power-law right tail of patent citation distribution.) Consider a sufficiently large size of
the patent citation network as t → ∞. For any fixed distribution of initial quality Z over [zmin, zmax],
the mean-field approximation of the cross-sectional indegree distribution has a power-law right tail. The
CCDF’s tail exponent is

1
r
=

1
(1− z)(1− η)

. (16)

Proposition 2 shows which variables determine the shape of the stationary cross-sectional in-
degree distribution. In this model, the rate of exact citation replication r sets the pace at which
widely cited patents attract disproportionally even more new citations. A high replication rate
favors the “rich get richer” dynamics, resulting in higher probability mass at the right end of in-
degree distribution, or a heavier right tail. It happens when a new patent shares more similarities
with its parent on average (low z), and when the replication mutation rate (η) is low.

4.3 Firm production decisions

Firms are risk neutral and discount future profits at the same rate ρ > 0 as the households. Condi-
tional on the existence of a corresponding patent, the production technology is fully summarized
by a simple production function, given as

y(ω, t) = l(ω, t), ∀ω ∈ N (t), ∀t,

where l(ω, t) is the production labor input and y(ω, t) is the output level. A firm f owns n f (t)
patents at t and hence operates as many product lines, each of which corresponds to a product
variety. The firm takes as given the product-specific demand curve given in eq. (12) and the unit
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wage rate, and optimally prices each variety to maximize profits. Firms do not face any financial
constraint. A standard optimal pricing rule follows, such that p(ω, t) = ν

ν−1 . The ideal price

index P(t) satisfies P(t) = ν
ν−1

(
N(t)zo

)− 1
ν−1 . When the market for production labor clears at

L =
∫

ω∈N (t) l(ω, t), we have C(t) =
(

N(t)zo
) 1

ν−1 L and the aggregate flow profit resulting from
production and sales π ≡ 1

ν−1 L. An equilibrium requires that Π = π − wRR in the household’s
budget. The optimal output of each variety is then pinned down. The maximum instantaneous
profit generated by a product line ω with current quality z(ω, t) satisfies

π(ω, t) =
π

N(t)
z(ω, t)

zo .

If a firm successfully develops a new patent ω and hence a new product line with initial quality z
at time t, then at t + τ, ω’s quality depreciates to z(ω, t + τ) = ze−δτ. Therefore, the present value
of the additional profit stream brought by ω is given as

∫ ∞

0
e−ρτ π(ω, t + τ)

N(t + τ)
dτ =

π

N(t)
z(g + δ)

zg(ρ + g + δ)
≡ z

N(t)
P(g, z), (17)

and P(g, z) represents the total production value of a new patent, when the aggregate knowledge
grows at rate g and the average initial patent quality is z. It follows that ∂gP < 0 and ∂zP < 0.
The present value of a product line decreases in the growth rate g of the total number of varieties
and in the average initial quality z of a competing product. More varieties increase competition
among firms, and so a newer variety’s present value of profit also declines in time of birth. A
higher quality z increases the present value. Therefore, the positive present value of profit stream
incentivizes firms to innovate and create high-quality new production lines.

4.4 Firm innovation decisions

The goal of this section is to examine how the citation network dynamics described in subsec-
tion 4.2 affect firms’ innovation incentives and decisions. Firms utilize existing knowledge to
innovate. At any time t, a firm f ’s innovation decision involves three parts. First, firm f decides
whether to innovate in each sector of its technology space j ∈ J f . Second, conditional on inno-
vating in sector j, firm f observes its sector-specific innovation efficiency and decides its research
intensity, which determines the firm’s expected new knowledge (patents) output in j. Third, firm
f sets the target quality of each of its new patents in sector j. In what follows, we start from the
second and third parts of a firm’s innovation decision, and then we step back to the first part of
the decision.

Consider firm f that innovates in sector j ∈ J f at time t. Firm f has knowledge stock in
j given as n f

j (t) > 0. The aggregate knowledge stock is N(t). The firm draws an innovation

efficiency ε
f
j (t) from an invariant distribution G over R+. The draws are independent and identi-

cally distributed (i.i.d.) across firms and sectors, and the distribution G has finite first and second
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moments. Given ε
f
j (t), a constant-returns-to-scale (CRS) Cobb-Douglas production function de-

termines the expected increment of new knowledge at t, given as

(
ε

f
j (t)n

f
j (t)

)1−γ
(

N(t)R f
j (t)

γ

)γ

s.t. γ ∈ (0, 1). (18)

In the production function, R f
j (t) is the research labor input firm f uses to innovate in sector j at t,

and N(t) is a compound of aggregate knowledge stock at t and it is common to all firms, such that
N(t) = AN(t) for some A > 0.7 Let firm f ’s research intensity in sector j at time t be r f

j (t), defined
as the ratio of firm j’s research labor input over its knowledge stock,

r f
j (t) ≡

R f
j (t)

n f
j (t)

.

Then eq. (18) becomes the production function for f ’s expected knowledge growth rate, given as

g f
j (t) =

(
ε

f
j (t)

)1−γ
(

AN(t)r f
j (t)

γ

)γ

. (19)

The production of g f
j (t) in eq. (19) is independent of the growth history. Given the aggregate

knowledge compound AN(t) and the realization of innovation efficiency ε
f
j (t), the cost mini-

mization problem min wRr f
j (t) to achieve a knowledge growth rate of g f

j (t) yields the following
cost function for the minimal research intensity,

1
N(t)

wRcr

(
g f

j (t), ε
f
j (t)

)
=

1
N(t)

wR
γ

A

(
g f

j (t)
) 1

γ
(

ε
f
j (t)

)− 1−γ
γ

. (20)

Conditional on innovating in sector j at time t, firm f ’s decision of research intensity and knowl-
edge output boils down to the optimal choice of its knowledge growth rate g f

j (t).
New knowledge is created as new patents. As described in subsection 4.2, a newborn patent

cites x existing patents on average. Establishing a citation edge involves a payment by the citing
firm to the cited firm. Let the per-citation payment be φ(t) = φ

N(t) .8 Citation-related payments
occur only when new patents are born. For example, when firm f1 develops a new patent at t and
that new patent cites one of the patents owned by firm f2, then f1 pays φ(t) to f2 at t. Therefore,

7The linear representation of the knowledge compound is with little loss of generality. When Nj(t) in each sector j
grows at the common rate g, a linear aggregation is equivalent to any CRS aggregation of knowledge stocks by sector,
in which case A summarizes the composition of knowledge stock by sector.

8Parameter φ > 0 is exogenous because it is a per-citation payment. Mechanically, when a new patent cites existing
ones, the number of outgoing edges from the new one always equals the total number of inward edges received by
existing ones, regardless of φ. However, as discussed next, patent quality is an endogenous choice and it affects the
expected payment stream attracted by a new payment. Therefore, across firms or across sectors, the payment flows are
endogenous as well.
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every new patent requires a total of 1
N(t)φx expected citation payment.

We emphasize that our notion of citation payment φ(t) is not literal. In a reduced form, it
captures the present value of any payment from the citing firm f1 to the cited firm f2 when f1 finds
new application of f2’s knowledge. For example, f1 may start buying f2’s products or renting f2’s
(tangible or intellectual) capital to use as inputs.

Conditional on innovation, firms decide each new patent’s target initial quality z ∈ [zmin, zmax].
We focus on the interior choice of z. The target initial quality chosen for a patent serves as the
mean of the quality distribution from which this patent randomly draws its actual initial quality.9

The cost of choosing a high target z is summarized by a strictly convex cost function cz : R+ →
R+, such that a higher-quality new patent requires increasingly more research labor, i.e., c′z > 0
and c′′z > 0. The additional research labor required by a new patent born at time t with quality z is

1
N(t) cz(zx). The cost function also reflects the idea that quality z corresponds to the originality of
a patent compared with its parent patent, which in probability is the most similar existing patent
to the new one. Developing original content that differs from the parent patent involves making
original citations (zx) independently, and that is increasingly difficult.

One benefit of having a high target quality z is the high present value of profit stream generated
by the production line, captured in eq. (17). Another benefit of having a high target quality z
depends on expected future network dynamics, described in subsection 4.2. A patent of high initial
quality is expected to attract more citations in the future and brings more payments in present
value. Therefore, the law of motion of a patent’s indegree is payoff relevant and it depends on
the choice of z. Firms know the depreciation rate δ and the mutation rate η. Each innovating firm
also takes as given other firms’ innovation decisions summarized by a constant expected network
growth rate g and the constant average quality z. The expected number of citations a patent with
target initial quality z receives at age τ is simply k(z, τ) given in Proposition 1, as k(·, τ) is linear
in the actual initial quality. The present value of the gross benefit to set the target initial quality of
a new patent at time t to be z therefore satisfies

∫ ∞

0
e−ρτ φ

N(t + τ)
∂τk(z, τ)dτ ≡ z

φx
N(t)

D(g, z),

where ∂τk(z, τ) is the derivative of eq. (15) with respect to age τ. Function D(·) captures the
benefit of patent quality due to degree growth. It is the rate at which a patent expects to gain more
citations as initial quality increases, adjusting for time discount and network expansion. It is a
feature of the network formation process, driven by each patent’s expected degree dynamics, and
common to all firms. In equilibrium, the collective (future) decisions of all firms pin down D(g, z)

9More accurately, firms choose a quality distribution Z from the set of all probability distributions with support
[zmin, zmax]. As only the mean z of any chosen distribution is payoff relevant, we focus on the choice of z directly and
leave the exact form of Z unspecified. For example, Z can be degenerate, and then the chosen mean z is the actual initial
quality.

23



through g and z. Using the definition of the exact replication rate r = (1− z)(1− η), we have

D(g, z) =
(

η

z
+ 1− η

)
(g + δ)(ρ + g)

(ρ + g + δ)[ρ + gη + gz(1− η)]
. (21)

Observe that as a function of the aggregate growth rate g and the average initial quality z, D(g, z)
increases in g and decreases in z. Intuitively, these derivatives reflect two opposing forces that
determine innovation benefit due to degree growth. One is the innovation complementarity effect,
captured by ∂gD > 0. A firm benefits from faster innovation of other firms because its existing
patents can attract more citation payments. Given z, the innovation complementarity effect deter-
mines the upper and lower bounds of citation payment flows, captured by D ∈

(
1
z

1−r
1+ρ/δ , 1

z

)
. The

other is a crowding-out effect, related to creative destruction, captured by ∂zD < 0. The relative
quality of a firm’s patent declines when other firms choose high quality, especially with knowl-
edge obsolescence, as younger patents’ qualities experience less depreciation, which becomes a
negative impact on older patents’ ability to attract new citations.

Combining all costs and benefits associated with patent creation, a firm chooses a patent’s tar-
get quality z∗(g, z, wR) to maximize the expected net benefit of each new patent. The optimization
problem can be written as

B(g, z, wR) ≡ max
z∈[zmin,zmax]

{ production value

zP(g, z) +

degree value

zφxD(g, z)−wRcz(zx)
quality cost

}
− φx
payments

, (22)

where P(·) and D(·) are given in eqs. (17) and (21), respectively. An interior solution z∗(·) for the
optimal target quality must satisfy

z∗(g, z, wR)x =
(
c′z
)−1

(
1

wRx
(
P(g, z) + φxD(g, z)

))
. (23)

A high research wage or a high average initial quality reduces the optimal target quality of any
innovating firm, captured by ∂wR z∗ < 0 and ∂zz∗ < 0, respectively. The response in the optimal
target quality to changes in the aggregate knowledge growth rate reflected by the sign of ∂gz∗

depends on whether the innovation complementarity effect (∂gD > 0) offsets product market
competition (∂gP < 0).

The optimal choice of each patent’s target quality pins down the maximum present value of
the net (expected) benefit B(g, z, wR) of every new patent, given in eq. (22). Then 1

N(t)B(g, z, wR)

is the maximum net benefit of a new patent born at t. By the envelope theorem, we see that the
benefit decreases in research wage and average initial quality captured by ∂wRB < 0 and ∂zB < 0,
and that the effect of knowledge growth ∂gB remains ambiguous.

We are ready to characterize the optimal choice of a firm f ’s innovation rate g f
j (t) in sector

j, taking as given other agents’ decisions. Anticipating the optimal choice of target quality, firm
f gets a flow innovation benefit of 1

N(t)B(g, z, wR)g f
j (t) if its innovation rate in sector j is g f

j (t).
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The flow cost function cr(·) associated with g f
j (t) after observing the innovation efficiency ε

f
j (t) is

given in eq. (20). Firm f ’s optimal choice of g f
j (t) conditional on innovating in j solves

max
g f

j (t)
B(g, z, wR)g f

j (t)− wRcr

(
g f

j (t), ε
f
j (t)

)
. (24)

We focus on the parameter subspace such that B(g, z, wR) > 0. The following result is immediate.

Proposition 3. Consider firm f that innovates in sector j at time t, taking as given a constant expected
knowledge growth rate g in each sector, the constant average initial quality z, and the market wage rate wR

for research labor. The current share of firm f ’s sector-j knowledge is s f
j (t) ≡

n f
j (t)

N(t) = s. The realization

of its innovation efficiency is at ε
f
j (t) = ε. Conditional on innovating in sector j, firm f ’s optimal target

quality of any new patents in sector j is z∗(g, z, wR) given in eq. (23); and firm f ’s optimal choice of its
knowledge growth rate in sector j solves eq. (24), given as g∗(ε; g, z, wR) = εG(g, z, wR), where

G(g, z, wR) ≡
(

AB(g, z, wR)

wR

) γ
1−γ

, (25)

where the net benefit of firm innovation B(·) is given in eq. (22). The maximum flow payoff to firm f for
innovating in sector j at time t is sεV(g, z, wR), with

V(g, z, wR) ≡ (1− γ)

(
A

wR

) γ
1−γ

(B(g, z, wR))
1

1−γ , (26)

where εV(·) is the maximum of eq. (24).

A feature of our model is that innovating firms make decisions along the intensive margins
(quality choice) of the extensive margins (new patent growth rates). Both decisions depend non-
trivially on the endogenous dynamics of the citation network summarized by D(g, z).

Lastly, we step back to the first part of a firm’s innovation decision, taking as given the optimal
choices of knowledge growth and patent quality. Specifically, firms decide whether to innovate in
each sector by weighing the present values of their options.

The option value of not innovating in a sector is normalized at zero. Every firm innovating in
a sector incurs a lump sum cost in research labor κ(t) = 1

N(t)κ, κ > 0, for each patent it currently

owns in that sector. At time t, if firm f with knowledge share s f
j (t) decides to innovate in j after

observing the innovation efficiency ε
f
j (t), it must pay s f

j (t)wRκ upfront. Therefore, firm f finds

it optimal to innovate in sector j if and only if s f
j (t)ε

f
j (t)V (g, z, wR) − s f

j (t)wRκ ≥ 0. A firm’s
decision to innovate in a sector is hence a cutoff rule characterized by a threshold of innovation
efficiency, which is independent of firm or sector characteristics.

Proposition 4. Given g, z, and wR, firm f ’s optimal innovation decision is a cutoff rule characterized by
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ε∗(g, z, wR), such that
ε∗(g, z, wR) =

wRκ

V(g, z, wR)
, (27)

and firm f innovates in sector j at t iff its innovation efficiency is sufficiently high, ε
f
j (t) ≥ ε∗(g, z, wR).

Proposition 4 is consistent with Fact 2. Firms with larger technology spaces are more likely
to draw at least one innovation efficiency above the threshold, and then produce patents with
high realized quality. Therefore, these firms are bigger and more likely to become pathfinders. As
expected, the threshold efficiency increases in research wage and average initial quality, and the
direction of change is unclear in knowledge growth rate.

4.5 Equilibrium

So far, we take as given the constant expected knowledge growth rate g, the average initial quality
z, and the research wage rate wR when analyzing firm decisions. To close the model with of
rational expectations, the tuple (g, z, wR) must be consistent with firm decisions. The derivation
details are in Appendix B.5.

Rational expectations require the expected aggregate knowledge growth rate g that firms take
as given to be consistent with their optimal innovation decisions. Therefore, such a g must satisfy

g = G(g, z, wR)[1− G(ε∗)] (28)

where G (·) is given in eq. (25) and the cutoff efficiency ε∗ = ε∗(g, z, wR) is defined in eq. (27). The
expected knowledge growth rate in each sector is also g, and so is the actual sectoral knowledge
growth rate, by the law of large numbers.

Quality choice is independent of a firm’s characteristics.10 It follows that when all firms an-
ticipate the same (g, z, wR) in equilibrium, they pick the same target initial quality for each new
patent. Therefore, z as the average quality of newborn patents must satisfy

z = z∗(g, z, wR), (29)

where z∗(·) is defined in eq. (23) as a firm’s optimal choice of target quality for each of its new
patents.

Lastly, the market price wR clears the market for research labor. The supply is fixed at R.
Conditional on innovation, a firm’s demand for research labor consists of three parts — the fixed
innovation cost, the research labor input to produce new patents, and the research labor required
to achieve the target patent quality. Applying a law of large numbers yields the market clearing

10It is straightforward to generalize the model to allow for endogenous heterogeneity in the optimal choice of target
quality and hence differing optimal innovation rates. Such a direct extension helps explain Fact 3. The simplest way is
to allow the cost function cz(·) to be firm or firm-sector specific, such that the marginal cost c′z(·) also varies across firms
or firm-sector pairs. The quality distribution Z then becomes endogenous. Moreover, there can be persistent difference
in patent quality and innovation rate across firms. The rest of the model remains intact. We focus on the baseline model
to simplify the equilibrium conditions.
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condition as follows,

R = [1− G(ε∗)]

(
κ

fixed
cost

+
γV (g, z, wR)

(1− γ)wR

cost of quantity

+ G(g, z, wR)cz(zx)
cost of quality

)
, (30)

where V(·) is given in eq. (26) and G (·) in eq. (25).
The three equations eqs. (28), (29) and (30) generate the tuple (g, z, wR), which in turn deter-

mines the rest of the equilibrium outcome. Therefore, we can directly define an equilibrium as a
fixed point in the (g, z, wR)-space.

Definition 1. A stationary rational-expectations equilibrium is a tuple (g, z, wR) with g, wR > 0 and
z ∈ [zmin, zmax] such that (g, z, wR) solves the system of eqs. (28), (29) and (30). Equilibrium out-
come is captured by a cutoff efficiency ε∗ = ε∗(g, z, wR), innovation payoff V = V (g, z, wR),
production value P = P(g, z), and degree value D = D(g, z), where the functions ε∗(·), V(·),
P(·), and D(·) are given in eqs. (27), (26), (17) and (21), respectively.

4.6 Patent and firm values

Before we write down a firm’s value in equilibrium at a given time, it is helpful to discuss the
value of an existing patent and the associated production line. A firm’s value then depends on the
total value of all the patents it owns. The details of derivation are in Appendix B.6.

In equilibrium, the unconditional expectation of the time-t present value of a new patent born
at that time with initial quality z is fully summarized by 1

N(t) (zP + zφxD), after the owner firm
pays the relevant costs but before any quality depreciation and before attracting any edges from
newer patents. As a patent ages, its value evolves, as its quality depreciates and its indegree
increases. Consider an existing patent at time t with current quality z̃ and current indegree d. The
time-t present value of the associated product line is

1
N(t)

z̃ P

by eq. (17). The law of motion of the patent’s expected indegrees at t + τ can be described by
an identical differential equation to eq. (14), but with the initial condition given as k(z̃, 0) = d. It
follows that the time-t present value of the expected citation payments attracted to this patent is

1
N(t)

(
z̃ φxD + dφ

gr
ρ + g(1− r)

)
,

where r = (1− η)(1− z) is the exact replication rate in equilibrium. The first part of the value is
driven by the current quality z̃ of the existing patent, which declines as it ages; whereas the second
part increases in the patent’s number of accumulated citations, which is expected to increase as
it ages. Combining the two parts yields the time-t present value 1

N(t)v(z̃, d) of an existing patent
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with current quality z̃ and current indegree d, such that

v(z̃, d) = z̃ P
remaining

production value

+

remaining degree value

φx
(

z̃ D +
d
x

gr
ρ + g(1− r)

)
. (31)

The present value of all existing patents in the economy at any time is constant at v(zo, x), by the
law of large numbers. Its expression reduces to

v(zo, x) =
1

ρ + g + δ

(
π + gφx

ρ + g + δr
ρ + g(1− r)

)
.

The present value of a firm f at any time t consists of three parts: profit streams generated
by existing product lines, payment streams due to expected new citations of existing patents, and
expected net benefit of innovation. The firm’s time-t knowledge stock is responsible for the first
two parts, and its innovation decision results in the third. The following proposition shows that,
along the equilibrium path characterized by (g, z, wR), the time-t value of any firm f ∈ F is linear
in the firm’s knowledge stock share defined as s f (t) = n f (t)

N(t) . The knowledge share s f (t) is also
the firm’s output, sales, and employment share. The firm’s value per share increases in the firm’s
average patent quality z f (t) and the average number of accumulated citations per patent d

f
(t).

Proposition 5. (Equilibrium firm value.) Consider the path of a stationary equilibrium characterized by
(g, z, wR) and the associated ε∗, V , P , and D. Suppose that, at time t, firm f has a total market share
of s f (t) = s with an average current patent quality z f (t) = z̃ and an average number of accumulated
citations per patent d

f
(t) = d. The time-t value of firm f is proportional to s, given as

V(s, z̃, d) = s

[ average value of an existing patent

z̃ P + φx
(

z̃ D +
d
x

gr
ρ + g(1− r)

)
+

innovation value

1
ρ

(
V∗ − [1− G(ε∗)]wRκ

) ]
,

where V∗ = V
∫ ∞

ε∗ εdG(ε). Firm value V is strictly increasing in s, z̃, and d.

Proposition 5 corresponds to Fact 4. The intuition is as follows. The value of each existing
patent captured by eq. (31) is a linear combination of the patent’s current quality and current in-
degree. Therefore, given firm f ’s market or knowledge share s f (t), the within-firm mean of time-t
quality z f (t) and that of accumulated indegrees d

f
(t) are sufficient statistics to summarize exist-

ing patents’ contributions to firm value. An implication is that a firm’s value is history dependent,
due to the randomness in both its innovation efficiency in each sector and every patent’s actual
number of accumulated citations. It is especially the case when a firm innovates in a small set
of sectors. The last part of firm value is the expected net benefit of firm innovation, determined
by firm decisions discussed in subsection 4.4. It is also proportional to a firm’s current knowl-
edge share as the share is expected to remain unchanged given the common expected knowledge
growth rate g.
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Proposition 5 establishes the connection between a firm’s market value (an ex post quality
measure) and the intrinsic quality of its patents. It further implies that a firm’s market value is
informative about the firm’s average patent quality. In reality, a patent’s intrinsic quality is difficult
to measure. Jaffe’s quality measures... and a theoretical support to that QJE... Our parsimonious
way to model quality captures several aspects of what a patent’s quality may be in reality, and how
these aspects contribute to a firm’s market value — the originality of the patent by definition of z,
the direct product market value (z̃ P), the potential applicability (z̃ φxD), and the acknowledged
applicability (dφ

gr
ρ+g(1−r) ). Quantity (s) matters to a firm’s value as is standard. Meanwhile, the

size of a firm’s technology space is the number of sectors in which the firm innovates, and so
a large technology space helps diversify the risk of drawing a low innovation efficiency in each
single sector.11 Moreover, a larger technology space allows the firm more trials to get high quality
realizations, increasing the chance of being a pathfinder.

Proposition 5 and eq. (31) also offer insights regarding whether and when the number of ac-
cumulated citations d is predicative about a patent’s and its owner firm’s market value. ... ceteris
paribus, φ, x, and age (z̃)

4.7 Firm growth and within-firm granularity

A stationary firm size distribution does not exist in our setup as firms never shrink in size, mea-
sured as the patent stock, and nor do they exhibit entry and exit dynamics. Nonetheless, the model
sheds light on the mechanism of firm growth. Aggregation within a firm yields the equilibrium
growth rate of a firm f at any time t, which satisfies

g f (t) = ∑
j∈J f

n f
j (t)

n f (t)
1{ε f

j (t)≥ε∗}ε
f
j (t)G.

In expectations, firm growth in our model is consistent with Gibrat’s law. Regardless of a firm’s
size measured as the knowledge stock n f (t), its expected growth rate is always g, identical to the
aggregate rate of knowledge growth.

In contrast, the variance of a firm’s growth rate depends its characteristics; it is a function of
the within-firm Herfindahl index across sectors in its technology space. Denote H f (t) as firm f ’s
Herfindahl index at time t, given as

H f (t) = ∑
j∈J f

(
n f

j (t)

n f (t)

)2

∈
[

1
J f , 1

]
,

where J f ≤ J is the number of sectors in firm f ’s technology space J f . Then, as the variance of

11The argument for diversification is especially applicable if the opportunity to innovate arrives randomly for each
firm and each sector, at a fixed Poisson rate. We can then reinterpret the fixed innovation cost κ and the mean of the
innovation efficiency’s distribution G such that they include the arrival rate of innovating opportunity.
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innovation efficiency (σ∗)2 ≡ Var
(
1{ε≥ε∗}ε

)
exists and is finite, the variance of firm growth is

Var
(

g f (t)
)
= (Gσ∗)2 H f (t). (32)

A firm with large technology space and a more uniformly distributed knowledge stock has less
volatility in growth as it can better diversify the risk associated with innovation efficiency. In
contrast, if a firm is large with a large total stock of knowledge but it innovates in a small number
of sectors, then its growth remains volatile. This prediction is confirmed by Fact 6.

Our model therefore provides a simple explanation to the slow decline in firm growth volatil-
ity as firms get larger, if any. It has been discussed by Klette and Kortum (2004); Luttmer (2011);
Gabaix (2011), among others. The explanation is twofold. First, a firm’s large knowledge stock
within a sector does not reduce its growth volatility in that sector, in line with the standard Gibrat’s
law. Hence, knowledge growth rates of large but highly specialized firms remain volatile. Second,
a firm’s growth volatility may decrease slowly in the size of its technology space. Specifically, the
decay speed is low when within-firm “granularity” exists, captured by a high Herfindahl H f (t).
This within-firm granularity is analogous to the notion of granularity on the aggregate level by
Gabaix (2011). When a firm’s technology space is large, but the distribution of the firm’s knowl-
edge stock across sectors is highly skewed and concentrates at a few sectors, then the firm’s knowl-
edge growth in these sectors contributes disproportionally more to its overall growth. Growth
volatility in these sectors translates to firm-level growth volatility and it is difficult to diversity
within the firm.

4.8 Sector-level aggregation of the knowledge network

The network-formation process in this model is the continuous limit of a growing patent-level
digraph with unweighted edges. New patents enter the network as a result of firm innovation.
In this model, it is straightforward to group patents by sector and bundle the citation flows ac-
cordingly to produce an aggregated citation network. Aggregation results in a weighted digraph,
with looping edges representing citations between patents that belong to the same sector. While
the patent-level network has increasingly many vertices and edges, the aggregated network has
a fixed number of vertices J and growing counts of edges. Aggregation allows us to examine the
model’s implications at the sector level.

Consider two sectors i, j ∈ J . Let Xi→j(t) be the accumulated number of citation edges going
from sector-i patents to sector-j ones and Ẋi→j(t) be the corresponding rate of accumulation. The
total number of citation edges satisfy X(t) ≡ ∑i,j∈J Xi→j(t) = N(t)x and Ẋ(t) ≡ ∑i,j∈J Ẋi→j(t) =
gN(t)x. By the law of large numbers, each sector grows at the same constant rate g and shares the
same average current quality zo, and so each sector holds a constant share of patents Sj =

Nj(t)
N(t) , ∀j

and ∀t. The law of motion of the number of citations going from i to j can be written as

Ẋi→j(t) = SigN(t)
[

1{i=j} + x(1− z)
Xi→j(t)
SiN(t)x

+ (zx− 1)Sj

]
. (33)
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This equation is a sector-level counterpart to eq. (13) for a patent. When new nodes are born
(gN(t)), a fraction Si of them are in sector i and can potentially add i to j edges. The indicator
function captures the child-parent links, which only happen within the same sector. Each sector-i
new patent is expected to replicate x(1− z) of its parent’s citations, with and without mutations;
and edges from i to j account for a fraction Xi→j(t)

Si N(t)x of all edges out of i. Note that the rate of
mutation is irrelevant at the sector level, as mutation happens within the cited sector, which is j.
Lastly, each new patent is expected to form zx − 1 quality-driven independent edges; nodes in j
attract such an edge with a total probability of Nj(t)zo

N(t)zo = Sj.
We examine the limiting behavior of cross-sector citations for tractability. Solving eq. (33) un-

der appropriate initial conditions at t = 0 yields a stationary distribution for cross-sector citations.
It means that when there are sufficiently many firms innovating in each sector, the sector-level net-
work can be well approximated using a constant weighted adjacency matrix Ω = [Ωij]J×J , where
a typical element is given as

Ωij ≡
Xi→j(t)

X(t)
= SiSj

zx− 1
zx

+ Si
1{i=j}

zx
. (34)

Note that, by definition, ∑i,j∈J Ωij = 1 and Ẋi→j(t) = ΩijẊ(t). Moreover, Ω is symmetric, or
Ωij = Ωji, ∀i, j.

Matrix Ω offers a number of insights regarding sector-level innovations, despite its simplicity.
Although the form of Ω is derived as a stationary limiting case, the implications apply to more
general cases where the ratios Xi→j(t)/X(t) and Ẋi→j(t)/Ẋ(t) are time-varying. First, sector-
level knowledge stock and citation flows are tightly connected. Sectors with large knowledge
stocks tend to attract as well as make more citations. Second, notice that we can interpret Ωij

as the likelihood of a new edge going from i to j. Between two sectors, the form of the likelihood
resembles gravity, proportional to the product of patent numbers in both sectors. This aggregation
result is consistent with our finding of Fact 5. Third, relatedly, Ωij captures the relative knowledge
diffusion rate of new knowledge from sector i to sector j. Knowledge diffusion between larger
sectors or within a large sector is generally faster. Fourth, the extra terms along the diagonal
of Ω reflects a “home bias” that new patents tend to cite more existing ones in the same sector,
consistent with the data. In this model, it is driven by the child-parent connections.

5 Quantitative Explorations

The previous section establishes that our theoretical model qualitatively captures the empirical
findings. This section examines its quantitative performance. We begin by identification and cali-
bration of key model parameters. Then, we discuss the implications of the empirically recovered
measures of patent quality, its depreciation, and citation mutation rates. Lastly, we quantify the
importance of network dynamics in firm innovation decisions and market values.
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Table 1: Parameter Values

Parameter Value Description

Panel A. Patent network formation
x Average citations made per patent
δ Patent quality depreciation rate
η Within sector mutation rate when copying parent’s citation edges

Panel B. Households and firms: predetermined
ρ 0.03 Discount rate
ν 2.9 Elasticity of substitution across product varieties (Broda and Weinstein, 2006)
L 1 Normalization of production-labor supply
R 0.166 Research-labor supply, 14.2% of total labor (Acemoglu et al., 2018)
A 1 Normalization of aggregate knowledge input
γ 0.5 Innovation elasticity w.r.t. research input (Acemoglu et al., 2018)

Panel C. Households and firms: SMM
φ Citation payment
κ Fixed cost of innovation
cz Coefficient of quadratic quality cost cz(zx) = cz

2 (zx)2

G(·) Distribution of innovation efficiency

5.1 Identification and calibration

A simplifying feature of our model is that the network-formation part is separable from the rest of
the equilibrium. The advantage is twofold. First, it enables us to calibrate the model parameters in
separable groups. Specifically, we use patent citation data to directly identify and recover relevant
parameters and variables, including average number of cites x, quality depreciation rate δ, average
initial quality z, and the exact replication rate r which then produces the value of mutation rate
η. Then, we assign values to the more standard parameters governing household preferences
and firm production by following the literature. Lastly, we calibrate the rest of the parameters
using simulated method of moments (SMM). Relatedly, the second advantage is that after we
empirically recover values of (x, δ, z, r, η) year by year, the theoretical model helps interpret any
observed time trend or variation.

Table 1 reports the selected parameter values. In what follows, we discuss their identification
and calibration in detail.

5.1.1 Network formation

rt

We identify the exact replication rate r using the prediction in Proposition 2 that citation dis-
tribution per parent follows a Pareto distribution with the tail shape parameter 1

r . We allow r to
vary over time, and follow the method and code in Clauset, Shalizi, and Newman (2009). We find
that r = 1/3.5 = 0.2857 consistently over time from 1976 to 2014. By definition, r = (1− z)(1− η)

is the share of new citations that exactly copy parent patent’s citations. If r keeps constant over
time, then the exact copying citation share is static too.
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zt
We estimate zt using year specific version of (34).

Ωij,t ≡
Xi→j

t (t)
X(t)

= Si,tSj,t
ztxt − 1

ztxt
+ Si,t

1{i=j}
ztxt

.

where xt is the average number of citations per patent granted in year t in the USPTO citation data,
we present xt in the left panel of Figure 4. Si,t is sector i’s patent stock share among all sectors in
year t. In the following equation, we run OLS with restriction that b1,t + b2,t = 1 for every year t
from 1976 to 2014.

Ωij,t = b1,t ∗ Si,tSj,t + b2,t ∗ Si,t1{i=j}.

Then zt is estimated as

zt =
1

b2,txt
.

The estimated share of randomly attached citations zt is finally presented in the right panel of
Figure 4. We find that zt is declining over time after 1976, or new patents are more likely to
replicate their parents’ citations in more recent years. zt is also our measure of average patent
quality, or the amount of knowledge spillovers one patent can contribute to others, especially to
other patents that are further apart in the knowledge networks through random attachment. From
consumer side, the decline of zt also reduces welfare gain from a given rate of patent growth g.

By definition, if all patents in a sector i has never cited patents in sector j before year t, and
suddenly a sector i patent cite a sector j patent in t+1, then this citation must be randomly attached,
because there is no parental citations to copy from, and the model assume that random citations
are more likely to happen among high quality patents. When average patent quality declines
overtime, the model predicts that pathfinder patents, which cited a patent in a new technology
category, become less likely. In Figure 5, we find supporting evidence that the share of pathfinder
patents declines over time from 1976. Using published UCB Fung Institute Patent Data from
Balsmeier, Assaf, Chesebro, Fierro, Johnson, Johnson, Li, Lück, O’Reagan, Yeh et al. (2018), we
find similar phenomenon that novel word per patent has been declining since 1985, see Figure 6.

Our measure of cross-sector citation flow has a caveat, because the definition of technological
classes has been stagnant after 1970s, very few new classes has been added to the US patent class,
international patent classification (IPC) or collaborated patent classification (CPC). As a result, the
cross-sector citation flow could be underestimated.

ηt

Equipped with rt and zt, we can estimate ηt as

ηt = 1− rt

1− zt

using Equation (16). The estimated zt is finally presented in the middle panel of Figure 4. ηt moves
in the opposite direction of zt over time. By definition, (1− z)η is the share of citations that follow
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a mutated parent patent’s citation, meaning the citation is given to another patent within the same
sector of the parent’s cited patent. Since zt decreases and ηt increases, (1− z)η must increase over
time.

δt

The discrete-time version of eq. (14) is (allowing for time dependence)

kt+1(ω)− kt(ω) = gt+1
z(ω, t + 1)

zo
t+1

(1− rt+1)xt+1 + gt+1rt+1kt(ω),

where z(ω, t + 1) = z(ω)(1 − δ)τ(ω,t+1) = z(ω)∏τ(ω,t)
s=0 (1 − δt+s). Consider a cohort t denoted

∆N (t) at time t + τ. The by-cohort aggregation becomes

∆Kt
t+τ =

∫
ω∈∆N (t)

[kt+τ(ω)− kt+τ−1(ω)]dω

=gt+τ

∫
ω∈∆N (t) z(ω)dω ∏τ

s=1(1− δt+τ−s)

zo
t+τ

(1− rt+τ)xt+τ + gt+τrt+τ

∫
ω∈∆N (t)

kt+τ−1(ω)

=gt+τ
∆Ntzt ∏τ

s=1(1− δt+τ−s)

zo
t+τ

(1− rt+τ)xt+τ + gt+τrt+τKt
t+τ−1

where Zt ≡ ∆Ntzt is cohort-t’s aggregated initial quality at birth, Zt ∏τ
s=1(1− δt+τ−s) is cohort-t’s

quality at time t + τ, and zo
t+τ the average current quality of all existing patents at the beginning

of t + τ. The issue is Zt and Zot+τ. Observe that for two cohorts t and t + 1 in the same year t + τ,

∆Kt+1
t+τ − gt+τrt+τKt+1

t+τ−1

∆Kt
t+τ − gt+τrt+τKt

t+τ−1
=

Zt+1

Zt(1 + δt)
=

∆Nt+1zt+1

∆Ntzt(1− δt)

We use previously obtained r in LHS and zt for RHS. Then for every year from 1976 to 1999, we
obtain ∆Kt

t+τ and Kt
t+τ for τ ∈ (1, 2, ..., 15) from the USPTO data. δt is then set to equate the RHS

with the mean of 15 values of LHS with different citation lag τs. We do not find a significant time
trend for δt, therefore we assume δ is constant and equal to the average of 15 δt values, 0.1009.

5.1.2 Households and firms

Several parameters in the model are common ingredients in the literature. We therefore set their
values following standard practice. The unit length of time in the model is a year to match the
data frequency. We set the discount rate at ρ = 0.03. We normalize the supply of production
labor, i.e., the numeraire, to be one unit at L = 1. We also normalize the efficiency A = 1 in
the aggregate knowledge compound as an input of new knowledge. The constant elasticity of
substitution across product varieties in the consumption compound is set at a standard value
ν = 2.9, which is the median of the estimates by Broda and Weinstein (2006). We follow Acemoglu
et al. (2018) in the choices of research-labor supply R = 0.166 and its elasticity as innovation input
γ = 0.5.
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The rest of the parameters are calibrated by simulating the full model. Computation is rela-
tively straightforward thanks to the analytical forms. By definition, the equilibrium outcome is
fully captured by the fixed point (g, z, wR) of the system of eqs. (28), (29) and (30). We can map g
and z directly to the patent citation data.

Parameter identification is as follows. The average probability that a firm innovates in a sec-
tor in its technology space pins down 1− G(ε∗), the only statistics of G that enters the equilib-
rium condition. Combining eq. (28) and the expression for a firm’s optimal knowledge growth in

Proposition 3 yields (g∗) f
j (t) = εG =

ε
f
j (t)g

1−G(ε∗) . We map the firm-sector specific knowledge growth

(g∗) f
j (t) conditional on successful innovation to the data and recover the realized ε

f
j (t) ≥ ε∗,

∀ f , j, t. Then ε∗ is set to be the minimum of these realizations, averaged across firm-sector pairs.
For simplicity, we assume a quadratic quality cost function such that cz(zx) = cz

2 (zx)2. Then
we have three parameters left to be identified: the cost coefficient cz, the citation payment φ, and
the innovation fixed cost κ. Based on the set of calibrated parameters so far, we observe that these
three parameters together with the equilibrium research wage wR can be viewed as the solution
to a system of four equations and four unknowns that consists of the three equilibrium conditions
eqs. (28), (29) and (30) and the cutoff efficiency eq. (27).

Before solving the four unknowns using four equations, we need to calibrate G(ε∗) and ε∗. By
definition, we estimate 1− Gt(ε∗) as the probability for firms to innovate in any sector j in time t.
Since ε

f
j is independent across j and f, the probability to innovate in j is the same for incumbents

and potential new entrants. Since we don’t know how many potential new entrants are out there,
we calculate innovation likelihood for sector j as the number of firms that innovate in sector j both
in t and t-1 divided by the number of firms that innovate in sector j in t-1, which is the incumbent
probability of innovation. Then we take average across all sectors and derive our estimation of
1− Gt(ε∗).

We back out ε
f
j (t) using ( 1−G(ε∗))

g (g∗) f
t (t), and (g∗) f

t (t) is estimated as

(g∗) f
t (t) =

number of new patents by firm f in sector j time t
patent stock by firm f in sector j time t-1

− 1.

Then we estimate ε∗t as minimum level of all ε
f
j (t) in year t. We present the calibrated Gt(ε∗) and

ε∗t in Figure 7.
Given Gt(ε∗) and ε∗t , along with previously obtained ηt, zt, δt, xt and other parameters values,

we finally can solve for φt, κt, cz,t and wR using eqs. (27), (28), (29) and (30). The parameters values
are shown in Figure 8. We find that fixed cost of R&D κ has been declining, however, marginal cost
of R&D to increase patent quality cz has been increasing especially quickly after 2000. wR has been
slowly declining after 1980. The sharp increase in marginal cost of patent quality cz explains the
declining average patent quality z and likelihood to find a pathfinding patent since 2000, because
only very high quality patents cite existing patents in other sectors without previous cross sector
citation route. Higher marginal cost of research quality causes the aggregate productivity slow
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down since 2000.

5.2 Counterfactual Analysis

In this subsection, we look into the factors that contributed to aggregate productivity slow down
since 1970s. We set the some of following parameter values x, cz, η, φ, κ, and wR at their 1976 initial
values through the entire sample period one combination at a time, some endogenous variables
other than g will change along as well, such as z∗, ε∗, G(∗) and R, we use Equations eqs. (27),
(28), (29) and (30) to pin down them in the counterfactual scenarios. To estimate Gt(∗), we assume
Gt(.) follows a lognormal distribution and estimate its mean and standard deviation using data
implied g f

t . Finally, we compare the model implied counterfactual time series of quality weighted
growth rate gz, which matters to consumer welfare, with their empirical counterparts.

In Figure 9, we find that setting average citation per patent x to 1976 level alone is the most
effective to restore higher growth rate among single variable counterfactuals. Rising x over time
(see the left panel of Figure 4) means to produce one new patents, inventors need more knowledge
input in number of cited patents, either because the threshold to validate enough originality in
a new patent is higher later on; or the amount of intrinsic knowledge embodied in each cited
patent is smaller over time because of finer specialization; or inventors cite more other patents
only to avoid potential law suit in the future. The fundamental reason could be lack of new
sectors emerging every year, therefore inventions within existing sectors have to crowd out each
other and firms put too much effort defending against each other.

In Figure 10, when we set 2 parameters back to their 1976 levels, the combination of citation
per patent x and research wage wR is the best to maintain 1976’s high growth rate. x is responsible
for growth slow down after 1980s; wR is accountable for the growth slow down before 1980s, as
we can see a rapid wage growth in the lower right panel of Figure 8. Otherwise, citation per patent
x and marginal cost of patent quality cz is the second best combination to push quality weighted
growth rate back to 1980’s level.

In Figure 10, among the 3-parameter combinations including x and wR, x, wR and cz can almost
perfectly replicate the 1976 growth rate through the whole sample period. Therefore, we conclude
that the best policy combination is to reduce these three parameters back to their 1976 levels.

5.3 Policy Implications

The results of our calibration and counterfactual exercises all point to the rising cost components
of R&D as factors that cause productivity growth slowdown since 1970s. First, IPR policy need to
reduce the cost involved with citations to prior art, especially the number of citations per patent
x. Scientists need to be able to prove their patents’ originality and novelty to the patent office or
potential investors using signals other than extensive and costly citations to prior art. Inventors
do not have to cite many previous patents only to pre-empt future IPR dispute. Ultimately, R&D
and IPR policies need to encourage the creation of entire new sectors, which is the only solution to
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crowding out and over specialization within existing sectors. Otherwise the patent system itself
may become the most important hinderance to productivity growth.

Second, current R&D policies have done a good job reducing fixed research cost as reflected
in declining κ in the upper right panel of Figure 8, but more effort need to be given to curb the
marginal cost to improve patent quality cz (lower left panel of Figure 8). For example, high quality
innovation tend to be riskier and more time consuming than low quality research, therefore sub-
sidies targeting such high quality projects are more beneficial than universal subsidies to all type
of research. Besides, our empirical evidence shows that, a special kind of high quality patents,
pathfinder patents generate large positive externality to peer firms by paving new pathways in
the knowledge networks that peer firms can follow in the future. R&D subsidies should target
such pathfinding projects for their positive externalities.

Third, subsidy to R&D wage is still necessary. The well known skill biased technology change
has increased high skill researchers’ wage substantially. Tax breaks to high skilled workers doing
R&D is one example to help firms reduce labor cost of research. Immigration policy that welcomes
high skilled researchers also assures that there are adequate R&D workers in the labor market and
keeps the wage rate down.

6 Conclusion

Knowledge networks matter at both micro and macro levels. We show that the creation of new
citation links across sectors in knowledge networks increases firms innovation rate, market value,
profit and productivity, not only for the firms that discovered the new citation links themselves,
but also for other firms who innovate in these sectors. We then build a dynamic network formation
model, where some citations are given to parental patent’s citations or its related mutations within
the same cited sector; other new citations are randomly assigned, and higher quality patents are
more likely to give and attract random citations. The model implies that the expected quality
for both the citing and cited patents of a new citation links across sectors must be exceptionally
high, because such new path in the citation networks has no previous parental citation to follow.
Peer firms in the same sector as cited patent benefit because they can may receive future mutated
citations from offspring patents of the pathfinder patent; peer firms in the same sector as citing
sector also gain because they can follow the newly discovered citation path in the future to find
high quality knowledge input. After we calibrate the model using patent data, the counterfactual
analysis reveals that rising R&D cost factors, such as number of backward citations per patent as
knowledge input, marginal cost of patent quality, and researcher wage rate, explain the innovation
rate slow down since 1976. R&D and IPR policies need to decrease the aforementioned cost factors
in order to restore productivity growth.
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Appendix A Robustness Checks

In the regressions in (1) and (6), we treat every new cross-category citation links as equally impor-
tant to the knowledge networks. Firms’ exposure to knowledge network dynamics is weighted
using firms’ patent portfolio over different patent categories as specified in equations (2). In this
section, we try different edge important measures as a second weight to calculate a more accurate
measure of firm exposure to knowledge network dynamics.

First, we weight firm patent application number by inward citations they received as a measure
of patent quality adjustment. The result is presented in Table C. We find that the result in Table ??
is preserved only for new links received. More own pathfinder patent even predicts lower inward
citation weighted patent growth rate within 5 years, because patent inward citations as a patent
quality measure take longer than 5 years to appear in the data.

Second, we calculate edge betweenness centrality (EBC) for annual knowledge networks, then
we use EBC as weight to every new citation link, on top of firm’s patent stock share, when cal-
culating the double weighted number of pathfinder and path-receiver links to for each firm. The
results presented in Tables 13 to 18 confirm the pattern we observe in Tables 5 to 10.

Appendix B Proofs

B.1 Proof of Proposition 1

Consider an arbitrary existing node ω ∈ N (t). It has an industry classification j(ω), an initial
quality z(ω), current age τ(ω, t), and current indegree d(ω, t). We copy below eq. (13):

1
N(t)

[
z(ω, t)

zg/(g + δ)
x(1− r) + d(ω, t)r

]
,

where z(ω, t) = z(ω)e−δτ(ω,t) is ω’s current quality. The network size N(t) grows at rate g, then in
a very short time period between t and t + dt, the network gets gN(t)dt of new nodes, and hence
ω’s indegree is expected to increase by

E[d(ω, t + dt) | d(ω, t)]− d(ω, t) =
[

z(ω, t)
z/(g + δ)

x(1− r) + d(ω, t)gr
]

dt, (B.1)

where E[· | d(ω, t)] is the conditional expectation operator, given the realized d(ω, t) at time t. By
definition, k(z, τ) is the unconditional expectation of a node’s indegree at age τ if it has an initial
quality z. It is straightforward to see that, thanks to linearity, eq. (14) is the same expression above
for the expected indegree after taking dt→ 0. Then, solving eq. (14) using the boundary condition
k(z, 0) = 0 produces eq. (15). Taking the first-order derivative of eq. (15) yields

∂k(z, τ)

∂τ
= ze−δτ x(1− r)(g + δ)

z(δ + gr)

[
gre(δ+gr)τ + δ

]
. (B.2)
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B.2 Proof of Proposition 2

We use the mean-field approximation approach to look for the stationary cross-sectional indegree
distribution when the network size is sufficiently large. Following standard practice, we examine
the distribution implied by the law of motion of expected indegrees in eq. (15), exploiting the
large-sample properties when N(t)→ ∞ as t→ ∞.

The goal is to characterize the tail property of the limiting cross-sectional indegree distribution,
or the fraction of nodes with more than d citations denoted as T(d), when d is large. eq. (15) can
be represented as

k(z, τ) = z× ξ(τ),

where ξ(·) is strictly increasing in τ and so its inverse ξ−1(·) is well-defined. The constant network
growth rate g implies an exponential stationary age distribution, with a CCDF given as e−gτ.
Therefore, for each z ∈ [zmin, zmax],

Pr(k(z, τ) > d) = Pr
(

τ > ξ−1(d/z)
)
= e−gξ−1(d/z).

With a given distribution Z of initial quality, the tail probability T(d) = Ez
[
e−gξ−1(d/z)

]
represents

the fraction of nodes with more than d citations. It suffices to show that T(d) = Ez
[
e−gξ−1(d/z)

]
approaches the right tail of a Pareto distribution when d is large.

It remains to be shown the functional form of ξ−1(d/z). To ease expressions, define

ξ =
x(1− r)(g + δ)

z(δ + gr)
.

Then we set
ξ(τ) = ξe−δτ

[
e(δ+gr)τ − 1

]
=

d
z

=⇒ egrτ =
d
zξ

+ e−δτ

and we solve for τ. When δ > 0, the equation does not have a closed-form solution. However,
when d is large and hence τ is large, we can take the logarithm of both sides and approximate the
solution by

τ = ξ−1(d/z) ≈ 1
gr

log
(

d
zξ

)
.

Therefore, when d is large, the tail probability T(d) of the indegree distribution approaches the
power law,

T(d) ≈ Ez
[
e−gξ−1(d/z)

]
= Ez

[(
zξ
) 1

r d−
1
r

]
∼ d−

1
r , as d→ ∞.

This result concludes the proof.
Note that, at the other extreme when d → 0 and hence τ → 0, we have egrτ ≈ 1 + (gr)τ and
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e−δτ ≈ 1− δτ. The approximated solution to ξ(τ) = d/z becomes

τ = ξ−1(d/z) ≈ d
zξ(gr + δ)

.

It follows that the mean-field approximation of indegree distribution when d → 0 is approxi-
mately exponential, and the approximated tail probability is

T(d) ≈ Ez
[
e−gξ−1(d/z)

]
= Ez

[(
e1/[zξ(r+δ/g)]

)−d
]
∼ e−d/[zξ(r+δ/g)], as d→ 0.

B.3 Proof of Proposition 3

The FOC of eq. (24) yields

B(g, z, wR) = wR

∂cr

(
g f

j (t), ε
f
j (t)

)
∂g f

j (t)
=

wR

A

(
g f

j (t)
) 1−γ

γ
(

ε
f
j (t)

)− 1−γ
γ

.

The rest of Proposition 3 follows the assumed functional form of V(g, z, wR). Note that εV is the
maximum of eq. (24), whereas a firm’s flow benefit of innovation in the sector is εV multiplied by
the firm’s current share of knowledge stock in this sector s. It is due to the definition of firm-sector
specific knowledge growth rate and the necessary N(t) adjustment for present values.

B.4 Proof of Proposition 4

The result is immediate as the cutoff innovation efficiency ε∗(g, z, wR) must satisfy

ε∗(g, z, wR)V(g, z, wR) = wRκ,

where the functional form of V(·) is in eq. (26), which yields the cutoff in eq. (27).

B.5 Details of subsection 4.5: equilibrium conditions

In each industry j, the expected knowledge growth rate gj(t) is the expected weighted average of
all innovating firms’ optimal growth rates, given as

gj(t) =E

[
1

Nj(t)

∫
f∈F

n f
j (t)g∗

(
ε

f
j (t); g, z, wR

)
1{

ε
f
j (t)≥ε∗(g,z,wR)

}]

=G (g, z, wR)
∫

f∈F

n f
j (t)

Nj(t)
E

[
ε

f
j (t)1

{
ε

f
j (t)≥ε∗(g,z,wR)

}] .

Recall that Nj(t) =
∫

f∈F n f
j (t) and that each ε

f
j (t) is an i.i.d. draw from G. Therefore, all industries

share a common and time-invariant expected growth rate gj(t) = G (g, z, wR)E
[
ε1{ε≥ε∗(g,z,wR)}

]
=
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g, which is eq. (28). The condition for z in eq. (29) is obvious.
Firms’ demand for research labor comes from three sources. The first is the proportional

fixed cost of innovation
n f

j (t)
N(t) κ if the firm decides to innovate in the sector at t. The second is

the extensive-margin research labor for knowledge growth conditional on innovation, R f
j (t) =

n f
j (t)r

f
j (t) =

n f
j (t)

N(t) cr

(
g f

j (t), ε
f
j (t)

)
. The third is the intensive-margin research labor to choose tar-

get quality z∗, 1
N(t) cz(z∗x). Therefore, the market clearing condition for research labor at any time

t is

R =
∫
( f ,j)∈F×J

1{ε f
j (t)≥ε∗(g,z,wR)}

n f
j (t)

N(t)
κ + R f

j (t) + g f
j (t)

n f
j (t)

N(t)
cz(z∗x)


=
∫
( f ,j)∈F×J

s f
j (t)1{ε f

j (t)≥ε∗(g,z,wR)}

[
κ + cr

(
g∗
(

ε
f
j (t); g, z, wR

)
, ε

f
j (t)

)
+ g∗(ε f

j (t); g, z, wR)cz(zx)
]

.

(B.3)

Inside the bracket of eq. (B.3), κ is the lump sum innovation cost per knowledge share; expression
cr

(
g∗
(

ε
f
j (t); g, z, wR

)
, ε

f
j (t)

)
is the optimal extensive-margin research labor hired to produce

new knowledge at rate g∗(·); cz(zx) is the optimal intensive-margin research labor hired to get the
optimal target quality z of each new patent in eq. (29). Let ε∗(g, z, wR) = ε∗. The firm-sector states
that are relevant for research labor aggregation are knowledge stock share s f

j (t) and innovation

efficiency ε
f
j (t). Let Φ(s, ε, t) denote the time-t measure of firm-sector pairs with knowledge stock

shares no higher than s and innovation efficiency no higher than ε. Aggregation at time t by ( f , j)
is then equivalent to aggregation by (s, ε) using Φ(s, ε, t). By assumption, ε

f
j (t) is i.i.d., and so we

can write Φ(s, ε, t) = Φ(s, t)G(ε) with slight abuse of notation. By definition of knowledge stock
shares,

∫
( f ,j)∈F×J s f

j (t) =
∫

s sΦ(ds, t) = 1. Applying a law of large numbers, the RHS of eq. (B.3)
becomes

RHS

=
∫

s
s
∫

ε≥ε∗

[
κ +

γ

A
(εG (z, wR))

1
γ (ε)−

1−γ
γ + εG(g, z, wR)cz(zx)

]
dG(ε) Φ(ds, t)

=[1− G(ε∗)]κ + g · cz(zx) + γ

(∫ ∞

ε∗
εdG

)
A

γ
1−γ

(
B(g, z, wR)

wR

) 1
1−γ

.

Using eq. (26), the last term becomes γ
wR(1−γ)

v
(∫ ∞

ε∗ εdG; g, z, wR
)
= γV(g,z,wR)

wR(1−γ)

∫ ∞
ε∗ εdG. Then R =

RHS is eq. (30). Note that the explicit form and evolution rule of the distribution Φ(s, t) need not
be part of the equilibrium definition.
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B.6 Details of subsection 4.6 and proof of Proposition 5

B.6.1 The value of an existing patent

Consider an existing patent named ω ∈ N (t) at time t. Its initial quality and age are fully sum-
marized by the time-t current quality, denoted as

z(ω, t) = z̃ = z(ω)e−δτ(ω,t).

Its current indegree is d(ω, t) = d.
The time-t present value of the associated production line is straightforward, given as

∫ ∞

0
e−ρτ πz̃e−δτ

N(t + τ)zo =
z̃

N(t)
P(g, z).

The expected law of motion of ω’s indegree in the future determines the citation payment flow,
and it can be written as a differential equation identical to eq. (B.1), or

∂k(z̃, t + τ | t)
∂τ

= z̃e−δτ x(1− r)
z/(g + δ)

+ k(z̃, t + τ | t)gr

with a different boundary condition k(z̃, t) = d. This non-zero boundary condition results in an
additional term in the differential equation’s solution, such that, conditional on current indegree
d(ω, t) = d, the expected number of citations ω accumulates at t + τ is given by

k(z̃, t + τ | t) = k (z̃, τ) + degrτ,

where k(·) is the expected-indegree function defined in eq. (15). The first-order derivative with
respect to τ yields ω’s citation growth,

∂k(z̃, t + τ | t)
∂τ

=
∂k(z̃, τ)

∂τ
+ dgregrτ.

The present value of future citation payment flows attracted to ω is then

∫ ∞

0
e−ρτ φ

N(t + τ)

(
∂k(z̃, τ)

∂τ
+ dgregrτ

)
dτ =

1
N(t)

(
z̃ φxD(g, z) + dφ

gr
ρ + g(1− r)

)
.

The expression of v(z̃, d; g, z, wR) in eq. (31) follows immediately.

B.6.2 Proof of Proposition 5

To ease expression, we drop the equilibrium index (g, z, wR). Suppose N f (t) is the set of all
patents that firm f already owns at t. By definition, z f (t) =

∫
ω∈N f (t) z(ω, t)/n f (t), and d

f
(t) is
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similar. The value of firm f ’s existing pool of patents is

1
N(t)

∫
ω∈N f (t)

v(z(ω, t), d(ω, t); g, z, wR)

=
1

N(t)

∫
ω∈N f (t)

(
z(ω, t)P + z(ω, t)φxD + d(ω, t)φ

gr
ρ + g(1− r)

)
=

1
N(t)

(
n f (t)z f (t)P + n f (t)z f (t)φxD + n f (t)d

f
(t)φ

gr
ρ + g(1− r)

)
=s
(

z̃P + z̃φxD + dφ
gr

ρ + g(1− r)

)
.

The value of firm f due to future innovation is as follows. For any future time t + τ, the
expected net flow value of firm f ’s optimal innovation decision can be written as

Et

[
∑
j∈J

s f
j (t + τ)1{ε f

j (t+τ)≥ε∗}

(
ε

f
j (t + τ)V − wRκ

)]

=Et

[
s f (t + τ)

] (
V
∫ ∞

ε∗
εdG− [1− G(ε∗)]wRκ

)
=Et

[
s f (t + τ)

] (
V∗ − [1− G(ε∗)]wRκ

)
,

where V(·) is defined in eq. (26). Along a stationary equilibrium path, a firm’s knowledge stock
and the aggregate knowledge stock are expected to grow at the same rate g. Therefore, for any
τ > 0, Et

[
s f (t + τ)

]
= s f (t) = s. The present value of the payoff stream due to firm innovation

becomes ∫ ∞

0
e−ρτs

(
V∗ − [1− G(ε∗)]wRκ

)
=

s
ρ

(
V∗ − [1− G(ε∗)]wRκ

)
.

Proposition 5 follows.

Appendix C Tables and Figures
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Figure 2: Diamond Cutting Tool Figure 3: Light Directing Film

Table 2: Innovation Rate for All Firms

(1) (2) (3) (4) (5)
τ =‘ τ =2 τ =3 τ =4 τ =5

lps -1.005∗∗∗ -1.040∗∗∗ -1.075∗∗∗ -1.105∗∗∗ -1.130∗∗∗

(-332.22) (-298.92) (-277.85) (-261.01) (-246.11)

lnonclass 0.612∗∗∗ 0.617∗∗∗ 0.592∗∗∗ 0.558∗∗∗ 0.528∗∗∗

(129.61) (121.77) (108.06) (94.96) (83.66)

lwpf self 0.723∗∗∗ 0.574∗∗∗ 0.476∗∗∗ 0.450∗∗∗ 0.450∗∗∗

(11.95) (9.99) (8.19) (7.76) (7.70)

lwpf peer 0.0308∗∗∗ 0.0380∗∗∗ 0.0360∗∗∗ 0.0448∗∗∗ 0.0407∗∗∗

(3.64) (4.72) (4.46) (5.44) (4.81)

lwpr self 0.993∗∗∗ 1.104∗∗∗ 1.131∗∗∗ 1.105∗∗∗ 1.112∗∗∗

(10.15) (10.90) (10.50) (9.85) (9.43)

lwpr peer 0.0736∗∗∗ 0.0469∗∗∗ 0.0466∗∗∗ 0.0434∗∗∗ 0.0497∗∗∗

(9.56) (6.40) (6.34) (5.76) (6.41)
N 483981 581050 599214 584269 551834
R2 0.819 0.791 0.789 0.795 0.805
Firm and year fixed effects included. Observations clustered by firm.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: Extensive Innovation Rate for All Firms

(1) (2) (3) (4) (5)
τ =1 τ =2 τ =3 τ =4 τ =5

lps -0.372∗∗∗ -0.798∗∗∗ -1.283∗∗∗ -1.809∗∗∗ -2.331∗∗∗

(-82.68) (-76.28) (-63.55) (-58.55) (-56.93)

lnonclass -0.166∗∗∗ -0.355∗∗∗ -0.537∗∗∗ -0.710∗∗∗ -0.872∗∗∗

(-52.32) (-47.57) (-36.98) (-30.90) (-28.59)

lwpf self 0.179∗∗∗ 0.369∗∗∗ 0.562∗∗∗ 0.882∗∗∗ 1.148∗∗

(4.72) (4.56) (3.82) (3.46) (3.27)

lwpf peer 0.252∗∗∗ 0.475∗∗∗ 0.596∗∗∗ 0.663∗∗∗ 0.718∗∗∗

(42.00) (36.09) (26.59) (18.86) (14.20)

lwpr self 0.600∗∗∗ 1.299∗∗∗ 2.198∗∗∗ 3.254∗∗∗ 4.300∗∗∗

(12.68) (12.56) (11.88) (11.17) (10.21)

lwpr peer 0.431∗∗∗ 0.797∗∗∗ 1.025∗∗∗ 1.169∗∗∗ 1.296∗∗∗

(76.26) (64.29) (47.56) (35.29) (27.76)
N 576222 458316 394187 341563 295485
R2 0.443 0.512 0.534 0.530 0.538
Firm and year fixed effects included. Observations clustered by firm.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Intensive Innovation Rate for All Firms

(1) (2) (3) (4) (5)
τ =1 τ =2 τ =3 τ =4 τ =5

lps -0.544∗∗∗ -0.121∗∗∗ 0.356∗∗∗ 0.858∗∗∗ 1.362∗∗∗

(-94.37) (-11.12) (17.15) (27.42) (33.29)

lnonclass 0.583∗∗∗ 0.745∗∗∗ 0.871∗∗∗ 1.000∗∗∗ 1.124∗∗∗

(103.65) (97.82) (64.26) (46.62) (39.46)

lwpf self 0.709∗∗∗ 0.430∗∗∗ 0.110 -0.202 -0.484
(10.79) (5.01) (0.78) (-0.92) (-1.60)

lwpf peer -0.164∗∗∗ -0.343∗∗∗ -0.430∗∗∗ -0.489∗∗∗ -0.547∗∗∗

(-15.41) (-21.39) (-18.06) (-13.94) (-11.32)

lwpr self 0.345∗∗∗ -0.406∗∗∗ -1.428∗∗∗ -2.692∗∗∗ -3.831∗∗∗

(3.91) (-4.04) (-9.11) (-10.68) (-10.05)

lwpr peer -0.319∗∗∗ -0.641∗∗∗ -0.844∗∗∗ -0.991∗∗∗ -1.119∗∗∗

(-31.42) (-42.62) (-36.70) (-29.99) (-25.05)
N 342891 390133 366781 328697 288790
R2 0.684 0.469 0.389 0.381 0.403
Firm and year fixed effects included. Observations clustered by firm.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5: Growth in Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

lwpf self 0.0464∗∗∗ 0.0253∗ 0.0299∗ 0.0351∗ 0.0348∗ 0.0188∗ 0.00404 0.00804 0.0160 0.00846
(5.71) (2.33) (2.42) (2.44) (2.11) (2.42) (0.46) (0.87) (1.75) (0.91)

lwpf peer 0.0402∗∗ 0.0119 0.0519 0.0807∗ 0.0750 0.0331∗ -0.00763 0.0197 0.0314 -0.00590
(3.22) (0.67) (1.91) (2.26) (1.52) (2.51) (-0.46) (1.01) (1.38) (-0.21)

lwpr self 0.0609∗∗∗ 0.0610∗∗∗ 0.0483∗∗∗ 0.0540∗∗∗ 0.0654∗∗∗ 0.00780 0.00922 -0.00396 -0.00403 0.00129
(6.61) (5.39) (3.54) (3.55) (3.54) (1.12) (1.08) (-0.42) (-0.52) (0.12)

lwpr peer 0.0211 0.0572∗ 0.0522 0.0370 0.0484 -0.00249 0.000733 -0.00658 0.0321 -0.00178
(1.76) (2.56) (1.22) (0.85) (0.80) (-0.19) (0.04) (-0.18) (1.16) (-0.05)

ltsm 0.706∗∗∗ 0.573∗∗∗ 0.448∗∗∗ 0.418∗∗∗ 0.401∗∗∗ 0.793∗∗∗ 0.424∗∗∗ 0.164∗∗∗ 0.137∗∗∗ 0.0407
(29.65) (19.40) (12.84) (10.20) (7.99) (31.30) (14.13) (5.17) (4.62) (1.28)

ltcw -0.633∗∗∗ -0.492∗∗∗ -0.381∗∗∗ -0.350∗∗∗ -0.323∗∗∗ -0.783∗∗∗ -0.411∗∗∗ -0.169∗∗∗ -0.113∗∗∗ -0.0505
(-27.75) (-17.93) (-11.51) (-9.07) (-6.73) (-31.61) (-12.89) (-4.99) (-3.43) (-1.46)

N 9146 7394 5928 4711 3668 8680 7090 5706 4535 3514
R2 0.376 0.334 0.332 0.366 0.392 0.627 0.690 0.752 0.815 0.859
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
lwpf is log scaled patent stock weighted number of new outward citations from firm’s technology space.
lwpr is log scaled patent stock weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and market value are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 6: Growth in Employment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

lwpf self 0.0146∗∗∗ 0.0224∗∗∗ 0.0250∗∗∗ 0.0257∗∗∗ 0.0277∗∗∗ 0.00874∗∗∗ 0.0127∗∗∗ 0.0112∗∗∗ 0.00960∗∗∗ 0.00905∗∗

(10.44) (10.61) (9.17) (7.67) (7.15) (6.37) (6.49) (4.97) (3.55) (3.03)

lwpf peer 0.0135∗∗∗ 0.0203∗∗∗ 0.0212∗∗∗ 0.0254∗∗∗ 0.0190∗∗ 0.00995∗∗∗ 0.0117∗∗ 0.00950∗ 0.0101∗ 0.00308
(5.37) (5.29) (4.28) (4.31) (2.98) (4.17) (3.17) (2.11) (1.99) (0.54)

lwpr self 0.0134∗∗∗ 0.0190∗∗∗ 0.0210∗∗∗ 0.0243∗∗∗ 0.0259∗∗∗ 0.00986∗∗∗ 0.0137∗∗∗ 0.0148∗∗∗ 0.0173∗∗∗ 0.0181∗∗∗

(10.07) (9.10) (7.67) (7.47) (6.86) (7.78) (7.12) (6.15) (6.27) (5.68)

lwpr peer 0.0150∗∗∗ 0.0231∗∗∗ 0.0260∗∗∗ 0.0250∗∗∗ 0.0302∗∗∗ 0.0112∗∗∗ 0.0157∗∗∗ 0.0159∗∗∗ 0.0134∗∗ 0.0160∗∗

(5.42) (5.72) (5.04) (3.98) (4.48) (3.87) (3.98) (3.52) (2.76) (3.23)

ltsm 0.0511∗∗∗ 0.0759∗∗∗ 0.0878∗∗∗ 0.0945∗∗∗ 0.0972∗∗∗ 0.0879∗∗∗ 0.121∗∗∗ 0.117∗∗∗ 0.107∗∗∗ 0.0948∗∗∗

(12.66) (11.38) (10.28) (9.24) (8.28) (11.93) (10.42) (8.46) (6.81) (5.50)

ltcw -0.106∗∗∗ -0.145∗∗∗ -0.155∗∗∗ -0.159∗∗∗ -0.154∗∗∗ -0.140∗∗∗ -0.168∗∗∗ -0.152∗∗∗ -0.134∗∗∗ -0.108∗∗∗

(-23.86) (-20.25) (-16.67) (-13.95) (-11.54) (-21.16) (-16.89) (-12.60) (-9.57) (-6.83)
N 35419 32060 29043 26399 24022 34599 31437 28541 25987 23681
R2 0.126 0.158 0.180 0.199 0.218 0.339 0.446 0.523 0.583 0.627
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
lwpf is log scaled patent stock weighted number of new outward citations from firm’s technology space.
lwpr is log scaled patent stock weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen and capital are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7: Growth in Capital

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

lwpf self 0.0160∗∗∗ 0.0239∗∗∗ 0.0285∗∗∗ 0.0315∗∗∗ 0.0338∗∗∗ 0.00826∗∗∗ 0.0119∗∗∗ 0.0113∗∗∗ 0.0110∗∗∗ 0.0103∗∗

(11.00) (10.46) (9.40) (8.49) (7.74) (6.22) (5.98) (4.65) (3.90) (3.20)

lwpf peer 0.0152∗∗∗ 0.0241∗∗∗ 0.0255∗∗∗ 0.0318∗∗∗ 0.0259∗∗∗ 0.00773∗∗ 0.00924∗ 0.00801 0.0117∗ 0.00907
(6.13) (5.70) (4.91) (5.17) (3.86) (3.27) (2.46) (1.74) (2.24) (1.58)

lwpr self 0.0152∗∗∗ 0.0237∗∗∗ 0.0275∗∗∗ 0.0307∗∗∗ 0.0347∗∗∗ 0.00999∗∗∗ 0.0148∗∗∗ 0.0168∗∗∗ 0.0173∗∗∗ 0.0191∗∗∗

(9.97) (9.68) (8.62) (8.01) (7.92) (8.12) (8.05) (7.26) (6.18) (6.04)

lwpr peer 0.0167∗∗∗ 0.0260∗∗∗ 0.0350∗∗∗ 0.0342∗∗∗ 0.0446∗∗∗ 0.00780∗∗ 0.0104∗∗ 0.0125∗∗ 0.00977 0.0139∗

(6.02) (6.15) (6.31) (4.97) (5.91) (2.84) (2.78) (2.75) (1.89) (2.56)

ltsm 0.0545∗∗∗ 0.0933∗∗∗ 0.114∗∗∗ 0.122∗∗∗ 0.126∗∗∗ 0.0800∗∗∗ 0.145∗∗∗ 0.164∗∗∗ 0.160∗∗∗ 0.152∗∗∗

(11.29) (10.71) (9.95) (9.07) (8.25) (10.73) (10.82) (9.66) (8.38) (7.41)

ltcw -0.112∗∗∗ -0.175∗∗∗ -0.206∗∗∗ -0.218∗∗∗ -0.221∗∗∗ -0.134∗∗∗ -0.198∗∗∗ -0.210∗∗∗ -0.198∗∗∗ -0.179∗∗∗

(-22.24) (-20.10) (-17.92) (-15.64) (-13.62) (-20.36) (-18.24) (-15.18) (-12.25) (-9.95)
N 35669 32310 29263 26591 24175 34842 31686 28764 26187 23827
R2 0.165 0.223 0.255 0.276 0.289 0.401 0.521 0.599 0.652 0.692
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
lwpf is log scaled patent stock weighted number of new outward citations from firm’s technology space.
lwpr is log scaled patent stock weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen and capital are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 8: Growth in Profit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

lwpf self 0.0156∗∗∗ 0.0259∗∗∗ 0.0314∗∗∗ 0.0336∗∗∗ 0.0352∗∗∗ 0.00851∗∗∗ 0.0139∗∗∗ 0.0142∗∗∗ 0.0146∗∗∗ 0.0119∗∗

(7.65) (8.88) (8.92) (8.18) (7.67) (4.37) (5.33) (4.84) (4.51) (3.29)

lwpf peer 0.0128∗∗ 0.0166∗∗ 0.0101 0.0209∗∗ 0.0109 0.00722 0.00227 -0.00470 0.00606 -0.00244
(3.00) (2.71) (1.55) (2.93) (1.52) (1.78) (0.40) (-0.81) (0.97) (-0.39)

lwpr self 0.0199∗∗∗ 0.0266∗∗∗ 0.0253∗∗∗ 0.0296∗∗∗ 0.0334∗∗∗ 0.0159∗∗∗ 0.0194∗∗∗ 0.0162∗∗∗ 0.0179∗∗∗ 0.0213∗∗∗

(10.17) (9.49) (7.25) (7.55) (7.36) (9.08) (7.83) (5.55) (5.55) (5.70)

lwpr peer 0.0180∗∗∗ 0.0261∗∗∗ 0.0350∗∗∗ 0.0288∗∗∗ 0.0367∗∗∗ 0.00958∗ 0.0115 0.0157∗∗ 0.0103 0.0161∗∗

(4.10) (4.15) (5.25) (3.91) (4.64) (2.13) (1.89) (2.80) (1.77) (2.73)

ltsm 0.0883∗∗∗ 0.114∗∗∗ 0.115∗∗∗ 0.114∗∗∗ 0.110∗∗∗ 0.164∗∗∗ 0.189∗∗∗ 0.154∗∗∗ 0.130∗∗∗ 0.117∗∗∗

(12.32) (10.84) (9.59) (8.45) (7.52) (12.80) (10.93) (8.97) (7.45) (6.54)

ltcw -0.133∗∗∗ -0.166∗∗∗ -0.161∗∗∗ -0.155∗∗∗ -0.144∗∗∗ -0.207∗∗∗ -0.229∗∗∗ -0.184∗∗∗ -0.154∗∗∗ -0.134∗∗∗

(-18.57) (-15.43) (-12.86) (-10.68) (-8.92) (-19.31) (-15.38) (-11.95) (-9.37) (-7.65)
N 33475 30445 27707 25284 23099 32699 29860 27231 24909 22781
R2 0.150 0.184 0.203 0.232 0.249 0.387 0.472 0.536 0.588 0.633
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
lwpf is log scaled patent stock weighted number of new outward citations from firm’s technology space.
lwpr is log scaled patent stock weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and profit are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Growth in Sales

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

lwpf self 0.0163∗∗∗ 0.0252∗∗∗ 0.0297∗∗∗ 0.0304∗∗∗ 0.0311∗∗∗ 0.0102∗∗∗ 0.0150∗∗∗ 0.0146∗∗∗ 0.0128∗∗∗ 0.0105∗∗

(8.60) (9.18) (8.57) (7.62) (6.84) (6.14) (6.30) (5.23) (4.31) (3.24)

lwpf peer 0.0160∗∗∗ 0.0232∗∗∗ 0.0239∗∗∗ 0.0248∗∗∗ 0.0177∗∗ 0.00510 0.00415 0.00497 0.00428 -0.000551
(5.02) (4.79) (4.16) (3.84) (2.68) (1.65) (1.01) (1.02) (0.81) (-0.10)

lwpr self 0.0190∗∗∗ 0.0276∗∗∗ 0.0290∗∗∗ 0.0327∗∗∗ 0.0348∗∗∗ 0.0154∗∗∗ 0.0213∗∗∗ 0.0207∗∗∗ 0.0218∗∗∗ 0.0230∗∗∗

(10.52) (10.17) (8.59) (8.37) (7.79) (9.49) (9.22) (7.58) (6.97) (6.44)

lwpr peer 0.0151∗∗∗ 0.0163∗∗ 0.0200∗∗ 0.0207∗∗ 0.0265∗∗∗ 0.00900∗∗ 0.00463 0.00509 0.00780 0.00886
(4.70) (3.15) (3.13) (2.87) (3.60) (2.88) (1.03) (1.00) (1.50) (1.72)

ltsm 0.0673∗∗∗ 0.0946∗∗∗ 0.105∗∗∗ 0.106∗∗∗ 0.104∗∗∗ 0.125∗∗∗ 0.163∗∗∗ 0.150∗∗∗ 0.122∗∗∗ 0.106∗∗∗

(12.05) (10.76) (9.78) (8.94) (8.09) (12.07) (10.39) (8.82) (7.45) (6.48)

ltcw -0.134∗∗∗ -0.181∗∗∗ -0.194∗∗∗ -0.192∗∗∗ -0.179∗∗∗ -0.187∗∗∗ -0.223∗∗∗ -0.202∗∗∗ -0.169∗∗∗ -0.132∗∗∗

(-20.59) (-18.12) (-15.79) (-13.82) (-11.74) (-19.75) (-15.94) (-13.19) (-10.76) (-8.09)
N 35424 32123 29130 26483 24094 34608 31506 28635 26084 23754
R2 0.165 0.202 0.226 0.242 0.251 0.411 0.526 0.592 0.644 0.677
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
lwpf is log scaled patent stock weighted number of new outward citations from firm’s technology space.
lwpr is log scaled patent stock weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and sale are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: Growth in TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

lwpf self 0.00258 0.00343 0.00669∗∗ 0.00905∗∗∗ 0.00685∗ 0.000591 0.000174 0.00348 0.00414 0.00231
(1.49) (1.61) (2.89) (3.76) (2.54) (0.34) (0.08) (1.63) (1.93) (0.96)

lwpf peer -0.00447 -0.00671 -0.00459 -0.00625 -0.00521 -0.00540 -0.00715∗ -0.00331 -0.00527 -0.00254
(-1.18) (-1.62) (-0.82) (-1.65) (-1.29) (-1.57) (-1.97) (-0.61) (-1.42) (-0.77)

lwpr self 0.00446∗∗ 0.00296 0.00463∗ 0.00654∗∗ 0.00735∗∗ 0.00432∗∗ 0.00277 0.00468∗ 0.00759∗∗∗ 0.00781∗∗∗

(3.12) (1.48) (2.13) (2.60) (2.98) (3.09) (1.47) (2.40) (3.63) (3.83)

lwpr peer 0.00689 0.00587 0.00625 0.00454 -0.00183 -0.000369 0.000795 -0.000248 -0.00301 -0.0103∗∗

(1.65) (1.36) (1.29) (1.02) (-0.39) (-0.11) (0.20) (-0.06) (-0.80) (-2.62)

ltsm 0.0332∗∗∗ 0.0417∗∗∗ 0.0400∗∗∗ 0.0394∗∗∗ 0.0391∗∗∗ 0.0454∗∗∗ 0.0430∗∗∗ 0.0345∗∗∗ 0.0297∗∗∗ 0.0260∗∗

(9.57) (8.84) (7.49) (6.62) (6.21) (8.03) (6.26) (4.84) (3.77) (3.00)

ltcw -0.0254∗∗∗ -0.0251∗∗∗ -0.0202∗∗ -0.0162∗ -0.0119 -0.0441∗∗∗ -0.0378∗∗∗ -0.0274∗∗∗ -0.0272∗∗ -0.0235∗

(-6.10) (-4.48) (-3.09) (-2.21) (-1.50) (-7.42) (-5.30) (-3.47) (-3.16) (-2.52)
N 25306 22912 20917 19128 17529 24842 22534 20597 18864 17278
R2 0.172 0.244 0.280 0.302 0.317 0.348 0.467 0.522 0.560 0.595
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
lwpf is log scaled patent stock weighted number of new outward citations from firm’s technology space.
lwpr is log scaled patent stock weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and tfp are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 11: Citation Count across Categories

(1) (2) (3) (4)
lncite lncite lncite lncite

lcps 0.277∗∗∗ 0.653∗∗∗ 0.277∗∗∗ 0.653∗∗∗

(36.15) (92.67) (36.15) (92.67)

ldps 0.302∗∗∗ 0.579∗∗∗ 0.302∗∗∗ 0.579∗∗∗

(34.62) (72.60) (34.62) (72.60)

cons -3.701∗∗∗ -9.534∗∗∗

(-36.42) (-118.63)
N 1531713 1512213 1531713 1512213
R2 0.148 0.758 0.148 0.758
Citing-nclass FE Yes No Yes No
Cited-nclass FE Yes No Yes No
Year FE Yes Yes Yes Yes
Citing-nclass-Cited-nclass FE No Yes No Yes
t statistics in parentheses
lncite is log scaled citation count from citing category to cited category.
lcps is log scaled patent stock in the citing category.
ldps is scaled patent stock in the cited category.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 12: Quality Weighted Innovation Rate for All Firms

(1) (2) (3) (4) (5)
τ =1 τ =2 τ =3 τ =4 τ =5

lcwps -1.396∗∗∗ -3.296∗∗∗ -5.903∗∗∗ -9.453∗∗∗ -14.12∗∗∗

(-44.52) (-34.89) (-27.77) (-20.27) (-16.13)

lnonclass 0.397∗∗∗ 0.491∗∗∗ 0.202 -0.694∗ -2.280∗∗∗

(21.51) (10.31) (1.47) (-1.98) (-3.29)

lwpf self -0.450∗∗ -0.968∗∗ -1.346 -2.919 -3.729
(-2.75) (-2.82) (-1.60) (-1.24) (-0.67)

lwpf peer 0.00125 0.132 0.153 0.258 0.375
(0.04) (1.56) (0.87) (0.79) (0.71)

lwpr self 2.244∗∗∗ 5.067∗∗∗ 7.739∗∗∗ 10.17∗∗∗ 10.88
(13.98) (10.77) (6.54) (3.75) (1.87)

lwpr peer 0.0276 0.200∗∗ 0.612∗∗∗ 1.145∗∗ 1.924∗∗

(1.00) (2.80) (3.63) (3.02) (2.83)
N 956556 849343 755730 672557 599414
R2 0.228 0.245 0.266 0.246 0.227
Firm and year fixed effects included. Observations clustered by firm.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 13: Growth in Market Value

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

ldwpf self 0.0446∗∗∗ 0.0241∗ 0.0285∗ 0.0341∗ 0.0337∗ 0.0181∗ 0.00382 0.00711 0.0150 0.00759
(5.83) (2.36) (2.46) (2.51) (2.18) (2.48) (0.47) (0.82) (1.75) (0.86)

ldwpf peer 0.0344∗∗ 0.0114 0.0482∗ 0.0608 0.0425 0.0256∗ -0.00823 0.0228 0.0192 -0.0238
(3.00) (0.70) (2.02) (1.83) (0.92) (2.12) (-0.52) (1.33) (0.86) (-0.91)

ldwpr self 0.114∗∗∗ 0.115∗∗∗ 0.0914∗∗∗ 0.102∗∗∗ 0.122∗∗∗ 0.0152 0.0180 -0.00710 -0.00642 0.00203
(6.77) (5.50) (3.61) (3.62) (3.53) (1.18) (1.14) (-0.41) (-0.46) (0.11)

ldwpr peer 0.0251 0.0825 0.0718 0.0511 0.0586 -0.0153 -0.0157 -0.0222 0.0781 -0.0328
(1.06) (1.82) (0.82) (0.60) (0.48) (-0.60) (-0.39) (-0.28) (1.34) (-0.45)

ltsm 0.707∗∗∗ 0.574∗∗∗ 0.451∗∗∗ 0.422∗∗∗ 0.406∗∗∗ 0.794∗∗∗ 0.424∗∗∗ 0.164∗∗∗ 0.136∗∗∗ 0.0409
(29.65) (19.42) (12.88) (10.24) (8.05) (31.28) (14.12) (5.17) (4.56) (1.28)

ltcw -0.632∗∗∗ -0.491∗∗∗ -0.381∗∗∗ -0.352∗∗∗ -0.323∗∗∗ -0.782∗∗∗ -0.409∗∗∗ -0.169∗∗∗ -0.112∗∗∗ -0.0507
(-27.69) (-17.86) (-11.46) (-9.08) (-6.72) (-31.56) (-12.84) (-4.99) (-3.41) (-1.46)

N 9146 7394 5928 4711 3668 8680 7090 5706 4535 3514
R2 0.376 0.333 0.332 0.365 0.391 0.627 0.690 0.752 0.815 0.859
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
ldwpf is log scaled patent stock and edge betweenness centrality double weighted number of new outward citations from firm’s technology space.
ldwpr is log scaled patent stock and edge betweenness centrality double weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and market value are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 14: Growth in Employment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

ldwpf self 0.0123∗∗∗ 0.0184∗∗∗ 0.0203∗∗∗ 0.0190∗∗∗ 0.0190∗∗∗ 0.00723∗∗∗ 0.0107∗∗∗ 0.00953∗∗∗ 0.00650∗ 0.00458
(8.82) (8.81) (7.37) (5.52) (4.72) (5.28) (5.46) (4.10) (2.31) (1.49)

ldwpf peer 0.0233∗∗∗ 0.0463∗∗∗ 0.0410∗∗∗ 0.0416∗∗ 0.0303 0.0181∗∗∗ 0.0321∗∗∗ 0.0167 0.00651 -0.00672
(5.72) (5.94) (3.83) (2.81) (1.57) (4.49) (4.42) (1.71) (0.58) (-0.51)

ldwpr self 0.0186∗∗∗ 0.0240∗∗∗ 0.0249∗∗∗ 0.0278∗∗∗ 0.0291∗∗∗ 0.0109∗∗∗ 0.0132∗∗∗ 0.0140∗∗ 0.0153∗∗ 0.0168∗

(7.34) (5.95) (4.61) (4.20) (3.73) (4.41) (3.39) (2.82) (2.60) (2.43)

ldwpr peer 0.0534∗∗∗ 0.0925∗∗∗ 0.143∗∗∗ 0.166∗∗∗ 0.167∗∗∗ 0.0458∗∗∗ 0.0649∗∗∗ 0.0907∗∗∗ 0.114∗∗∗ 0.0972∗∗

(5.58) (5.54) (5.97) (4.88) (3.80) (4.34) (3.85) (3.68) (3.97) (2.91)

ltsm 0.0528∗∗∗ 0.0782∗∗∗ 0.0904∗∗∗ 0.0975∗∗∗ 0.101∗∗∗ 0.0877∗∗∗ 0.120∗∗∗ 0.116∗∗∗ 0.107∗∗∗ 0.0947∗∗∗

(13.23) (11.94) (10.76) (9.66) (8.67) (11.93) (10.40) (8.43) (6.76) (5.47)

ltcw -0.104∗∗∗ -0.142∗∗∗ -0.152∗∗∗ -0.155∗∗∗ -0.148∗∗∗ -0.140∗∗∗ -0.168∗∗∗ -0.152∗∗∗ -0.134∗∗∗ -0.106∗∗∗

(-23.57) (-20.18) (-16.53) (-13.64) (-11.08) (-21.10) (-16.93) (-12.55) (-9.47) (-6.72)
N 35424 32065 29048 26402 24025 34603 31442 28546 25990 23684
R2 0.125 0.158 0.180 0.199 0.216 0.340 0.446 0.522 0.582 0.626
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
ldwpf is log scaled patent stock and edge betweenness centrality double weighted number of new outward citations from firm’s technology space.
ldwpr is log scaled patent stock and edge betweenness centrality double weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen and capital are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 15: Growth in Capital

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

ldwpf self 0.0131∗∗∗ 0.0187∗∗∗ 0.0215∗∗∗ 0.0231∗∗∗ 0.0238∗∗∗ 0.00774∗∗∗ 0.0113∗∗∗ 0.0101∗∗∗ 0.00931∗∗ 0.00833∗

(9.04) (8.14) (6.92) (6.04) (5.27) (5.82) (5.64) (4.03) (3.19) (2.47)

ldwpf peer 0.0302∗∗∗ 0.0675∗∗∗ 0.0661∗∗∗ 0.0881∗∗∗ 0.0825∗∗∗ 0.0189∗∗∗ 0.0364∗∗∗ 0.0212 0.0229 0.0162
(7.46) (7.74) (4.88) (4.85) (3.58) (4.82) (4.93) (1.84) (1.72) (0.98)

ldwpr self 0.0218∗∗∗ 0.0319∗∗∗ 0.0354∗∗∗ 0.0376∗∗∗ 0.0433∗∗∗ 0.0128∗∗∗ 0.0173∗∗∗ 0.0190∗∗∗ 0.0162∗ 0.0190∗

(7.31) (6.59) (5.50) (4.78) (4.76) (4.99) (4.32) (3.65) (2.52) (2.57)

ldwpr peer 0.0645∗∗∗ 0.118∗∗∗ 0.211∗∗∗ 0.224∗∗∗ 0.274∗∗∗ 0.0457∗∗∗ 0.0625∗∗∗ 0.109∗∗∗ 0.122∗∗∗ 0.125∗∗∗

(6.20) (6.43) (7.10) (5.28) (5.25) (4.31) (3.95) (4.18) (4.00) (3.45)

ltsm 0.0564∗∗∗ 0.0957∗∗∗ 0.116∗∗∗ 0.125∗∗∗ 0.130∗∗∗ 0.0794∗∗∗ 0.143∗∗∗ 0.162∗∗∗ 0.159∗∗∗ 0.151∗∗∗

(11.81) (11.19) (10.40) (9.49) (8.66) (10.68) (10.76) (9.60) (8.31) (7.34)

ltcw -0.111∗∗∗ -0.173∗∗∗ -0.204∗∗∗ -0.216∗∗∗ -0.218∗∗∗ -0.135∗∗∗ -0.199∗∗∗ -0.210∗∗∗ -0.199∗∗∗ -0.179∗∗∗

(-22.14) (-20.26) (-18.04) (-15.64) (-13.57) (-20.48) (-18.41) (-15.25) (-12.28) (-9.99)
N 35671 32313 29266 26593 24177 34844 31689 28767 26189 23829
R2 0.166 0.227 0.258 0.278 0.291 0.403 0.522 0.600 0.653 0.692
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
ldwpf is log scaled patent stock and edge betweenness centrality double weighted number of new outward citations from firm’s technology space.
ldwpr is log scaled patent stock and edge betweenness centrality double weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen and capital are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 16: Growth in Profit

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

ldwpf self 0.0139∗∗∗ 0.0236∗∗∗ 0.0271∗∗∗ 0.0273∗∗∗ 0.0287∗∗∗ 0.00846∗∗∗ 0.0151∗∗∗ 0.0136∗∗∗ 0.0121∗∗∗ 0.0102∗∗

(6.78) (7.91) (7.55) (6.35) (5.93) (4.28) (5.69) (4.54) (3.65) (2.79)

ldwpf peer 0.0288∗∗∗ 0.0517∗∗∗ 0.0328∗ 0.0349 0.0125 0.0251∗∗∗ 0.0261∗∗ 0.00684 0.00607 -0.00613
(4.24) (4.68) (1.97) (1.63) (0.54) (4.13) (2.62) (0.47) (0.37) (-0.35)

ldwpr self 0.0309∗∗∗ 0.0397∗∗∗ 0.0349∗∗∗ 0.0407∗∗∗ 0.0440∗∗∗ 0.0249∗∗∗ 0.0294∗∗∗ 0.0220∗∗∗ 0.0227∗∗ 0.0268∗∗∗

(8.22) (7.08) (4.91) (5.04) (4.70) (7.33) (5.90) (3.57) (3.27) (3.40)

ldwpr peer 0.0745∗∗∗ 0.114∗∗∗ 0.216∗∗∗ 0.246∗∗∗ 0.293∗∗∗ 0.0535∗∗∗ 0.0647∗∗ 0.115∗∗∗ 0.144∗∗∗ 0.163∗∗∗

(5.53) (4.71) (6.09) (5.24) (5.39) (4.44) (3.12) (3.72) (3.91) (3.74)

ltsm 0.0904∗∗∗ 0.117∗∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.115∗∗∗ 0.163∗∗∗ 0.188∗∗∗ 0.153∗∗∗ 0.130∗∗∗ 0.117∗∗∗

(12.74) (11.29) (10.01) (8.86) (7.93) (12.81) (10.92) (8.94) (7.41) (6.52)

ltcw -0.133∗∗∗ -0.166∗∗∗ -0.161∗∗∗ -0.154∗∗∗ -0.142∗∗∗ -0.208∗∗∗ -0.231∗∗∗ -0.186∗∗∗ -0.155∗∗∗ -0.136∗∗∗

(-18.70) (-15.63) (-13.06) (-10.75) (-8.86) (-19.49) (-15.56) (-12.09) (-9.44) (-7.75)
N 33476 30447 27710 25287 23102 32700 29862 27233 24911 22783
R2 0.150 0.186 0.205 0.233 0.249 0.388 0.474 0.537 0.589 0.633
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
ldwpf is log scaled patent stock and edge betweenness centrality double weighted number of new outward citations from firm’s technology space.
ldwpr is log scaled patent stock and edge betweenness centrality double weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and profit are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 17: Growth in Sales

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

ldwpf self 0.0143∗∗∗ 0.0225∗∗∗ 0.0257∗∗∗ 0.0257∗∗∗ 0.0242∗∗∗ 0.0107∗∗∗ 0.0168∗∗∗ 0.0156∗∗∗ 0.0132∗∗∗ 0.00952∗∗

(7.49) (8.02) (7.11) (6.22) (5.12) (6.40) (6.94) (5.42) (4.37) (2.95)

ldwpf peer 0.0329∗∗∗ 0.0601∗∗∗ 0.0649∗∗∗ 0.0652∗∗ 0.0433 0.0185∗∗ 0.0271∗∗ 0.0304∗ 0.0126 -0.00683
(5.73) (5.58) (4.26) (3.17) (1.86) (3.28) (3.15) (2.46) (0.89) (-0.43)

ldwpr self 0.0321∗∗∗ 0.0436∗∗∗ 0.0438∗∗∗ 0.0473∗∗∗ 0.0484∗∗∗ 0.0292∗∗∗ 0.0386∗∗∗ 0.0359∗∗∗ 0.0338∗∗∗ 0.0342∗∗∗

(9.22) (8.27) (6.60) (6.08) (5.40) (8.94) (8.13) (6.36) (5.16) (4.63)

ldwpr peer 0.0523∗∗∗ 0.0640∗∗ 0.109∗∗ 0.125∗∗ 0.183∗∗∗ 0.0440∗∗∗ 0.0279 0.0430 0.0914∗∗ 0.118∗∗

(4.26) (2.60) (3.01) (2.60) (3.31) (3.48) (1.22) (1.34) (2.60) (3.02)

ltsm 0.0692∗∗∗ 0.0972∗∗∗ 0.108∗∗∗ 0.110∗∗∗ 0.109∗∗∗ 0.125∗∗∗ 0.163∗∗∗ 0.149∗∗∗ 0.123∗∗∗ 0.106∗∗∗

(12.56) (11.24) (10.23) (9.37) (8.52) (12.10) (10.39) (8.81) (7.44) (6.47)

ltcw -0.133∗∗∗ -0.180∗∗∗ -0.192∗∗∗ -0.190∗∗∗ -0.176∗∗∗ -0.188∗∗∗ -0.225∗∗∗ -0.204∗∗∗ -0.171∗∗∗ -0.133∗∗∗

(-20.62) (-18.21) (-15.83) (-13.76) (-11.60) (-19.99) (-16.14) (-13.34) (-10.88) (-8.19)
N 35428 32128 29135 26487 24098 34613 31510 28639 26087 23757
R2 0.165 0.203 0.228 0.242 0.251 0.413 0.527 0.593 0.644 0.677
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
ldwpf is log scaled patent stock and edge betweenness centrality double weighted number of new outward citations from firm’s technology space.
ldwpr is log scaled patent stock and edge betweenness centrality double weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and sale are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 18: Growth in TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
τ =1 τ =2 τ =3 τ =4 τ =5 τ =1 τ =2 τ =3 τ =4 τ =5

ldwpf self 0.00451∗ 0.00473∗ 0.00572∗ 0.00672∗∗ 0.00396 0.00397∗ 0.00295 0.00450∗ 0.00412 0.00140
(2.53) (2.13) (2.33) (2.60) (1.35) (2.28) (1.35) (2.01) (1.85) (0.54)

ldwpf peer -0.00452 0.00554 0.00898 -0.00196 -0.0113 -0.00620 0.0106 0.0218 0.0136 0.0156
(-0.50) (0.46) (0.52) (-0.15) (-0.75) (-0.72) (1.09) (1.52) (1.10) (1.31)

ldwpr self 0.0128∗∗∗ 0.0107∗∗ 0.0113∗∗ 0.0123∗ 0.0143∗∗ 0.0153∗∗∗ 0.0135∗∗∗ 0.0140∗∗∗ 0.0172∗∗∗ 0.0177∗∗∗

(4.50) (2.69) (2.65) (2.43) (2.82) (5.40) (3.54) (3.57) (3.96) (4.08)

ldwpr peer 0.0463∗ 0.0302 0.0609 0.0688∗ 0.0746∗ 0.0187 0.00184 0.0111 0.00412 0.00339
(2.24) (1.16) (1.87) (2.28) (2.17) (1.10) (0.08) (0.42) (0.15) (0.11)

ltsm 0.0338∗∗∗ 0.0420∗∗∗ 0.0407∗∗∗ 0.0404∗∗∗ 0.0396∗∗∗ 0.0460∗∗∗ 0.0429∗∗∗ 0.0344∗∗∗ 0.0299∗∗∗ 0.0260∗∗

(9.71) (8.95) (7.65) (6.80) (6.30) (8.12) (6.26) (4.81) (3.78) (3.00)

ltcw -0.0286∗∗∗ -0.0288∗∗∗ -0.0237∗∗∗ -0.0185∗ -0.0141 -0.0470∗∗∗ -0.0408∗∗∗ -0.0306∗∗∗ -0.0297∗∗∗ -0.0266∗∗

(-6.80) (-5.11) (-3.61) (-2.52) (-1.75) (-7.80) (-5.64) (-3.84) (-3.43) (-2.81)
N 25308 22914 20918 19129 17529 24846 22534 20597 18864 17278
R2 0.176 0.247 0.284 0.305 0.318 0.353 0.468 0.523 0.560 0.595
Industry FE Yes Yes Yes Yes Yes No No No No No
Firm FE No No No No No Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations are clustered at firm level.
ldwpf is log scaled patent stock and edge betweenness centrality double weighted number of new outward citations from firm’s technology space.
ldwpr is log scaled patent stock and edge betweenness centrality double weighted number of new inward citations to firm’s technology space.
self means new citation links made by self firm.
peer means new citation links made by peer firms.
log scaled employmen, capital and tfp are included in the regression, but not reported.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 19: Growth Volatility and Innovation Concentration across Sectors

(1)
τ =5

lps -0.410∗∗∗

(-9.89)

lnonclass -0.0524
(-1.95)

herfindahl 0.0676∗∗∗

(3.61)
N 151813
R2 0.163
Firm and year fixed effects included. Observations clustered by firm.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure 4: Patent Network Parameters
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Figure 5: Share of Pathfinder Patents Over Time

Figure 6: Novel Word per Patent Over Time
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Figure 7: G(ε∗)t and ε∗

Figure 8: Model Parameters in Households and Firms
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Figure 9: Counterfactual Economic Growth by Changing One Variable

Figure 10: Counterfactual Economic Growth by Changing Two Variables
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Figure 11: Counterfactual Economic Growth by Changing Three Variables
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