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Abstract

The collapse of real estate price during the 2008 financial crisis is accompanied by a

sharp surge in measured uncertainty. In this paper, we propose a tractable macroeco-

nomic framework, linking uncertainty, housing price and the real economy. In the model,

fluctuations in real estate price originating from changing perceptions about uncertainty

transmits and propagates to the macroeconomy, generating boom-bust cycles. Our frame-

work features self-fulfilling risk spike in the housing market, and is able to generate large

volatility in price-rent rate as well as strong co-movement between housing price and

macroeconomic aggregates. Quantitative exercise suggests risk panic is a leading driver

of business-cycle fluctuations despite the presence of various competing structural shocks.
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1 Introduction

One striking feature of the 2008 financial crisis is that slumps in real estate price are accom-

panied by sharp surges in measured uncertainty. In Figure 1, Case-Shiller Home Price Index

dropped for about 30% from the onset of recession to July-2009, and during the same period,

macroeconomic uncertainty measured in VIX spiked by more than 200%. These dramatic shifts

in uncertainties along with collapses in real estate market are followed by persistent declines in

aggregate consumption and investment. Some economists hypothesize that this recession could

have a self-fulfilling origin (Lucas and Stokey, 2011; Bacchetta et al., 2012a), and that height-

ened risk, or a perception of it, sets the economy into deep downturn (Bernanke, 2007). This

paper formalize such an idea where self-fulfilling changes of risk originating from the housing

market play an autonomous role in driving business cycle fluctuations.

We do so by constructing a tractable production economy with infinitely-lived agents, linking

uncertainty, housing price and real macroeconomic variables. In the model, fluctuations in real

estate price caused by changing perceptions of uncertainty ahead transmits and propagates to

the macroeconomy and leads to boom-bust cycles. Our framework features self-fulfilling risk

spike in the housing market that result in large drops in housing prices, and the theory can

generate large volatility in housing price with modest fluctuations in rents. It also reproduce the

strong co-movement pattern between housing price and macroeconomic aggregates, including

investment, output and consumption.

Figure 1: Housing Price and Uncertainty
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We consider two versions of the model, both under infinite horizon general equilibrium

settings. The first one emphasis parsimony and tractability, and we use this model to deliver

transparent illustration of the key impulse and propagation mechanism. It is then enriched to

a medium-scale DSGE setting to access the quantitative property of the model’s mechanisms.

The baseline model consists of a representative household, who optimally allocate funds

between risky housing and riskless bond, and a credit constrained firm, who hold land for

production and at the same time, use it as collateral. In such a model, land price is determine

by households demand for housing, that is, the housing Euler equation. Fluctuations in land

price leads to rise and fall in the value of collateralized land for firm, and through credit

constraint, affects production. Inspired by the theoretical insight in Bacchetta et al. (2012a),

we show when household is averse to price risk, its housing demand schedule features dynamic

mapping of risk into itself, and nests sentiment driven equilibria characterized by collapsing

land price and surging risk. To be clear, note housing price in our model is the combination of

present value of future rents, discounted by an additional volatility term capturing the aversion

generated from holding risky land,

qt = βhEt (1 + qt+1)− λ

ϕ
Vart (qt+1) .

In this equation, if households believe that certain sentiment variable, either related to economic

fundamental or pure sunspots, matters for housing price, the perceived risk of future prices will

increase. As a result, current housing price will indeed be affected, confirming household’s belief

and result in self-fulfilling fluctuations in land price. What is unique about this equilibrium

is that sentiment shock moves the level of land price through affecting its (perceived) risk. In

other words, waves of unfavorable sentiments lead to not only drops in land price, but also

spikes in risk.

The collapse in housing price originating from unfavorable household sentiment brings two

consequences for the real economy. For households, negative sentiment reduce their incen-

tive to supply labor. When households believe holding housing becomes risky, they optimally

re-balance their portfolio by reducing housing purchase and increase either bond holding or

consumption expenditure. In equilibrium, they will do both. By wealth effect of labor sup-

ply, increasing consumption implies they prefer to work less at any given wage level. For

entrepreneurs, as their land holding is pre-determined, labor demand schedule does not change.

Equilibrium hours drop, leading to drops in output and entrepreneurial profit. Declining profit

implies entrepreneur’s net worth declines, so that they accumulate less land next period, and

land reallocates from entrepreneurs to households. Land reallocation further reduce labor de-

mand and result in larger drops of output. In the baseline model, declines in labor and land

reallocation form a joint force that drives macroeconomic fluctuations.
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For quantitative exercise, we enrich the baseline model into a medium-scale DSGE setting

along three dimensions. First, we incorporate capital investment by assuming entrepreneurs

produce using a combination of labor, land and capital. As investment expenditure is fi-

nanced by collateralized debt, declining land price induced by unfavorable sentiment tightens

entrepreneurs’ borrowing constraint and result in drops in investment, generating co-movement

between land price and macroeconomic aggregates. Second, we introduce nominal rigidity,

which help amplifying the effect of sentiment through through a time-varying markup chan-

nel arising from fluctuations in aggregate demand. Finally, we allow for a series of common

structural shocks in the DSGE literature including shocks to labor supply, collateral constraint,

capital goods price, technology, monetary policy, and we also build in the standard modelling

bells and whistles including habit formation and quadratic investment adjustment cost.

Fitting the model against aggregate U.S. time series, we find that, despite a wide array of

competing shocks, sentiment shock emerges as a quantitatively important driver of business

cycle. Variance decomposition exercise indicates sentiment accounts for about 87% in land

price fluctuations, 43% of investment fluctuations, and 23% output fluctuations. Based on

our estimation result, we conduct counterfactual experiment to quantify the model’s ability in

explaining the Great Financial Crisis, and we calculate that fluctuations in sentiment alone

can explain almost all the drop in housing price around the crisis period as well a sharp spike

in uncertainty. The model’s internal propagation mechanism also help to generate 17.5% drop

in investment, 2.3% in consumption, 4.3% in hours, and 6.2% in output, which is broadly

consistent with aggregate data.

Empirical Supports on Housing Risk Channel. Housing wealth accounts on average a

27% of U.S. households’ net worth (Poterba and Samwick, 1997), and due to price risk, it is

also one of the most volatile items on homeowners’ balance-sheet (Campbell and Cocco, 2007;

Piazzesi and Schneider, 2016). As home purchasing is the largest financial decision for typical

households, the risk associated with it is often an important consideration. Rosen et al. (1984)

estimates a housing tenure model with uncertainty and finds a financial risk effect whereby

housing price risk reduces housing demand. More recently, Han (2010) uses the Panel Study

of Income Dynamics (PSID) data and obtains similar results. The risk-based housing demand

function in our model is consistent with these micro-level evidence. To add empirical support

at macro-level, we use the Michigan Survey of Consumer Sentiment to documents in Figure 2 a

negative relationship between U.S. households’ perception of uncertainty1 and the housing price

1For measures of uncertainty perception, we use the Table 42 of Home Buying and Selling Conditions
from Michigan Survey of Consumer Sentiment. The survey ask respondents opinions for home purchase, and
their respond can fall into two categories: Good Time and Bad Time. There are several sub-categories if
the respondent think it is a bad time: high price, high interest rate, cannot afford, bad investment, and
uncertain future. We compute the perceived uncertainty measure as the percentage fraction of respondents
with a “uncertain future” answer. The coverage is 2001–Q1 to 2010–Q2. For home price, we use the Case-
Shiller Index.
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from 2001 to 2010. The negative relationship is tight, with a (adjusted) R2 of 0.67 and slope

coefficient of -0.086, implying national-wide home price would drop by 8.6% when households’

perception of uncertainty ahead doubles.

Figure 2: Housing Price and Uncertainty Perception
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Literature. Our paper is related to three strands of literature. First, it connects to the recent

literature linking housing market with macroeconomic fluctuations. Inspired by a series of work

by Mian and Sufi (Mian and Sufi, 2011), this literature argues that the housing market was

at the heart of the Great Recession, and build models where shocks that lead to rise and fall

in housing price leads to macroeconomic fluctuations. While most research has been focused

on housing price and its impact on aggregate consumption dynamics (Piazzesi and Schneider,

2016), a relatively small body of literature seek to explain the co-movement between housing

prices and investment or employment fluctuations. Liu et al. (2013) develops and estimates a

DSGE model where land is a collateral asset in firms’ credit constraints, and identify housing

demand shock as an important source of fluctuations in aggregate investment. Liu et al. (2016)

shows that shocks move land price drives unemployment fluctuations. These papers do not

model rental market explicitly, and predict that real estate price and rent move in comparable

magnitude so that there is little variation in price-rent ratio, which is inconsistent with the

data. In a recent paper, Miao et al. (2020) the liquidity premium channel and build model to

jointly explain housing price-rent rate’s high volatility and its co-movement with the business

cycle. We contribute this line of research by developing a DSGE model with a novel risk-based
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channel where housing price fluctuations is driven by self-fulfilling risk-panics. At the same

time, the model account for the volatility and co-movement pattern of housing price-rent rate

and features transparent linking from the real estate market to the real economy.

Second, our paper is also related to the literature emphasizing fluctuations in uncertainty

have an autonomous role in driving the business cycle. The pioneering work by Nick Bloom

argues that uncertainty shock is an independent driving force of boom-bust cycles (Bloom,

2009; Bloom et al., 2018). An emerging literature propose that time-varying risk is a response

of, instead of a source for business cycle fluctuations. Bachmann and Bayer (2013, 2014)

calibrate heterogeneous-firm DSGE models to show time-varying firm-level risk through “wait-

and-see” dynamics is unlikely a major source of business cycle fluctuations. Others build

models to show that uncertainty can be an endogenous response due to either self-fulfilling risk-

panic (Bacchetta et al., 2012b), learning from the action of others (Fajgelbaum et al., 2017),

or information interdependence between financial markets and the real economy (Benhabib

et al., 2019). We contribute this literature by presenting a DSGE model with a micro-founded

endogenous uncertainty mechanism emphasizing the panic in housing market, and study how

it transmitted and propagated into the real economy.

Finally, our paper belongs to the literature studying multiple equilibria, sunspot and the

business cycle. In most of the literature, the role of sunspots is to randomize over multiple

fundamental equilibria, and the self-fulfilling shifts in beliefs is about the level of a variable

(for example, asset price, output, etc) (Lorenzoni, 2009; Angeletos and La’O, 2010; Barsky

and Sims, 2012; Angeletos and La’O, 2013; Benhabib et al., 2015, 2016). There is also a

literature focusing on self-fulfilling shifts in beliefs about risk, building either on static market

participation (Pagano, 1989; Allen and Gale, 1994; Jeanne and Rose, 2002), or dynamic relation

between the state variable and its future distribution (Bacchetta et al., 2012b; Bacchetta and

van Wincoop, 2013, 2016). The fundamental insight of our model is based on Bacchetta et al.

(2012b), but their model is too simple to calibrate to actual data of financial panics. Our

contribution is to construct a infinite horizon production economy, linking risk-panic to real

macroeconomic activity and perform quantitative investigation.

The rest of this article is organized as follows: In Section 2, we set up a parsimonious

dynamic general equilibrium model, derive the theoretical results, and use these results to

illustrate the key impulse and propagation mechanism. In Section 3, we enrich the model to a

medium-scale DSGE setting, and we estimate the model using several U.S. time series, present

the estimated results, the impulse response function, the variance decomposition, and based on

the estimated results, we conduct a counterfactual crisis experiment. Section 4 concludes the

article. Detailed derivations, proofs, and estimation procedures are provided in appendices.
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2 Basic Model without Capital

The model is in infinite horizon and consists of two types of agents: a representative house-

hold and a representative entrepreneur. The household values consumption, housing service,

and leisure. It supplies labor, purchase land (housing service), and saves in one period non-

contingent bond. Risky land price generate dis-utility from holding land. The representative

entrepreneur only values consumption, and uses land, labor as intermediate inputs to produce

homogeneous consumption goods. The entrepreneur borrow from households, but due to credit

market friction, her borrowing is constrained. We assume entrepreneur are less patient than

household so that borrowing constrained binds in steady state.

Households. Household choose consumption, housing service, land holding, savings, and labor

supply to maximize lifetime utility,

max
Cht,xt,Lht,Nht,St,

E0

{
∞∑
t=0

βtht

[
logCht + ϕxt − λVart

(
Qlt+1

Rt+1

)
Lt − ψ

N1+υ
ht

1 + υ

]}
, (1)

where Cht denotes consumption, xt denotes housing (land) service, and ϕ measures marginal

utility for housing rental; Lht is household land holding; λVart

(
Qlt+1

Rt+1

)
Lt measures the dis-utility

induced by (conditional) volatility for land price (normalized by rent), where λ represents the

degree of risk aversion; household also have convex dis-utility in supplying labor Nht, where υ

measures the inverse of labor supply elasticity.

The flow of funds constraint is given by,

Cht +Qlt (Lht − Lht−1) +
St
Rft

= wtNht −Rt (xt − Lt−1) + St−1. (2)

where households use labor income wtNht and their debt repayment from last period, St−1

to finance consumption, house purchasing, saving, and rental expenditure. The associated

optimality conditions are,

ϕCht = Rt, (3)

ψNυ
htCht = wt, (4)

Qlt

Cht
= βhEt

(
ϕ+

Qlt+1

Cht+1

)
− λVart

(
Qlt+1

Rt+1

)
, (5)

1 = βhRftEt
(

Cht
Cht+1

)
, (6)

where equation (3) equates marginal benefit from renting one unit of house to the rental rate; (4)

is the labor supply equation; Equation (5) is the land pricing equation, which says the marginal

cost of buying a house (in marginal utility terms) Qlt/Cht, equals to the marginal benefit of it,
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and we discuss the implication of this equation in the following subsection; Equation (6) is the

bond Euler equation.

Sentiment Driven Equilibrium. As in Bacchetta et al. (2012a), risk aversion to asset price

volatility opened the possibility for the existence of sentiment driven equilibria featuring self-

fullfilling panics. To explain, note that in equation (3) housing rental rate and consumption is

proportional. Plugging this relationship into (3) we have,

qt = βhEt (1 + qt+1)− λ

ϕ
Vart (qt+1) , (7)

where

qt :=
Qlt

Rt

is the housing price-rental rate. From this equation, the equilibrium housing price-rental rate

depends negatively on its perceived risk, Vart (qt+1). Suppose there is a sentiment variable st

and households believe risk depend on this variable, then by equation (7), qt also depend on st.

Hence, qt+1 depend on st+1. If the distribution of st+1 depend on st, then Vart (qt+1) will indeed

depend on st, giving rise to sentiment equilibrium. Intuitively, if households believe sentiment

matters for housing price, the perceived risk of future prices will increase. By risk-aversion,

current housing price will indeed be affected, confirming their belief.

To formalize the analysis, suppose sentiment st follows an AR(1) process, st = ρsst−1 +

εst, where εst ∼ U [−ε̄,+ε̄], uniform distribution from −ε̄ to +ε̄. The following proposition

characterize the sentiment driven dynamics of housing price-rental rate.

Proposition 1. The sentiment driven price-rental rate qt is given by,

qt = q̄ − φs2
t , (8)

where st follows,

st = ρsst−1 + εst,

where εst follows uniform distribution, εst ∼ U [−ε̄,+ε̄], and q̄, φ are given by,

φ =
ϕ (1− βhρ2

s)

4λσ2
ερ

2
s

, (9)

q̄ =
1

1− βh

{
βh − φ

[
βσ2

s +
λ

ϕ
φ
(
ω2
s − σ4

s

)]}
, (10)

where ω2
ε := E (ε4

st), and σ2
ε := E (ε2

st).

Proof. In Appendix (B). �

Entrepreneurs. The representative entrepreneur produce homogeneous consumption goods
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by using land and labor as intermediate inputs, which is financed by borrowing from households.

Entrepreneurs choose consumption Cet, land holding Let, labor input Net, and new debt issuance

Bt, to maximize lifetime utility,

max
Cet,Bt,Let

E0

{
∞∑
t=0

βte logCet

}
, (11)

subject to the following flow of funds constraint,

Cet +Qlt (Let − Let−1) +Bt−1 = max
Net
{Yt − wtNet}+

Bt

Rft

, (12)

in which entrepreneur finance consumption, new land purchase and wage bill, by using produc-

tion revenue plus debt issuance. The production function is assumed to be Cobb-Douglas,

Yt = AtL
α
et−1N

1−α
et ,

where the decision of Net is static,

wt = (1− α)
Yt
Net

,

implying the flow of funds constraint (12) can be written as,

Cet +Qlt (Let − Let−1) +Bt−1 = ztLet−1 +
Bt

Rft

where zt := α (1− α)
1−α
α w

α−1
α

t A
1
α
t . Finally, entrepreneur’s face the following collateral constri-

ant,

Bt ≤ θtEt (Qlt+1)Let.

which says the amount that entrepreneurs can borrow is limitted by a faction of the value of

the land holding. In similar spirit with Kiyotaki and Moore (1997) and Liu et al. (2013) , we

interpret this type of credit constraint as reflecting the problem of costly contract enforcement:

if the entrepreneur fails to pay the debt, the creditor can seize the land and the accumulated

capital; since it is costly to liquidate the seized land and capital stock, the creditor can recoup

up to a fraction θt of the total value of the collaterized land.

Assume this borrowing constraint binds, the flow of funds constraint becomes

Cet +

(
Qlt −

θtEt (Qlt+1)

Rft

)
Let = (zt +Qlt)Let−1 −Bt−1, (13)
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where the right hand side (zt +Qlt)Let−1−Bt−1 is entrepreneurs beginning-of-period net worth.

Equation (13) implies each one dollar of entrepreneurs saving will yield return in the amount

of
zt+1 +Qlt+1 − θtEt (Qlt+1)

Qlt − θtEt(Qlt+1)

Rft

,

to explain, note for each dollar of saving, entrepreneur is buying land at price Qlt, among which
θtEt(Qlt+1)

Rft
is borrowed. The purchased land then yields return containing zt+1, the marginal

productivity, Qlt+1, the capital gain, net the face value of debt θtEt (Qlt+1) that the entrepreneur

needs to pay. Importantly, Cobb-Douglas production function implies this return depend only

on aggregate variables. Combining with log utility assumption, it implies entrepreneur saves βe

fraction of its beginning-of-period net worth, and consumes the rest 1−βe fraction. Formally, we

have the following proposition characterizing entrepreneurs consumption and saving decision.

Proposition 2. The representative entrepreneur’s decisions are given by,

Cet = (1− βe) [(zt +Qlt)Let−1 −Bt−1] , (14)

Lt = βe
(zt +Qlt)Let−1 −Bt−1

Qlt − θtEt(Qlt+1)

Rft

, (15)

Bt = βe
(zt +Qlt)Let−1 −Bt−1

Qlt − θtEt(Qlt+1)

Rft

θtEt (Qlt+1) . (16)

where zt := α (1− α)
1−α
α w

α−1
α

t A
1
α
t measures the marginal productivity of land.

General Equilibrium. In this economy, there are four state variables driving the model’s

dynamics: entrepreneurs and households land holding, technology and sentiments. Conditional

on their initial values {Le,−1, Lh,−1, A−1, s−1}, the dynamic general equilibrium can be defined as

allocations {Cet, Cht, Bt, St, Let, Lht, Nt}∞t=0, and prices {wt, Qlt, Rft, Rt}∞t=0, satisfying housholds

optimizations (3) to (6), entrepreneur optimization (14) to (16), budgets equations (2), (12),

and market clearing conditions for output, labor, land, and bond:

Yt = Cht + Cet, (17)

Net = Nht, (18)

L̄ = Let + Lht, (19)

Bt = St. (20)

Inspecting the Mechanism. How is the impact of sentiment on macroeconomy? We now

illustrate the propagation mechanism using three key equations linking households consumption

Cht, land price Qlt, and hours worked Nt. These equations are the national accounts identity,
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the land pricing equation, and the labor market clearing equation,

AtL
α
et−1N

1−α
t = Cht + (1− βe)

[(
αAtL

α−1
et−1N

1−α
t +Qlt

)
Let−1 −Bt−1

]
, (21)

Qlt

Cht
=

1

ϕ

(
q̄ − φs2

t

)
, (22)

ψNυ
t Cht = (1− α)AtL

α
et−1N

−α
t , (23)

combining the three equations gives the following equilibrium relationship for Cht,

[1− α (1− βe)]
(

1− α
ψ

) 1−α
α+υ (

AtL
α
et−1

) 1+υ
α+υ C

α−1
α+υ

ht

=
[
1 + ϕ (1− βe)

(
q̄ − φs2

t

)
Let−1

]
Cht − (1− βe)Bt−1,

note the left hand side is a decreasing function of Cht, and the right hand side is an increasing

function of Cht. A positive sentiment shock, i.e. drop in s2
t , shift the right hand side inward and

therefore reduce equilibrium household consumption Cht, as in Figure 3. The intuition here is

that good sentiment reduces housing price uncertainty, which in turn increase housing demand

and decrease consumption. Turning to labor market, this drop in household consumption shift

the labor supply curve inward and result in an higher equilibrium labor supply (the right panel

of Figure 3). On impact of a favorable sentiment shock, higher labor supply increase equilibrium

output, as labor and land holding are the only inputs in entrepreneurs’ production function,

and land holding is pre-determined. To see the response of housing price, we log-linearize

the model (detailed derivation is in Appendix C) and obtain the following characterization,

which shows that good sentiment shocks also lead land price to increase. When we introduce

capital into entrepreneurs’ production in the next section, increase in housing price will lead to

increase in capital investment, because land is collateralized and increasing land price relaxes

entrepreneurs’ borrowing constraint.

Proposition 3. Let Ẑt denote the log deviation around variable Zt’s stochastic steady state, then

the (log-linearized) dynamics of housing price and output can be shown to follow the following

equations,

Q̂t = ψlL̂et−1 + ψbB̂t−1 + ψxx̂t, (24)

Ŷt = %lL̂et−1 + %bB̂t−1 + %xx̂t, (25)

where xt := s2
t , and ψl, ψb, ψx and %l, %b, %x are constants given in Appendix C. It can be shown
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that

ψx < 0, (26)

%x < 0, (27)

that is, positive sentiment shock cause Qt and Yt to increase.

To visualize how shock to sentiment propagates to the real macroeconomy, we plot in Fig-

ure 5 the impulse and response function of housing price, output, labor and entrepreneur

land holding to a one-time unit standard deviation unfavorable sentiment shock. On impact,

households reduce labor supply, which is consistent with our previous qualitative analysis. As

entrepreneur’s land holding is pre-determined, labor demand schedule does not change. There-

fore, equilibrium hours drop, leading to drops in output and entrepreneurial profit. Declining

profit implies entrepreneur’s net worth declines, so that they accumulate less land next period.

Reallocation of land reallocates from entrepreneurs to households further reduce labor demand

and result in larger drops of output. The declines in labor and land reallocation form a joint

force that drives macroeconomic fluctuations.

3 A Medium-scale DSGE Model

In this section, we extend the basic model to a medium-scale DSGE model and access the

model’s quantitative ability in explaining business cycle fluctuations. In particular, we ex-

tend our illustrative model in previous section by introducing capital investment and nominal

rigidity. As in the illustrative model, there are households and entrepreneurs. Entrepreneurs

produce by employing labor, collateralizable land and physical capital to produce differentiated

intermediate goods. Households consume, work, and purchase housing/land. In addition, there

are a continuum of retailers, who combines the intermediated goods from entrepreneurs to pro-

duce final consumption goods. The retailers face cost in adjusting their output prices, which

is the source of nominal rigidity. Central bank adjusts nominal interest rate using Taylor rule.

To capture growth in macro variables, we introduce stochastic trends on aggregate TFP and on

investment-specific technology as in Justiniano et al. (2009) and Liu et al. (2013). In addition,

we also include several additional shocks that are standard in the DSGE literature to allow for

other business-cycle drivers to compete with sentiment mechanism: transitory TFP shock, tran-

sitory investment-specific shock, labor disutility shock, collateral shock, and monetary policy

shock. Details of the model is described as follows.
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3.1 Model Description

Households. As in our previous illustrative model, households’ maximizes their expected life-

time utility function by choosing consumption Cht, housing rental xt, labor supply Nht, and

savings St,

max
Cht,xt,Lht,Nht,St,

E0

{
∞∑
t=0

βtht

[
log (Cht − ηhCht−1) + ϕxt − λVart

(
Qlt+1

Rt+1

)
Lt − ψ

N1+υ
ht

1 + υ

]}

subject to the following flow-of-funds constraint,

Cht +Qlt (Lht − Lht−1) +
S̃t

R̃ft

= wtNht −Rt (xt − Lt−1) +
S̃t−1

πt
+ Πt, (28)

where Cht, Nht, xt, are consumption, labor supply and housing rental, respectively. ηh measures

internal habit formation, Πt denotes lump-sum profits received from retailers, whose problem we

shall describe below. Note that the above constraint is in real terms, and we define S̃t := St/Pt

as the real bond holding, where St is bond in nominal terms and Pt denotes the price of

consumption goods. The first order conditions associated with decision variables are given by

(derivation in Appendix A),

Cht : Λht =
1

Cht − ηhCht−1

− βEt
(

ηh
Cht+1 − ηhCht

)
(29)

xt : ϕ = ΛhtRt (30)

Nht : ψNυ
ht = Λhtwt (31)

Lht :
Qlt

Cht
= βhEt

(
ϕ+

Qlt+1

Cht+1

)
− λVart

(
Qlt+1

Rt+1

)
(32)

S̃t : 1 = βhR̃ftEt
(

Cht
Cht+1

1

πt+1

)
(33)

where equations (29) to (33) are first order conditions on Cht, xt, Nht, Lht and S̃t, respectively.

Final Goods and the Retail Sector. The final goods sector combines a basket of differen-

tiated intermediated goods and turn them into consumption,

Yt =

(∫ 1

0

Yt (j)
σ−1
σ

) σ
σ−1

,

where σ is the elasticity of substitution across these differentiated products. The above CES
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setting give rise to the following demand schedule,

Yt (j) =

(
Pt (j)

Pt

)−σ
Yt,

where Pt =
(∫ 1

0
Pt (j)

1
1−σ

)1−σ
is the aggregate price index. In the economy, intermediated

goods is distributed by continuum of retailers, each producing differentiated products using

the homogeneous intermediate goods from entrepreneurs according to the following production

function,

Yt (j) = Xt (j) ,

where Xt (j) is intermediate input for retailer indexed by j, whose problem is to choose the

price level to maximize its discounted profits. Following Rotemberg (1983), we assume price

adjustment are subject to a quadratic cost, γ
2

(
Pt(j)

πPt−1(j)
− 1
)2

Yt, where γ measures the cost of

price adjustments and π is the steady state inflation rate. Given this, the problem of retailers

is given by,

max
Pt(j)

E0

{
∞∑
i=0

βi
Λt+i

Λt

[(
Pt+i (j)

Pt+i
− pt+i

)
Yt+i (j)−

γ

2

(
Pt (j)

πPt−1 (j)
− 1

)2

Yt

]}
,

where pt denotes the relative price of intermediate goods produced by entrepreneurs. Taking

first order conditions with respect to Pt (j), and impose symmetric equilibrium yields,

pt =
σ − 1

σ
+
γ

σ

[
πt
π

(πt
π
− 1
)
− Et

(
βh

Λt+1

Λt

πt+1

π

(πt+1

π
− 1
) Yt+1

Yt

)]
, (34)

where π is steady state inflation rate. Note that in the case when cost of price adjustment is

zero, pt = σ−1
σ

, which is the inverse of steady-state markup.

Entrepreneurs. Entrepreneurs produce intermediate goods and sell them to retailers. They

have the following utility function,

max
Cet,Bt,Let

E0

{
∞∑
t=0

βte log (Cet − ηeCet−1)

}
, (35)

subject to the following flow-of-funds constraint,

Cet +Qlt (Let − Let−1) +
B̃t−1

πt
= ptYt − wtNet −

It
Qit

+
B̃t

R̃ft

, (36)

where Cet and It are consumption and investment. Let, Yt, Nt, B̃t−1 denote land holding,

intermediate output, and real debt. Qlt, pt, R̃ft, and wt are the corresponding prices. The
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production function is a Cobb-Douglas combination of labor, as well as land and capital that

is determined from last period,

Yt = At

(
Lφet−1K

1−φ
t−1

)α
(Net)

1−α . (37)

The productivity shock At is a combination of permanent component transitory component,

At := AptA
τ
t . The permanent component Apt have stochastic growth rate,

logApt = logApt−1 + log µAt ,

log µAt = (1− ρAp) log µ̄A
p

+ ρAp log µAt−1 + σApε
Ap

t ,

where µ̄A
p

measures the average growth rate. The transitory component Aτt follows a standard

log-AR(1) process,

logAτt = ρAτ logAτt−1 + σAτ ε
Aτ

t .

Qit is the price of investment goods that also is a combination of permanet and transitory

component Qit = Qp
itQ

τ
it, where

logQp
it = logQp

it−1 + log µQit ,

log µQit =
(

1− ρQpi
)

log µ̄Qi + ρQpi log µQit−1 + σQpi ε
Qi
t ,

logQτ
it = ρQτi log logQτ

it−1 + σQτi ε
Qi
t .

Maximizing over Net simplifies equation (36) into,

Cet +Qlt (Let − Let−1) +
B̃t−1

πt
= ztL

γ
et−1K

1−γ
t−1 −

It
Qit

+
B̃t

Rft

(38)

where zt := α (1− α)
1−α
α w

α−1
α

t (ptAt)
1
α . Capital accumulation is subject to a quadratic adjust-

ment cost,

Kt = (1− δ)Kt−1 +

[
1− Ω

2

(
It
It−1

− gI
)2
]
It, (39)

where gI denotes the steady state growth rate of entrepreneurial investment. Following Kiyotaki

and Moore (1997) and Iacoviello (2005), entrepreneur’s borrowing is constrained by,

B̃t ≤ θtEt [(1 + πt+1) (Qlt+1Let +Qkt+1Kt)] . (40)
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The associated first order conditions on Cet, Bt, It, Kt, Let are given by,

Cet : Λet =
1

Cet − ηeCet−1

− βt
(

ηe
Cet+1 − ηeCet

)
(41)

Nt : wt = pt (1− α)
Yt
Nt

(42)

Bt : 1 = βeR̃ftEt
{

Λet+1

Λet

1

πt+1

}
+

ξt
Λet

(43)

It : 1 = Qkt

[
1− Ω

2

(
It
It−1

− 1

)2

− Ω

(
It
It−1

− 1

)
It
It−1

]
(44)

+βΩEt

[
Λet+1

Λet

Qkt+1

(
It+1

It
− 1

)(
It+1

It

)2
]

(45)

Kt : Qkt =
ξt
Λet

θtEt ((1 + πt+1)Qkt+1) + βeEt
{

Λet+1

Λet

[
α (1− φ) pt

Yt+1

Kt

+ (1− δ)Qkt+1

]}
(46)

Let : Qlt =
ξt
Λet

θtEt ((1 + πt+1)Qlt+1) + βeEt
{

Λet+1

Λet

[
αφpt

Yt+1

Let
+Qlt+1

]}
(47)

where ξt is the Lagrange multiplier associated with the collateral constraint (40).

Monetary Policy. The central bank choose nominal interest following Taylor rule as in

Christiano et al. (2011),

rt = (1− ρr) r̄ + ρrrt−1 + (1− ρr)
[
ρπ (πt − π) + ρy (yt − y)

]
+ ηrt ,

where interest rates responds to deviations of inflation and output from their steady states. In

the above equation, rt := log R̃ft is the logarithm of nominal interest rate; πt is the inflation and

π is its steady state; yt is the detrended output level and y is its steady state; ρr captures the

persistence of monetary policy, and ηrt denote the monetary policy shock that evolves according

to a log-AR(1) process,

log ηrt = ρm log ηrt−1 + σmε
m
t .

Equilibrium System. The equilibrium system is defined as follows. Given initial values,{
K−1, Le,−1, Lh,−1, A−1, B̃−1, S̃−1, Ch,−1, Ce,−1, s−1

}
,

the equilibrium is a set of allocations,{
Cet, Cht,Λet,Λht, Kt, ξt, B̃t, S̃t, Let, Lht, Nt, st, Qlt, Qkt, pt

}∞
t=0

,

and prices {
wt, Qlt, Qkt, R̃ft, πt

}∞
t=0
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satisfying flow-of-funds constraint (28), (36), households optimization (29) to (33), entrepreneur

optimization (41) to (47), taylor rule, market clearing conditions for bond, labor, intermediate

and final goods, as well as land. Note the goods market clearing condition is now given by

Yt = Cht + Cet +
Kt − (1− δ)Kt−1

Qit

+
γ

2

(πt
π
− 1
)2

Yt, (48)

in which the output is either consumed, invested or spent on price adjustment by retailers.

3.2 Bayesian Estimation

We estimate our model using Bayesian method, and the detailed estimation procedure is de-

scribed in Appendix I. In what follows, we discuss briefly the estimation method, the data used,

the priors and the posteriors.

Data and Estimation Method. We use Bayesian method to fit the log-linearized model

to 8 quarterly U.S. time series: land price, the inverse of quality-adjusted relative price of

investment, real per capita consumption, real per capita investment, real per capita nonfarm

nonfinancial business debt, the (utilization adjusted) total productivity, federal fund rate, and

inflation. The sample period is 1975:Q1 to 2010:Q4 and in Appendix I, we show the observation

equation linking model and data, and how these data is constructed.

Priors and Posteriors. Broadly speaking, these parameters can be sorted into two cate-

gories. Structural parameters–including Frisch elasticity, land share, investment adjustment

cost, habits, and coefficients on Taylor rule–determines the model’s internal propagation mech-

anism. Shock parameters, i.e. persistences and standard deviation of innovations, governs the

dynamics of shock processes. In Table 2, we list one by one the prior distributions of estimated

parameters as well as their posterior. The estimation results is broadly consistent with those

used in the DSGE literature. For consistency, we set the prior for sentiment shock in line with

the other shocks.

The following parameters are calibrated. We set risk aversion parameter λ/ϕ to 0.13 to

match the average housing price to rental rate of 86.4. We set the discount rate of households

to 0.9943. This, together with an quarterly inflation target of 0.5%, implies steady state nominal

interest rate of 2% annually. We set discount of entrepreneurs to 0.9855, implies a steady state

corporate bond spread of around 90 basis point, a number consistent with the yield spread of

AAA-rated corporate bond. We set the average growth rate of technology gA to be 1.0023 to

match the quarterly growth rate of aggregate productivity in Fernald (2012), and similarly, we

set the average growth rate of investment price to 1.0122. We set θ̄ to 0.80, so that steady state

loan-to-value ratio is 4.00. We choose elasticity of substitution parameter σ = 11, and the cost

of price adjustment γ = 112, so that the average markup of 10%, and that the slope of the
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Phillips curve in the model corresponds to that implied by a Calvo model with a duration of

price contracts of four quarters (Leduc and Liu, 2016). We set capital share α = 0.33, capital

depreciation δ = 0.036, and land share αφ = 0.026, a value that is consistent that in Iacoviello

(2005) and Liu et al. (2013). Finally, we normalize the average labor aversion parameter ψ̄

and the marginal rental rate ϕ to 1. To the extent that we focus on first order approximation,

these two parameters do not play a role in affecting model dynamics. Table 1 summarizes

model parameterization. In Appendix I, we establish the mapping from the aforementioned

parameters to model’s steady states.

The estimation is conducted by log-linearizing the dynamic system around its stochastic

steady state where entreprenuers’ credit constraint (40) binds. Estimation is done by using the

Matlab package Dynare, and we compute the posterior mode by Chris Sims’s “csminwel” routine

(“compute mode = 4” in Dynare). Posterior distributions were obtained with the Markov Chain

Monte Carlo (MCMC) algorithm, with an acceptance rate of 34%. We generated two parallel

chains, each having 100,000 observations, and truncate the first 20% for both chains as burn-in.

The posteriors for all the parameters are reported in the last four columns of Table 2. These

estimations for parmameters for households, entrepreneurs, retailers, monetary authorities are

broadly consistent with other estimates in the literature.

Remark on the Identification of Sentiment Parameters {σs, ρs, λ/ϕ}. Note equation (8)

establishes a mapping from sentiment fluctuations to housing price-rent dynamics. It enables

us to see transparently to what extent the sentiment process can lead to housing price-rental

fluctuations, which is the key mechanism for our model. To this end, we provide a detailed

explanation here by deriving three simple structural relationships from our model, which maps

these three parameters for sentiment process to three distributional moments on the dynamics

of U.S. house price-rent series.

First, the persistence of sentiment also governs the persistence of price to rental rate qt,

Corr (qt, qt−1) = ρ2
s, (49)

Second, the risk aversion parameter λ determines how volatile price rental ratio is,

Std (qt) =
ϕ

2λρ2
s

1− βhρ2
s

1− ρ2
s

√
4ρ2

s + 1

5 (1 + ρ2
s)
, (50)

Finally, given ρs and λ, the average of price-rental rate is determined by,

Ave (qt) =
βh

1− βh
− ϕ (1− βhρ2

s)

4λρ2
s

{
βh

1− βh
+

1

5

1− βhρ2
s

ρ2
s

1

1− βh
+

1

1− ρ2
s

}
(51)

The first equation is intuitive, as sentiment become more persistent, so will be price-rent ratio.
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The second equation says price-rent will becomes more volatile as λ become smaller; The third

equations says larger risk-aversion λ will increase average housing price-rental rate. Note σs

does not show up in the above equations, neither does it affect model dynamics. Therefore,

one can restrict attention to the identification of persistence and risk-aversion parameters only,

and these sufficient-statistics-like formulas suggest tight identification of the two parameters

utilizing information of the housing price/price-rental rate data.

3.3 Propagation Mechanisms

We have argued that fluctuations in sentiment drive changes in housing price rate, and through

collateral constraint, cause macroeconomic variables to fluctuates. In this subsection, we first

show the propagation mechanism in sticky price setting, and then discuss the estimation results.

The Mechanism. When price flexible, low perceived house price volatility induce households

to increase housing demand, and therefore reduces consumption. The reduction in consumption

lead to an outward shift in labor supply. With labor demand curve does not change, equilibrium

hours then increases, leading to a boom. In this section, we show how this analysis is enriched

in the presence of nominal rigidity.

To fix idea, we restrict our attention to a limitting case where γ = 0, i.e. capital is not used

for production. Note in this case, entrepreneurs consumption policy admits explicit solution,

Cht = (1− βe)

(
αptYt +QltLet−1 −

B̃t−1

πt

)
, (52)

combining it with equations (42), (48) we have,

p
1−α
υ+α

t

(
AtL

α
et−1

) 1+υ
υ+α

(
1− α
ψCht

) 1−α
υ+α

(53)

=
1

χt

{[
1 + ϕ (1− βe)

(
q̄ − φs2

t

)
Let−1

]
Cht − (1− βe)

B̃t−1

πt

}
, (54)

where χt := 1− γ
2

(
πt
π
− 1
)2− (1− βe)αpt. To assist illustration, we plot in Figure (4) how the

left and right hand side of equation (53), as a function of Cht, moves when the economy is hit

by a favorable sentiment shock. First, for any given Cht, drop in s2
t will lead to increase in the

right hand side. This is because, by Qlt
Cht

= q̄ − φs2
t , when Cht is given, drop in s2

t imply Qlt

must increase. According to equation (52), as Qlt increases, entrepreneurs consumes more be-

cause their borrowing constrained is relaxed. With nominal price rigidity, increase in aggregate

demand will leads to increase in pt, leading to an outward shift of the left hand side. When

this force is powerful enough, the outward shifting of the left hand side will eventually cause
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the equilibrium household consumption Cht to increase. Turning to labor market. Increasing

in Cht will shift labor supply curve inward. But labor demand expand by more because of the

increase in pt (decrease in markup). This results in higher equilibrium labor. To summarize,

in our model with nominal price rigidity, drop in perceived housing price volatility have the

potential to generate a boom, with consumption, hours, and output all increase after posi-

tive sentiment shock. The following section investigates the model’s quantitative potential in

explaning business cycle dynamics.

3.4 Quantitative Results

Impulse Response Functions. The Figure 6 shows the impulse response function following

unit standard deviation of sentiment shocks. Negative sentiment reduces housing price to rental

rate, propagate through a sharp decline in housing price, which in turn tightens entrepreneur’s

borrowing constraint. Importantly, sentiment shock also lead to risk panics. Followed by a

negative sentiment shocks, there is a spike of (conditional) volatility. Besides investment and

labor, we also get a negative response on consumption after a unfavorable sentiment shocks.

The reason, as we analyzed in section 3.3, is that markup is counter-cyclical.

For completeness, we also report in Figure 7 the impulse and response function of all other

shocks in the model, and our finding here is consistent with that of the DSGE literature. For

instance, for transitory technology shock, drop in productivity reduces equilibrium labor, con-

sumption, investment and output, and the mechanism mostly work through a direct reduction

in labor demand.

Shock Decomposition. By considering shock decomposition, we can gauge the relative im-

portance of the shocks in driving business cycle fluctuations in land price and other key macroe-

conomic variables. In Table 3, we report the decomposition results of eight types of structural

shocks at forecasting horizons from the impact period and six years after the initial shock. The

following findings are worth noting.

First, sentiment shock drives most (around 90%) of housing price fluctuations. Through

entrepreneurs credit constraints, housing price fluctuations causes a substantial fraction of

fluctuations in investment (about 30% to 40%), output (about 15% to 35%), and labor hours

(about 15% to 40%). Note that as sentiment shock is the only shock leading to risk panics, we

can see that it explains all the fluctuations in the volatility of housing price to rental rate.

Second, aggregate productivity shocks, permanent or transitory, contributes little housing

price fluctuations. Because productivity shock does not moves housing price, its impact is

not amplified through credit constraints. It do explain, however, a substantial fractions in the

fluctuations of consumption. Similarly, a labor supply shock or a patience shock explains little

fluctuations in output, investment, and labor hours. This is also because this shock does not
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drives housing price, and therefore is not amplified through the credit-constraint channel.

Third, the combination of permanent and transitory investment shocks also emerge as the

main driver of the business cycle. This is consistent with existing findings in the DSGE literature

(e.g., (Justiniano et al., 2009)) and confirms that, apart from the inclusion of the sentiment

shock, our exercises are quite typical.

Sticky Prices and Co-movement of Macroeconomic Variables. One issue in the DSGE

literature is that demand shocks typically can generate co-movement across macroeconomic

variables under sticky prices (Basu and Bundick, 2012). To show this, we conduct counterfactual

experiment by shutting down the cost of price adjustment and re-estimate the flexible price

version of our baseline model using the same time series. Figure 8 compares the two types

of model. Consistent with our illustration in Section 3.3, the presence of nominal rigidity can

leads to co-movement in consumption and output, as markup is counter-cyclical.

3.5 Crisis Experiment

To see our model’s overall performance in explaining the Great Recession period from 2007:Q3

to 2009:Q2, we conduct a crisis experiment by using the estimated path of sentiment, so that

we can access to what extent sentiment shock can generate the declines in macroeconomic

variables observed in the Great Recession. To do this, we first estimate the time series paths

of sentiments using the estimated model parameters. We then conduct an purification exercise

on the estimated sentiments, and we finally construct simulated macroeconomic variables using

sentiment shocks.

Estimation of Sentiment Shocks. Given our estimation strategy, the challenges in identify-

ing sentiment shocks are as follows. In reality, sentiment shock could be correlated with a wide

range of other shocks, namely, productivity, collateral, etc, could drive macroeconomic fluctu-

ations through sentiment process st. In our model, the consequence of this is that sentiment

innovations εst backed out from housing price-rent data may pick up economic fundamentals

other than pure sentiments or technology. To address this issue, we extend the process of

sentiments to the following in our estimation procedure,

x̂t = ρxx̂t−1 + σxε
x
t + ζt,

where ζt captures the combined effect of all other fundamental shocks in affecting x̂t, and is

defined by,

ζt =
∑
υ

ρυxσυε
υ
t ,

where υ ∈ {Aτ , Ap, Qτ
i , Q

p
i , ψ, θ,m}, and ρυx captures how correlated x̂t and ευt is. This specifi-

cation includes arbitrary linear structure whereby fundamental shocks originating from technol-
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ogy, investment price, labor supply, credit market, and monetary policy would affect housing

price through sentiment. In Figure 9, we plot the estimated sentiment shock. Note that in

this figure, episodes where unfavorable sentiment jumps most dramatically, i.e. the 1981–

1982 recessions and the Great Recession of 2007–2009, also coincides with the periods where

macroeconomic volatility is mostly heighted (Jurado et al., 2015). To further purify this series,

we conduct an regression exercise by projecting εxt on a wide range of important macroeco-

nomic variables, where we include the consumption, labor supply, investment, consumer CPI,

unemployment rate, and export (Milani, 2017; Angeletos et al., 2018). All variables are log-

differenced, and we also include their lagged values up to 3 quarters.

Sentiment and Perceived Uncertainty. Do bad sentiments leads to higher perceived un-

ceratinty? Ideally, one answer this this question by obtaining exogeneous proxy of sentiments,

and establish a causal relationship between the two. But this is hard, if possible at all. Here,

we show that in data, there exists a tight positive correlation between the two. In Figure 11, we

plot the perceived uncertainty, proxied by the Michigan Consumer Survey on Consumer Uncer-

tainty, against the lagged measure of sentiment innovations, recovered from our baseline model.

These two variable have a correlation of 0.36. The regression coefficient suggests one standard

deviation increase is asssociated with 0.5% more increase in the perceived uncertainty, and the

relationship is statistically significant. Our choice of this uncertainty measure is that it is more

related with consumers’ perception, and therefore directly speak to the model’s mechanism. In

addition, the time span of the survey is consistent with our estimated sentiemnt, whereas for

other common uncertainty measures such as VIX/VOX, the coverage is half the length of that

of the Michigan Survey.

Crisis Experiment. With estimated sentiment shocks, we can see the extent to which senti-

ment shock alone can explain the Great Recession episode. In Figure (10), we shows the model

generated path on land price and five other macroeconomic variables and compare them with

data. To isolate the effect of sentiment, we set all other shocks to zero. There are four messages

in this figure that would like to emphasis.

First, sentiment shocks play a crucial role in driving the decline of land price. The impact on

land price are propagated through credit constraints to generate the declines of macroeconomic

variables, leading to declines in output and business investment. The size of these predicted

drops is roughly consistent with that of the data during the crisis period. Second, the model

also imply uncertainty to increase during recessions that is largely in line with data. Third,

sentiment can also generate modest drops in consumption (2%) and hours (4%). In data, the

drops in the two variables are significantly larger (3.5% for consumption and 12% for hours).

Forth, although sentiment can generate large drops in key macroeconomic variables (output

and investment in particular), the effect of it not as persistent as we have observed in the data.

For instance, the simulated path of investment and hours increases after 2008:Q4 while the data
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continues to decline after that. The reason for this is that other mechanisms beyond sentiments

may connects the collapse in housing prices to the sharp contraction in macroeconomic activity

in the Great Recession.

4 Conclusion

In this paper, we develop and estimate a dynamic general equilibrium model linking endogenous

risk-panics, land price collapse, and the real economy. Our framework features self-fulfilling risk

spike in the housing market that result in large drops in housing prices. The theory can generate

large volatility in price-rent ratio, as well as the strong co-movement pattern between housing

price and macroeconomic aggregates.

Because the Great Financial Crisis was an episode of spikes in uncertainty and collapse in

land price, this article take a step in presenting theory focusing on the joint fluctuations of

the two variables, as well as their relation to the business cycle. We illustrate an economic

mechanism where self-fulfilling risk-panics drives housing price fluctuations, and where these

fluctuations transmit and propagate to the real economy. Estimation exercise suggests the

mechanism is an quantitatively important one, despite the presence of multiple competing

mechanisms.

The framework abstracts from other aspects that we leave for further study. One such

dimension is to include allow for credit constraint on the households side. Another one is to

extend the model to incorporate the stock market in the model. We hope that the framework we

develop in article lays the foundations for extending the model along these and other important

dimensions.
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5 Tables and Figures

Figure 3: Illustration of Model Mechanism
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Figure 4: Illustration of Model Mechanism (Sticky Price)
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Figure 5: IRF for No-Capital Model (in %)
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Note: This figure plots the impulse response function of housing price, output, hours and
entrepreneur land. To do so, we pick parameters from Table 1 and 2.
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Table 1: Calibrated Parameters

parameters symbols values data/source
growth tech gA 1.0023 data
growth invp gI 1.0122 data
ave. price rent q̄ 86.4450 data
disc household βh 0.9943 data
disc eentrepre βe 0.9855 data
ces aggregate σ 11.0000 data
inf target π̄ 1.0050 data
collat const θ̄ 0.8000 data
cost price adj γ 112.0000 data
depreciation δ 0.0360 literature
capital share α 0.3300 literature
land share φ 0.0800 literature

Note: This table lists the calibrated parameters (including the ones taken from literature) for
the extended model with capital. Detailed description is given in Section 3.2.
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Table 2: Estimated Parameters

Prior Posterior
Parameter Sym Dist a b Low High Mode Low High
structural para
inv frisch elas ν IG(a, b) 0.5000 0.2000 0.4730 1.6360 0.5403 0.3976 0.7026
cost inv. adj Ω IG(a, b) 1.0000 0.5000 0.5914 1.5051 0.4481 0.3768 0.5277
habit entrep. ηe B(a, b) 0.5000 0.2000 0.2320 0.7680 0.3874 0.2572 0.5225
habit hh ηh B(a, b) 0.5000 0.2000 0.2320 0.7680 0.7663 0.7415 0.7903
taylor infl φπ IG(a, b) 1.5000 0.2000 3.7579 4.2498 3.9862 3.7421 4.2425
taylor outp φy IG(a, b) 0.5000 0.2000 0.3163 0.7203 0.1765 0.1560 0.1984
shock para
std collat σθ IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0145 0.0133 0.0156
std inv (perm) σip IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0088 0.0080 0.0097
std inv (tran) σi IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0028 0.0025 0.0032
std hour disu σn IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0286 0.0254 0.0322
std tech (tran) σa IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0129 0.0118 0.0140
std tech (perm) σap IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0069 0.0059 0.0080
std mp σm IG(a, b) 0.0100 2.0000 0.0037 0.0166 0.0044 0.0038 0.0051
pers nomial ρr B(a, b) 0.5000 0.2000 0.2320 0.7680 0.5870 0.5202 0.6522
pers tech (trans) ρa B(a, b) 0.5000 0.2000 0.2320 0.7680 0.7824 0.7406 0.8233
pers tech (perm) ρap B(a, b) 0.5000 0.2000 0.2320 0.7680 0.5315 0.4597 0.6047
pers senti ρs B(a, b) 0.5000 0.2000 0.2320 0.7680 0.9854 0.9825 0.9883
pers collat ρt B(a, b) 0.5000 0.2000 0.2320 0.7680 0.9796 0.9763 0.9831
pers disutility ρn B(a, b) 0.5000 0.2000 0.2320 0.7680 0.9705 0.9647 0.9764
pers inv (trans) ρi B(a, b) 0.5000 0.2000 0.2320 0.7680 0.9687 0.9543 0.9829
pers inv (perm) ρip B(a, b) 0.5000 0.2000 0.2320 0.7680 0.9764 0.9613 0.9899
pers mp ρm B(a, b) 0.5000 0.2000 0.2320 0.7680 0.5097 0.4409 0.5766
corr(a, s) ρa,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 -0.0211 -0.2788 0.2330
corr(ap, s) ρap,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 0.0181 -0.2411 0.2812
corr(n, s) ρn,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 -0.0607 -0.3089 0.1968
corr(t, s) ρt,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 0.1099 -0.1417 0.3685
corr(i, s) ρi,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 0.0096 -0.2440 0.2677
corr(ip, s) ρip,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 -0.0031 -0.2644 0.2630
corr(m, s) ρm,s B(a, b) 0.0000 0.5000 -0.2578 0.2578 -0.0057 -0.2584 0.2590

Note: “Low” and “High” denote the bounds of the 90% probability interval for the prior
and the posterior distribution. IG denotes the inverse gamma distribution, B denote the beta
distribution.
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Figure 6: IRFs to one Std. Dev. Shocks
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Note: This figure plots the impulse response (in percentage deviation from s.s.) to one standard
deviation negative shock on sentiment. The model is solved using parameters in tables 1 and
2. For the estimated parameters, we use their posterior mean.
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Table 3: Conditional Variance Decomposition

horizon senti trans tech perm tech collat labor tran inv perm inv money
land price

1Q 87.6735 2.7941 0.1524 0.0265 0.9507 1.7212 6.1905 0.4911
4Q 90.0861 1.5801 0.6474 0.0101 1.0427 0.8414 5.6274 0.1648
8Q 90.5577 0.8327 0.8448 0.0808 0.8131 1.0983 5.6563 0.1164
16Q 86.6168 0.6945 0.5189 0.2950 0.4741 4.8563 6.3960 0.1485
24Q 82.5797 0.6572 0.3797 0.3676 0.3478 8.5733 6.9365 0.1581

uncertainty
1Q 99.9950 0.0001 0.0000 0.0022 0.0000 0.0000 0.0027 0.0000
4Q 99.9950 0.0001 0.0000 0.0022 0.0000 0.0000 0.0027 0.0000
8Q 99.9950 0.0001 0.0000 0.0022 0.0000 0.0000 0.0027 0.0000
16Q 99.9950 0.0001 0.0000 0.0022 0.0000 0.0000 0.0027 0.0000
24Q 99.9950 0.0001 0.0000 0.0022 0.0000 0.0000 0.0027 0.0000

consumption
1Q 0.2075 79.1392 10.8278 0.0265 5.8677 0.0077 3.6318 0.2917
4Q 0.1432 45.9051 26.5198 0.1719 8.0652 1.0045 17.4672 0.7230
8Q 0.3936 24.6146 23.5854 0.6093 7.2309 9.2802 33.2047 1.0812
16Q 1.7924 11.2481 10.0432 1.2280 3.3931 33.3237 37.7952 1.1763
24Q 1.5642 7.2697 5.6196 1.1402 1.9190 47.1563 34.3393 0.9917

hours
1Q 40.3781 4.9738 0.1028 4.9295 0.2533 10.4715 29.1181 9.7729
4Q 29.3829 3.1956 0.4305 2.2018 0.2383 12.9275 45.8961 5.7272
8Q 24.1154 2.8831 1.1704 1.8013 0.2354 11.0158 55.0333 3.7454
16Q 18.5977 2.1899 1.3049 1.3892 0.2131 8.6517 64.8320 2.8216
24Q 17.0169 1.9660 1.1826 1.3606 0.1903 7.9450 67.8472 2.4913

output
1Q 28.3597 22.4151 1.6050 3.4623 5.6682 11.1745 20.4512 6.8640
4Q 32.8815 4.4312 0.6513 4.9752 2.0483 17.6515 31.8695 5.4916
8Q 27.2798 3.9041 0.3109 4.7494 1.2866 22.9059 35.7204 3.8430
16Q 18.5910 3.3580 0.2232 3.7867 0.8075 32.2221 38.2490 2.7624
24Q 14.2392 2.8764 0.2041 3.0463 0.6162 38.5601 38.1789 2.2787

investment
1Q 43.3085 3.9142 1.8729 5.2717 0.8035 18.6093 17.5396 8.6803
4Q 40.1412 9.4472 3.4613 5.3815 0.1012 18.5120 18.0204 4.9353
8Q 38.1981 8.1662 4.6652 5.3880 0.0962 20.5516 19.2827 3.6520
16Q 34.8443 7.0385 5.2463 5.1393 0.1296 22.6287 21.7373 3.2362
24Q 34.3537 6.8195 5.2360 4.9896 0.1374 22.5715 22.7469 3.1453
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Figure 7: IRFs of All Shocks
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Figure 8: Sticky v.s. Flexible Prices
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Note: This figure shows the impulse response for sticky price and flexible price models. For
sticky price version, we use the estimated parameters in Table 1 and 2. Impulse response for
the flexible price model is obtained by setting the cost of price adjustment parameter γ equal
to zero.
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Figure 9: Estimated Sentiment Innovations

Note: This figure shows the estimated sentiment innovation εxt.
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Figure 10: Crisis Experiment
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Note: This figure shows the simulated dynamics of macroeconomic variables around crisis
period. We first estimate the sentiment shock (in Figure 9), then we compute these paths by
feeding the model with estimated parameters and shocks.
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Figure 11: Sentiment and Uncertainty
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Note: This figure plots the correlations for the perceived uncertainty against the estimated
sentiment series (xt in model). The perceived uncertainty is constructed from the Michigan
Survey of Consumers as in Liu et al. (2017).
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A Derivation of Equation (5)

The Lagrange is,

L = log (Cht − ηhCht−1) + ϕxt − λVart

(
Qlt+1

Rt+1

)
Lt − ψt

N1+υ
ht

1 + υ

+Λht

{
wtNht −Rt (xt − Lt−1) +

S̃t−1

πt
+ Πt − Cht −Qlt (Lht − Lht−1)− S̃t

R̃ft

}

+βh log (Cht+1 − ηhCht) + ϕxt+1 − λVart+1

(
Qlt+2

Rt+2

)
Lt+1 − ψt+1

N1+υ
ht+1

1 + υ

+βhΛht+2

{
wt+1Nht+1 −Rt+1 (xt+1 − Lt) +

S̃t
πt+1

+ Πt+1 − Cht+1 −Qlt+1 (Lht+1 − Lht)−
S̃t+1

R̃ft+1

}
+...

First order condition on Lht is given by,

QltΛht = βEt {Λht+1 [Rt+1 +Qlt+1]} − λVart

(
Qlt+1

Rt+1

)
,

where we have,

Qlt
Λht

ϕ
= βEt

{
1 +

Λht+1

ϕ
Qlt+1

}
− λ

ϕ
Vart

(
Qlt+1

Rt+1

)
and by using ϕ = Λht+1Rt+1 we have,

Qlt

Rt

= βhEt

{
1 +

Qlt+1

Rt+1

}
− λ

ϕ
Vart

(
Qlt+1

Rt+1

)

B Derivation of Equation (8)

Conjecture that,

qt = q̄ − φs2
t , (55)

where

st = ρsst−1 + εt, (56)
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with εt ∈ [−ε̄,+ε̄]. To verify, note,

Et [1 + qt+1] = Et
[
1 +

(
q̄ − φs2

t+1

)]
= 1 + q̄ − φEt

[
s2
t+1

]
(57)

= 1 + q̄ − φEt
[
ρ2s2

t + ε2
t+1 + 2ρstεt+1

]
= 1 + q̄ − φ

(
ρ2
ss

2
t + σ2

s

)
, (58)

and note,

Vart (qt+1) = φ2Vart
(
s2
t+1

)
= φ2Vart

(
ε2
t+1 + 2ρsstεt+1 + ρ2s2

t

)
= φ2Vart

(
ε2
t+1 + 2ρsstεt+1

)
= φ2

[
Et
(
ε2
t+1 + 2ρsstεt+1

)2 −
(
Et
(
ε2
t+1 + 2ρsstεt+1

))2
]

= φ2
[
Et
(
ε4
t+1 + 4ρ2

ss
2
t ε

2
t+1 + 4ρsstε

3
t+1

)
− σ4

s

]
= φ2

(
ω2
s + 4σ2

sρ
2
ss

2
t − σ4

s

)
,

where σ2
ε := Et

(
ε2
t+1

)
, and ω2

ε := Et
(
ε4
t+1

)
. Therefore,

qt = βhEt (1 + qt+1)− λ

ϕ
Vart (qt+1)

q̄ − φs2
t = βh

[
1 + q̄ − φ

(
ρ2
ss

2
t + σ2

ε

)]
− λ

ϕ
φ2
(
ω2
ε + 4σ2

ερ
2
ss

2
t − σ4

ε

)
,

matching coefficients yields,

q̄ = βh
(
1 + q̄ − φσ2

ε

)
− λ

ϕ
φ2
(
ω2
ε − σ4

ε

)
−φs2

t = βh
[
−φρ2

ss
2
t

]
− λ

ϕ
φ2
(
4σ2

ερ
2
ss

2
t

)
or

q̄ =
1

1− βh

{
βh − φ

[
βhσ

2
ε +

λ

ϕ
φ
(
ω2
ε − σ4

ε

)]}
(59)

φ =
ϕ (1− βhρ2

s)

4λσ2
ερ

2
s

(60)
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C Log-Linearized Model without Capital

We first list all the equations for the dynamic system and the log-linearize the system. (This

section has been numerically verified by Dynare).

C.1 Households

The Household optimality conditions are given by

Cht =
Rt

ϕ
(61)

ψNγ
ht =

wt
Cht

(62)

Qlt

Rt

= q̄ − φxt (63)

1 = βRftEt
{

Cht
Cht+1

}
(64)

C.2 Entrepreneurs

The budget is,

Cet +Qlt (Let − Let−1)− Bt

Rft

= ztLet−1 +Bt−1 (65)

and the optimality condition is

Cet = (1− βe) [(zt +Qlt)Le,t−1 −Bt−1] (66)

Let =
1

Qlt − θt Et[Qlt+1]

Rft

βe [(zt +Qlt)Le,t−1 −Bt−1] (67)

Bt = θtEt [Qlt+1]Let. (68)

C.3 Equilibrium Conditions

We have the market clearing conditions,

Cht + Cet = AtL
α
et−1N

1−α
t , (69)

(1− α)
AtL

α
et−1N

−α
et

Cht
= ψNυ

ht, (70)

St = Bt, (71)

Lht + Let = L̄, (72)
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where zt = α (1− α)
1−α
α w

α−1
α

t A
1
α
t , and the shock processes,

x̂t = ρxx̂t−1 + σxεxt, (73)

where

x̂t := log xt − log
σ2
ε

1− ρ2
s

, (74)

is the log-deviation of sentiment shock xt := s2
t from its stochastic average. To focus on the

impact of sentiment, we omit technology fluctuations by setting A = 1 permanently.

C.4 (Stochastic) Steady State

Before log-linearizing the model, we first solve the stochastic steady state where the entrepreneurs’

borrowing constraint binds. The stochastic steady state is then given by,

x̄ =
σ2
s

1− ρ2
s

,

N̄ =

(
ψ

1− αω
1− α

)− 1
1+υ

,

Q̄ =

{
ϕ (q̄ − φx̄)

1− α

[
(1− θβh)− (1− θ) βe

αβe

] α
1−α

ψN̄υ

}α−1

,

where,

0 < ω :=
(1− βe) (1− θβh)

(1− θβh)− (1− θ) βe
< 1

note other variables can be recoverd by the following relationships,

L̄e =

[
(1− θβh)− (1− θ) βe

αβe
Q̄

] 1
α−1

N̄ ,

C̄h =
1− α
ψ

h̄αe N̄
−(α+υ),

R̄ = ϕC̄h,

C̄e = L̄αe N̄
1−α − C̄h,

w̄ = (1− α) L̄αe N̄
−α,

z̄ = α (1− α)
1−α
α w̄

α−1
α ,

B̄ =
θβe

1− θβh

[
z̄ + (1− θ) Q̄

]
L̄e.

To derive the first equation, note from the budget of entrepreneurs, Ce + (1− βh)B = zLe.

Plugging Ce, z, and B inside gives the first equation.
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C.5 Log-Linearization

Let

ut := Qlt − θt
Et [Qlt+1]

Rft

.

Step 1. We first establish the relationship between Let and Nt. Note from entrepreneurs optimal

decision,
Cet
Let

=
1− βe
βe

(
Qlt − θt

Et [Qlt+1]

Rft

)
,

where

Cet = Yt − Cht = AtL
α
et−1N

1−α − 1− α
ψ

AtL
α
et−1N

−(α+υ)
et ,

therefore,

Let = Lαet−1

N1−α
t − 1−α

ψ
N
−(α+υ)
t

1−βe
βe

χt
,

so that,

L̂et = αL̂et−1 − χ̂t +
N̄1−α

N̄1−α − 1−α
ψ
N̄−(α+υ)

(1− α) N̂t +

1−α
ψ
N̄−(α+υ)

N̄1−α − 1−α
ψ
N̄−(α+υ)

(α + γ) N̂t

= αL̂et−1 − χ̂t +
(1− α) N̄1−α + (α + υ) 1−α

ψ
N̄−(α+υ)

N̄1−α − 1−α
ψ
N̄−(α+υ)︸ ︷︷ ︸

:=η

N̂t

= αL̂et−1 + ηN̂t − χ̂t
= (α + υ) N̂t + Ĉht + ηN̂t − χ̂t

= (α + υ) N̂t + Ĉh
t + ηN̂t −

{
1

1− θβh
Q̂lt −

θβh
1− θβh

(
Et
[
Q̂lt+1

]
− R̂ft

)}
= (α + υ + η) N̂t + Ĉh

t − Ĉh
t +

1

1− θβh
φx̄

q̄ − φx̄
x̂t −

θβh
1− θβh

Et
[

φx̄

q̄ − φx̄
x̂t+1

]
= (α + υ + η) N̂t +

1− θβhρ2
s

1− θβh
φx̄

q̄ − φx̄
x̂t, (75)

where by steady state values, we can show,

η :=
(1− α) N̄1−α + (α + υ) 1−α

ψ
N̄−(α+υ)

N̄1−α − 1−α
ψ
N̄−(α+υ)

=
1 + υ

αω
− (α + υ) ,

where ω := (1−βe)(1−θβh)
(1−θβh)−(1−θ)βe

.

Step 2. Conjecture,

L̂et = %hL̂et−1 + %bB̂t−1 + %xx̂t, (76)
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where %h, %b and %x are undetermined coefficients.

Step 3. Next, we log-linearize Q̂lt. By Qlt
Cht
∝ q̄ − φxt,

Q̂t = Ĉht + ¯̂q − φxt

= Ĉht −
φx̄

q̄ − φx̄
x̂t

= αL̂et−1 − (α + υ) N̂t −
φx̄

q̄ − φx̄
x̂t

= αL̂et−1 −
α + υ

α + υ + η

(
L̂et −

1− θβhρ2
s

1− θβh
φx̄

q̄ − x̄
x̂t

)
− φx̄

q̄ − φx̄
x̂t

= α− α + υ

α + υ + η
%h︸ ︷︷ ︸

ψh

L̂et−1−
α + υ

α + υ + η
%b︸ ︷︷ ︸

ψb

B̂t−1

+
1− θβhρ2

s

1− θβh
φx̄

q̄ − φx̄
α + υ

α + υ + η
− α + υ

α + υ + η
%x −

φx̄

q̄ − φx̄︸ ︷︷ ︸
ψx

x̂t

: = ψhL̂et−1 + ψbB̂t−1 + ψxx̂t (77)

Step 4. We log-linearize R̂ft. Note that by Qlt
Cht
∝ q̄ − φxt, we have,

Ĉht = Q̂lt +
φx̄

q̄ − φx̄
x̂t

= ψhL̂et−1 + ψbB̂t−1 −
α + υ

α + υ + η

(
%x −

1− θβhρ2
s

1− θβh
φx̄

q̄ − φx̄

)
x̂t,

so that

R̂ft =

 (%hψhL̂et−1 + %bψhB̂t−1 + %xψhx̂t + %1xψhx̂t−1

)
− α+υ
α+υ+η

(
%x −

1−θβhρ2s
1−θβh

φx̄
q̄−φx̄

)
ρ2
sx̂t − α+υ

α+υ+η
%1xx̂t


−
{
ψhL̂et−1 + ψbB̂t−1 −

α + υ

α + υ + η

(
%x −

1− θβhρ2
s

1− θβh
φx̄

q̄ − φx̄

)
x̂t

}
+ ψbB̂t (78)

=

[
(%h − 1)ψh + ψb%h

1 + ψh
1− ψb

]
L̂et−1 +

[
(ψh%b − ψb) + ψb%b

1 + ψh
1− ψb

]
B̂t−1

+

 ψb

(
%x

1+ψh
1−ψb

+ ψxρ
2
s+ψ1x

1−ψb

)
−
[
(ρ2
s − 1) α+υ

α+υ+η

(
%x −

1−θβhρ2s
1−θβh

φx̄
q̄−φx̄

)
+ α+υ

α+υ+η
%1x − %xψh

]  x̂t (79)
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Step 5. Then, we derive the log-deviation of ut = Qt − θt Et[Qt+1]
Rft

, we have,

ût =
1

1− θβh

(
ψhL̂et−1 + ψbB̂t−1 + ψxx̂t

)

− θβh
1− θβh

ψhL̂et + ψbB̂t +
(
ψxρ

2
s + ψ1x

)
x̂t︸ ︷︷ ︸

Et[Q̂t+1]

− R̂ft


=

ψh − θβh
(
%hψh + ψb%h

1+ψh
1−ψb

)
1− θβh

L̂et−1 +
ψb − θβh

(
%bψh + ψb%b

1+ψh
1−ψb

)
1− θβh

B̂t−1

+
ψx − θβh

[
%xψh + ψb

(
%x

1+ψh
1−ψb

+ ψxρ
2
s+ψ1x

1−ψb

)
+ (ψxρ

2
s + ψ1x)

]
1− θβh

x̂t +
θβh

1− θβh
R̂ft

= ψhL̂et−1 + ψbB̂t−1 +
1

1− θβh
× (1− θβhρ2

s)ψx − θβh (ρ2
s − 1) α+υ

α+υ+η

(
%x −

1−θβhρ2s
1−θβh

φx̄
q̄−φx̄

)
−θβh

(
α+υ

α+υ+η
%1x + ψ1x

)  x̂t

Step 6. Finally, we have Let = βe
αLαet−1N

1−α
t +QltLet−1−Bt−1

Qlt−θt
Et[Qlt+1]

Rft

, log-linearize

L̂et = ̂αLαet−1N
1−α
t +QltLet−1 −Bt−1 − ût

=
αβeL̄

α
e N̄

1−α

N̄Q̄l (1− βhθ)

[
αL̂et−1 + (1− α) N̂t

]
+

βeQ̄lL̄e
L̄eQ̄l (1− βhθ)

(
Q̂lt + L̂et−1

)
− βeB̄

L̄eQ̄l (1− βhθ)
B̂t−1 − ût

=

[
(1− βhθ) + βe (θ − 1)

1− βhθ

(
α +

1− α
α + υ + η

%h

)
+

βe
1− βhθ

(ψh + 1)

]
L̂et−1

+

[
(1− βhθ) + βe (θ − 1)

1− βhθ
1− α

α + υ + η
%b +

βe
1− βhθ

ψb −
θβe

1− βhθ

]
B̂t−1

+

{
(1− βhθ) + βe (θ − 1)

1− βhθ
1− α

α + υ + η

(
%x −

1− θβhρ2
s

1− θβh
φx̄

q̄ − φx̄

)
+

βe
1− βhθ

ψx

}
x̂t − ût.

where we have used the relationship that B̄ = θQ̄lL̄e.

Step 7. Finally, we matching coefficients on %h, %b, and %x,

1. on L̂et−1

(1− βhθ) + βe (θ − 1)

1− βhθ

(
α +

1− α
α + υ + η

%h

)
+

βe
1− βhθ

(ψh + 1)− ψh = %h

44



rearranging terms

%h =

βe
1−βhθ

(αθ + 1)

1−
βe

1−βhθ
[θ(1−α)−(1+υ)]+(1+υ)

η+α+υ

(80)

2. on B̂t−1

(1− βhθ) + βe (θ − 1)

1− βhθ
1− α

η + α + υ
%b +

βe
1− βhθ

ψb −
θβe

1− βhθ
− ψb = %b,

or

%b = −
θβe

1−βhθ

1− [(1−βhθ)+βe(θ−1)](1−α)−[βe−1+βhθ](α+υ)
(1−βhθ)(η+α+υ)

(81)

3. on x̂t

%x =
(1− βhθ) + βe (θ − 1)

1− βhθ
1− α

η + α + υ

(
%x −

1− θβhρ2
s

1− θβh
φx̄

q̄ − φx̄

)
+

βe
1− βhθ

ψx

− 1

1− θβh

{
(1− θβhρ2

s)ψx

−θβh (ρ2
s − 1) α+υ

η+α+υ

(
%x −

1−θβhρ2s
1−θβh

φx̄
q̄−φx̄

) }

cancelling terms and plugging ψx

%x =

[
βe−(1−βhθ)

1−βhθ
α+υ

η+α+υ
− (1−βhθ)+βe(θ−1)

1−βhθ
1−α

η+α+υ
+ 1
]

1−θβhρ2s
1−θβh

− βe
1−θβh

1−
[

(1−βhθ)+βe(θ−1)
1−βhθ

1−α
η+α+υ

− βe−(1−βhθ)
1−βhθ

α+υ
η+α+υ

] φx̄

q̄ − φx̄
(82)

Step 8. Finally, to prove ψx < 0, we need,

1− θβhρ2
x

1− θβh
φx̄

q̄ − φx̄
α + υ

η + α + υ
− α + υ

η + α + υ
%x −

φx̄

q̄ − φx̄
< 0,

plugging in %x, this is equivalent to,

α + υ

η + α + υ


1−θβhρ2s
1−θβh

−[
βe−(1−βhθ)

1−βhθ
α+υ
η+α+υ

− (1−βhθ)+βe(θ−1)

1−βhθ
1−α

η+α+υ
+1

]
1−θβhρ

2
s

1−θβh
− βe

1−βhθ

1−
[

(1−βhθ)+βe(θ−1)

1−βhθ
1−α

η+α+υ
−βe−(1−βhθ)

1−βhθ
α+υ
η+α+υ

]

 < 1
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for this to be true, we need η+α+υ
α+υ

>
βe

1−βhθ

1−
[

(1−βhθ)+βe(θ−1)

1−βhθ
1−α

α+γ+υ
−βe−(1−βhθ)

1−βhθ
α+γ

υ+α+γ

] , or

1 <
(1− βhθ) + βe (θ − 1)

1− βhθ

[
(1 + υ)

α (1− βe) (α + υ)
− 1− α
α + υ

]
.

note (1+υ)
α(1−βe)(α+υ)

− 1−α
α+υ

is a decreasing function in υ, becuase the derivative w.r.t. υ is,

1− α
(α + υ)2

[
1− 1

α (1− βe)

]
< 0 (83)

Therefore it reaching minimum as υ →∞, so that

(1− βhθ) + βe (θ − 1)

1− βhθ

[
(1 + υ)

α (1− βe) (α + υ)
− 1− α
α + υ

]
>

1

α

(1− θβh)− (1− θ) βe
(1− θβh) (1− βe)

>
1

α
> 1.

By equation (75), the response of N̂t is thus given by

N̂t =
%h

υ + α + γ
L̂et−1 +

%b
υ + α + γ

B̂t−1

− 1

υ + α + γ

βe
1−θβh

1−
[

(1−βhθ)+βe(θ−1)
1−βhθ

1−α
η+α+υ

− βe−(1−βhθ)
1−βhθ

α+υ
η+α+υ

] φx̄

q̄ − φx̄
x̂t,

so that

Ŷt = αL̂et−1 + (1− α) N̂t.

D Derivation of Equations (49), (50), and (51)

Note that we have,

• By construction, sentiment innovation εst follows uniform distribution from −ε̄ to +ε̄,

thus the density function is given by,

f (ε) =

{
1
2ε̄

0

if ε ∈ [−ε̄,+ε̄]
otherwise

(84)
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so that we have

σ2
ε : = E

(
ε2
t

)
=

∫ +ε̄

−ε̄

1

2ε̄
ε2dε =

1

2ε̄

ε3

3
|+ε̄−ε̄ =

1

2ε̄

2

3
ε̄3 =

ε̄2

3

ω2
ε : = E

(
ε4
t

)
=

∫ +ε̄

−ε̄

1

2ε̄
ε4dε =

1

2ε̄

ε5

5
|+ε̄−ε̄ =

1

2ε̄

2

5
ε̄5 =

ε̄4

5

• Note that the process of st is given by,

st = ρsst−1 + εt

s2
t = ρ2

ss
2
t−1 + ε2

t + 2ρsst−1εt

so that the process of xt := s2
t is given by

xt = ρ2
sxt−1 + 2ρs

√
xt−1εt + ε2

t (85)

and

E
[
s2
t

]
= ρ2

sE
[
s2
t−1

]
+ E

(
ε2
t

)
E [xt] =

E (ε2
t )

1− ρ2
s

=
ε̄2

3 (1− ρ2
s)

(86)
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• Note that,

E
[
x2
t

]
= E

[
(ρsst−1 + εt)

4]
= E

[(
ρ2
ss

2
t−1 + 2ρsεtst−1 + ε2

t

) (
ρ2
ss

2
t−1 + 2ρsεtst−1 + ε2

t

)]
= E

 ρ4
ss

4
t−1 + ρ2

ss
2
t−12ρsεtst−1 + ρ2

ss
2
t−1ε

2
t

+2ρsεtst−1ρ
2
ss

2
t−1 + (2ρsεtst−1)2 + 2ρsεtst−1ε

2
t

+ε2
tρ

2
ss

2
t−1 + ε2

t2ρsεtst−1 + ε4
t

 (87)

= E

 ρ4
ss

4
t−1 + ρ2

ss
2
t−1ε

2
t

+ (2ρsεtst−1)2

+ε2
tρ

2
ss

2
t−1 + ε4

t

 (88)

= E
[
ρ4
ss

4
t−1 + ρ2

ss
2
t−1ε

2
t + ε2

tρ
2
ss

2
t−1 + ε2

t ε
2
t + 4ρ2

sε
2
t s

2
t−1

]
= ρ4

sE
[
x2
t

]
+ 6ρ2

sE
[
ε2
t s

2
t−1

]
+ E

(
ε4
t

)
(89)

=⇒ (90)

E
[
x2
t

]
=

6ρ2
sE
[
ε2
t s

2
t−1

]
+ E (ε4

t )

1− ρ4
s

=
6ρ2

s
ε̄2

3(1−ρ2s)
ε̄2

3
+ ε̄4

5

1− ρ4
s

(91)

=

2
3

ρ2s
1−ρ2s

+ 1
5

1− ρ4
s

ε̄4 (92)

=⇒ (93)

Var (qt) = φ2Var (xt) = φ2
{
E
[
x2
t

]
− (E [xt])

2} (94)

= φ2ε̄4


2
3

ρ2s
1−ρ2s

+ 1
5

1− ρ4
s

− 1

9 (1− ρ2
s)

2

 (95)

= φ2 ε̄
4

9

6 ρ2s
1−ρ2s

+ 9
5

1− ρ4
s

− 1

(1− ρ2
s)

2

 (96)

= φ2 ε̄
4

9

{
4

5

4ρ2
s + 1

(ρ2
s − 1)2 (ρ2

s + 1)

}
(97)

√
Var (qt) = φ

2ε̄2

3
√

5 (1− ρ2
s)

√
4ρ2

s + 1

ρ2
s + 1

(98)

=
ϕ (1− βhρ2

s)

4λEt
(
ε2
t+1

)
ρ2
s

2ε̄2

3
√

5 (1− ρ2
s)

√
4ρ2

s + 1

ρ2
s + 1

(99)

=
(1− βhρ2

s)

2
√

5ρ2
s (1− ρ2

s)

ϕ

λ

√
4ρ2

s + 1

ρ2
s + 1

(100)
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so that

λ

ϕ
=

1− βhρ2
s

2
√

5ρ2
s (1− ρ2

s)
√

Var (qt)

√
4ρ2

s + 1

ρ2
s + 1

• Note that

Ave (qt) =
1

1− βh

{
βh − φ

[
βhσ

2
ε +

λ

ϕ
φ
(
ω2
ε − σ4

ε

)]}
− φE [xt]

=
1

1− βh

{
βh − φ

[
βh
ε̄2

3
+
λ

ϕ
φ

(
ε̄4

5
− ε̄4

9

)]}
− φ ε̄2

3 (1− ρ2
s)

=
βh

1− βh
− ϕ (1− βhρ2

s)

4λρ2
s

{
βh

1− βh
+

1

5

1− βhρ2
s

ρ2
s

1

1− βh
+

1

1− ρ2
s

}
so that

λ

ϕ
=

1− βhρ2
s

4ρ2
s

βh
1−βh

+ 1
5

1−βhρ2s
ρ2s

1
1−βh

+ 1
1−ρ2s

βh
1−βh

− Ave (qt)

E Linearizing Sentiments

Define the log-deviation of sentiment around its stochastic steady state,

x̂t = log xt − log
σ2
ε

1− ρ2
s

,

where xt = s2
t , then

Qlt

Rt

= q̄ − φex̂t+log
σ2ε

1−ρ2s ,

note that by the process of xt in equation (85),

xt = ρ2
sxt−1 + 2ρs

√
xt−1εt + ε2

t

e
x̂t+log

σ2ε
1−ρ2s = ρ2

se
x̂t−1+log

σ2ε
1−ρ2s + 2ρsεte

1
2
x̂t−1+ 1

2
log

σ2ε
1−ρ2s + ε2

t

or

ex̂t = ρ2
se
x̂t−1 + 2ρs

√
1− ρ2

s

εt
σs
e

1
2
x̂t−1 +

ε2
t

σ2
s

(
1− ρ2

s

)
subtract the above equation by 1 = ρ2

s + (1− ρ2
s),

ex̂t − 1 = ρ2
s

(
ex̂t−1 − 1

)
+ 2ρs

√
1− ρ2

s

εt
σs
e

1
2
x̂t−1 +

ε2
t − σ2

s

σ2
s

(
1− ρ2

s

)
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to a first order approximation (note we use e
1
2
x̂t−1 = 1 + 1

2
x̂t−1 and drop εtx̂t−1 term),

x̂t = ρ2
s︸︷︷︸

:=ρx

x̂t−1 + 2ρs
√

1− ρ2
s

εt
σε

+
ε2
t − σ2

ε

σ2
ε

(
1− ρ2

s

)
︸ ︷︷ ︸

:=ε̃t,

then,

E [ε̃t] = 0,

and

Var [ε̃t] = Var

[
2ρs
√

1− ρ2
s

εt
σε

]
+ Var

[
ε2
t − σ2

ε

σ2
ε

(
1− ρ2

s

)]
+Cov

[
2ρs
√

1− ρ2
s

εt
σε
,
ε2
t − σ2

ε

σ2
ε

(
1− ρ2

s

)]
= 4ρ2

s

(
1− ρ2

s

)
+
(
1− ρ2

s

)2
Var

(
ε2
t

σ2
ε

)
+ 0

= 4ρ2
s

(
1− ρ2

s

)
+
(
1− ρ2

s

)2 E (ε4
t )− E (ε2

t )
2

σ4
ε

= 4ρ2
s

(
1− ρ2

s

)
+
(
1− ρ2

s

)2
(
ω2
ε

σ4
ε

− 1

)
= 4ρ2

s

(
1− ρ2

s

)
+

4

5

(
1− ρ2

s

)2

where we use ω2
ε

σ4
ε
. In the case where ρ2

s = 0.99, we have Std[εxt] ≈
√

0.04 = 0.2. It is thus

convenient to write down

log xt = ρx log xt−1 + σxεxt,

where

ρx = ρ2
s (101)

σx =

√
4ρ2

s (1− ρ2
s) +

4

5
(1− ρ2

s)
2 (102)

F Parameter Transformation for Estimation

• We have,

φ =
ϕ (1− βhρ2

s)

4λσ2
ερ

2
s

, (103)

q̄ =
1

1− βh

{
βh − φ

[
βhσ

2
ε +

λ

ϕ
φ
(
ω2
ε − σ4

ε

)]}
, (104)
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• Let q̃ = q̄ − φ σ2
ε

1−ρ2ε
, then guess,

Θ := {σε, ρs, q̃, βh} , (105)

so that, {
φ, q̄,

λ

ϕ
, ωε

}
(106)

are given by,

φ (Θ) =

βh
1−βh

− q̃

σ2
ε

[
1

1−βh

(
βh + 1−βhρ2s

5ρ2s

)
+ 1

1−ρ2s

] (107)

q̄ (Θ) =
βh

1− βh
− φ (Θ)

σ2
ε

1− βh

(
βh +

1− βhρ2
s

5ρ2
s

)
(108)

ωs (Θ) =
3√
5
σ2
s (109)

λ

ϕ
(Θ) =

1− βhρ2
s

4φ (Θ)σ2
ερ

2
s

• Then the price-rental ratio is given by,

Qlt

Rt

= q̄ − φ σ2
s

1− ρ2
s

xt = q̄ (Θ)− φ (Θ)
σ2
ε

1− ρ2
s

xt (110)

where

log xt = ρx log xt−1 + σxεxt. (111)

G Dynamic System With Stochastic Trends

The model has two stochastic trends, permanent productivity shock and investment price shock,

At = AptA
τ
t

logApt = logApt−1 + log µAt

logAτt = ρAτ logAτt−1 + σAτ εAτ t

log µAt = (1− ρAp) log µ̄A + ρAp log µAt−1 + σApεApt
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and,

Qit = Qp
itQ

τ
it

logQp
it = logQp

it−1 + log µQit

logQτ
it = ρQτi logQτ

it−1 + σQτi εQτi t

log µQit =
(

1− ρQpi
)

log µ̄Qi + ρQpi log µQit−1 + σQpi εQ
p
i t

define,

Γt =
[
AtQ

(1−φ)α
it

] 1
1−α(1−φ)

so that,

log gγt =
1

1− α (1− φ)
[∆ logAt + α (1− φ) ∆ logQit]

=
1

1− α (1− φ)

{
∆ [logApt + logAτt ]

+α (1− φ) ∆ [logQp
it + logQτ

it]

}

=
1

1− α (1− φ)

{
log µAt + α (1− φ) log µQit

+
[
logAτt − logAτt−1

]
+ α (1− φ)

[
logQτ

it − logQτ
it−1

] }(112)

and,

log gQit = log µQit + α (1− φ)
[
logQτ

it − logQτ
it−1

]
(113)

so that,

log gγ =
log µ̄A + α (1− φ) log µ̄Qi

1− α (1− φ)

so that,

gγ =
[
µ̄A
(
µ̄Qi
)α(1−φ)

] 1
1−α(1−φ)

(114)

and,

gQi = µ̄Qi .

G.1 Households

We have households problem,

max
{Cht,xt,Lht,Nht,St}

E0

{
∞∑
t=0

βtht

[
logCht + ϕxt − λVart

(
Qlt+1

Rt+1

)
Lt − ψ

N1+υ
ht

1 + υ

]}
,
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flow of funds,

Cht +Qlt (Lht − Lht−1) +
S̃t

R̃ft

= wtNht −Rt (xt − Lt−1) +
S̃t−1

πt
+ Πt,

subject to,

L = logCht + ϕxt − λVart

(
Qlt+1

Rt+1

)
Lt − ψ

N1+υ
ht

1 + υ

+Λht

{
WtNht −Rt (xt − Lt−1) +

S̃t−1

πt
+ Πt − Cht −Qlt (Lht − Lht−1)− S̃t

R̃ft

}

First order condition gives,

Λht =
1

Cht − ηhCht−1

− βhEt
(

ηh
Cht+1 − ηhCht

)
(115)

ϕ = ΛhtRt (116)

ψtN
υ
ht = Λhtwt (117)

Qlt

Rt

= q̄ − φxt (118)

1 = βhR̃ftEt
(

Λht+1

Λht

1

πt+1

)
(119)

and we can transform equation (115) into,

ΛhtΓt =
Γt

Cht − ηhCht−1

− βhEt
(

ηhΓt
Cht+1 − ηhCht

)
λht =

1
Cht
Γt
− ηh

Cht−1

Γt−1

Γt−1

Γt

− βhEt

(
ηh

Cht+1

Γt+1

Γt+1

Γt
− ηh ChtΓt

)

λht =
1

cht − ηh
gγt
cht−1

− βhEt
(

ηh
cht+1gγt+1 − ηhcht

)
(120)

and equation (116) into,

ϕ = λhtrt (121)

and equation (117) into,

ψtn
υ
t = λhtwt (122)

and equation (118) into,
qlt
rt

= q̄ − φxt (123)
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and equation (119) into,

1 = βhR̃ftEt
(

Λht+1

Λht

1

πt+1

)
1 = βhR̃ftEt

(
Λht+1Γt+1

ΛhtΓt

Γt
Γt+1

1

πt+1

)
(124)

1 = βhR̃ftEt
(

λht+1

λhtgγt+1

1

πt+1

)
(125)

G.2 Intermediate Firms

We have,

max
{Cet,Bt,Let}

E0

{
∞∑
t=0

βet log (Cet − ηeCet−1)

}
,

subject to the constraint,

Cet +Qlt (Let − Let−1) +
B̃t−1

πt
= ptYt − wtNt −

It
Qit

+
B̃t

R̃ft

(126)

B̃t = θtEt {(1 + πt+1) (Qlt+1Let +Qkt+1Kt)} (127)

Kt = (1− δ)Kt−1 +

[
1− Ω

2

(
It
It−1

− gγgQi
)2
]
It (128)

where,

Yt = At

(
Lφet−1K

1−φ
t−1

)α
N1−α
et (129)

the Lagrange problem is

L = log (Cet − ηeCet−1)

+Λet

{
ptYt − wtNt −

It
Qit

+
B̃t

R̃ft

− Cet −Qlt (Let − Let−1)− B̃t−1

πt

}
+ξt

{
θtEt {(1 + πt+1) (Qlt+1Let +Qkt+1Kt)} − B̃t

}
+χt

{
(1− δ)Kt−1 +

[
1− Ω

2

(
It
It−1

− gγ
)2
]
It −Kt

}

this gives,
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Kt = (1− δ)Kt−1 +

[
1− Ω

2

(
It
It−1

− gγ
)2
]
It (130)

B̃t = θtEt [πt+1 (Qlt+1Let +Qkt+1Kt)] (131)

Λet =
1

Cet − ηeCet−1

− βEt
(

ηe
Cet+1 − ηeCet

)
(132)

Yt = At

(
Lφet−1K

1−φ
t−1

)α
(Net)

1−α (133)

Wt = pt (1− α)
Yt
Nt

(134)

1

R̃ft

= βeEt
{

Λet+1

Λet

1

πt+1

}
+

ξt
Λet

(135)

1

Qit

= Qkt

[
1− Ω

2

(
It
It−1

− gγ
)2

− Ω

(
It
It−1

− gγ
)

It
It−1

]
(136)

+βΩEt

[
Λet+1

Λet

Qkt+1

(
It+1

It
− gγ

)(
It+1

It

)2
]

(137)

Qkt =
ξt
Λet

θtEt (πt+1Qkt+1) + βeEt
{

Λet+1

Λet

[
α (1− φ) pt

Yt+1

Kt

+ (1− δ)Qkt+1

]}
(138)

Qlt =
ξt
Λet

θtEt (πt+1Qlt+1) + βeEt
{

Λet+1

Λet

[
αφpt

Yt+1

Let
+Qlt+1

]}
(139)

Cet = ztL
γ
et−1K

1−γ
t−1 −

It
Qit

+
B̃t

Rft

−Qlt (Let − Let−1)− B̃t−1

πt
(140)

transform equation (130) into

Kt = (1− δ)Kt−1 +

[
1− Ω

2

(
It
It−1

− gγgQi
)2
]
It

Kt

QitΓt
= (1− δ) Kt−1

QitΓt
+

1− Ω

2

(
It

QitΓt
It−1

QitΓt

− gγgQi
)2
 It
QitΓt

kt = (1− δ) Kt−1

Qit−1Γt−1

Qit−1Γt−1

QitΓt
+

1− Ω

2

(
It

QitΓt
It−1

Qit−1Γt−1

Qit−1Γt−1

QitΓt

− gγgQi
)2
 It
QitΓt

kt =
1− δ
gγtgQit

kt−1 +

[
1− Ω

2

(
it
it−1

gγtgQit − gγgQi
)2
]
it (141)
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equation (131) into

B̃t = θtEt [πt+1 (Qlt+1Let +Qkt+1Kt)]

B̃t

Γt
= θtEt

[
πt+1

(
Qlt+1

Γt+1

Γt+1

Γt
Let +Qit

Qit+1

Qit+1

Qkt+1
Kt

ΓtQit

)]
(142)

bt = θtEt

[
πt+1

(
qlt+1gγt+1let +

qkt+1

gQit+1

kt

)]
(143)

equation (132) into

Λet =
1

Cet − ηeCet−1

− βeEt
(

ηe
Cet+1 − ηeCet

)
λet =

1

cet − ηe
gγt
cet−1

− βeEt
(

ηe
cet+1gγt+1 − ηecet

)
(144)

equation (133) into

Yt = At

(
Lφet−1K

1−φ
t−1

)α
(Net)

1−α

Yt
Γt

=
At

(
Lφet−1K

1−φ
t−1

)α
(Net)

1−α[
AtQ

(1−φ)α
it

] 1
1−α(1−φ)

yt =
K
α(1−φ)
t−1[

A
α(1−φ)
t Q

(1−φ)α
it

] 1
1−α(1−φ)

n1−α
t lαφet−1 =

(
Kt−1

[AtQit]
1

1−α(1−φ)

)α(1−φ)

n1−α
t lαφet−1

=

(
Kt−1

Γt−1Qit−1

Γt−1Qit−1

ΓtQit

)α(1−φ)

n1−α
t lαφet−1

=
(
gγtgQit

)α(φ−1)
(
lφet−1k

1−φ
t−1

)α
n1−α
t (145)

equation (134) to

wt = pt (1− α)
yt
nt

(146)

equation (135) to
1

r̃ft
= βeEt

{
λet+1

gγt+1λet

1

πt+1

}
+

ξt
λet
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equation (136) to

1

Qit

= Qkt

[
1− Ω

2

(
It
It−1

− gγgQi
)2

− Ω

(
It
It−1

− gγgQi
)

It
It−1

]

+βΩEt

[
Λet+1

Λet

Qkt+1

(
It+1

It
− gγgQi

)(
It+1

It

)2
]

(147)

1

QitQkt

=

[
1− Ω

2

(
It
It−1

− gγgQi
)2

− Ω

(
It
It−1

− gγgQi
)

It
It−1

]

+βΩEt

[
Λet+1

Λet

Qkt+1

Qkt

(
It+1

It
− gγgQi

)(
It+1

It

)2
]

(148)

1

qkt
=

[
1− Ω

2

(
it
it−1

gγtgQit − gγgQi
)2

− Ω

(
it
it−1

gγtgQit − gγgQi
)

it
it−1

gγtgQit

]

+βΩEt

[
λet+1

gγt+1λet

qkt+1

qkt

1

gQit+1

(
it+1

it
gγt+1gQit+1

− gγgQi
)(

it+1

it
gγt+1gQit+1

)2
]
(149)

equation (138) to

Qkt =
ξt
Λet

θtEt (πt+1Qkt+1) + βeEt
{

Λet+1

Λet

[
α (1− φ) pt

Yt+1

Kt

+ (1− δ)Qkt+1

]}
1 =

ξt
Λet

θtEt
(
πt+1

Qit+1Qkt+1

QitQkt

Qit

Qit+1

)
+ βeEt

{
Λet+1

Λet

[
α (1− φ) pt

Yt+1

QktKt

+ (1− δ) Qkt+1

Qkt

]}
1 =

ξt
λet

θtEt

(
qkt+1

qkt

πt+1

gQit+1

)
+ βeEt

{
Λet+1

Λet

[
α (1− φ) pt

Yt+1

Γt

QitQkt
Kt

ΓtQit

+ (1− δ) qkt+1

qkt

1

gQit+1

]}

1 =
ξt
λet

θtEt

(
qkt+1

qkt

πt+1

gQit+1

)
+ βeEt

{
λet+1

gγt+1λet

[
α (1− φ) pt

yt+1gγt+1

qktkt
+ (1− δ) qkt+1

qkt

1

gQit+1

]}

qkt =
ξt
λet

θtEt

(
πt+1

gQit+1

qkt+1

)
+ βeEt

{
λet+1

gγt+1λet

[
α (1− φ) pt

yt+1gγt+1

kt
+ (1− δ) qkt+1

gQit+1

]}
(150)

equation (139) to

Qlt =
ξt
Λet

θtEt (πt+1Qlt+1) + βeEt
{

Λet+1

Λet

[
αφpt

Yt+1

Let
+Qlt+1

]}
Qlt

Γt
=

ξt
Λet

θtEt
(
πt+1

Qlt+1

Γt

)
+ βeEt

{
Λet+1

Λet

[
αφpt

Yt+1

ΓtLet
+
Qlt+1

Γt

]}
qlt =

ξt
λet

θtEt (πt+1qlt+1gγt+1) + βeEt
{

λet+1

gγt+1λet

[
αφpt

yt+1

let
gγt+1 + qlt+1gγt+1

]}
qlt =

ξt
λet

θtEt (πt+1qlt+1gγt+1) + βeEt
{
λet+1

λet

[
αφpt

yt+1

let
+ qlt+1

]}
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equation (140) to

Cet = αYt −
It
Qit

+
B̃t

Rft

−Qlt (Let − Let−1)− B̃t−1

πt

Cet
Γt

= α
Yt
Γt
− It

ΓtQit

+
B̃t

ΓtRft

− Qlt

Γt
(Let − Let−1)− B̃t−1

Γtπt

cet =
(
gγtgQit

)α(φ−1)
(
lφet−1k

1−φ
t−1

)α
n1−α
t − it +

bt
r̃ft
− qlt (Let − Let−1)− bt−1

πtgγt
(151)

G.3 Final Goods Firms

Final goods firms,

pt =
σ − 1

σ
+
γ

σ

[
πt
π

(πt
π
− 1
)
− βhEt

(
Λht+1

Λht

πt+1

π

(πt+1

π
− 1
) Yt+1

Yt

)]
pt =

σ − 1

σ
+
γ

σ

[
πt
π

(πt
π
− 1
)
− βhEt

(
λht+1

gγt+1λht

πt+1

π

(πt+1

π
− 1
) yt+1

yt
gγt+1

)]
pt =

σ − 1

σ
+
γ

σ

{
πt
π

(πt
π
− 1
)
− βhEt

[
λht+1

λht

πt+1

π

(πt+1

π
− 1
) yt+1

yt

]}

G.4 Fed

We have,

log R̃ft = log R̃f + ρπ (log πt − log π) + ρy (log yt − log y)

log r̃ft = log r̃f + ρπ (log πt − log π) + ρy (log yt+1 − log y) (152)

G.5 Market Clearing

We have

yt = cht + cet + it +
γ

2

(πt
π
− 1
)2

yt (153)
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H Steady State

From household side optimization,

λh =
gγ − βhηh
gγ − ηh

1

ch
(154)

ϕ = λhr (155)

ψnυ = λhw (156)
ql
r

= q̄ − φx (157)

πgγ = βhr̃f (158)

from entrepreneur optimization,

i

k
= 1− 1− δ

gγgQi
(159)

b = θπ

(
gγqlle +

k

gQi

)
(160)

λe =
gγ − βeηe
gγ − ηe

1

ce
(161)

y =
(
gγgQi

)α(φ−1) (
lφe k

1−φ)α n1−α (162)

w = p (1− α)
y

n
(163)

1

r̃f
= βe

1

gγπ
+

ξ

λe
(164)

1 = θ
ξ

λe

π

gQi
+
βe
gγ

[
α (1− φ) gγ

y

k
+

1− δ
gQi

]
(165)

ql =
ξ

λe
θπqlgγ + βe

(
αφ

y

le
+ ql

)
(166)

ce = αpy − i+

(
1

r̃f
− 1

πgγ

)
b (167)

and fed,

p =
σ − 1

σ
(168)

and market clearing,

y = ch + ce + i (169)
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H.1 Solving for Steady State

Step 1. : reduce system into {ch, le, k, n, ql}. Note that combining equation (154), (156), (163),

and (168) gives,

ch =
1− α
ψ

gγ − βhηh
gγ − ηh

σ − 1

σ

(
gγgQi

)α(φ−1)

︸ ︷︷ ︸
:=χ1

lαφe kα(1−φ)n−(υ+α), (170)

and note equation (165) and (166) implies,

lαφe kα(1−φ)−1n1−α =
1− θ(βh−βe)

gγgQi
− βe(1−δ)

gγgQi

σ−1
σ
βeα (1− φ)

(
gγgQi

)α(φ−1)︸ ︷︷ ︸
:=χ2

(171)

lαφ−1
e kα(1−φ)n1−α =

(1− βe)− θ (βh − βe)
σ−1
σ
βeαφ

(
gγgQi

)α(φ−1)︸ ︷︷ ︸
:=χ3

ql (172)

where we have used the relationship that,

ξ

λe
=

1

r̃f
− βe

1

gγπ
=

1

r̃f
− βe

1

βhr̃f
=

1

r̃f

(
1− βe

βh

)
(173)

Also note from equation (169), ce = y − ch − i, plugging this equation inside equation (167),

gives (
1− ασ − 1

σ

)(
gγgQi

)α(φ−1) (
lφe k

1−φ)α n1−α = ch −
1− βh
gγ

θ

(
gγqlle +

k

gQi

)
(174)

Finally, we combine equations (154), (155) and ( 157),

ql = ϕ
gγ − ηh
gγ − βhηh

(q̄ − φx)︸ ︷︷ ︸
:=χ0

ch (175)

Step 2. we plug in the following equation into,

ch = χ1l
αφ
e kα(1−φ)n−(υ+α) (176)

χ2 = lαφe kα(1−φ)−1n1−α (177)

χ3ql = lαφ−1
e kα(1−φ)n1−α (178)

ql = χ0ch (179)
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combine equations (179), (176), and (178) solves n (le),

n (le) = (χ3χ0χ1le)
1

1+υ , (180)

plugging this equation inside equation (177) gives k (le),

k (le) =

 l
αφ+ 1−α

1+υ
e

χ2 (χ3χ0χ1)
α−1
1+υ

 1
1−α(1−φ)

, (181)

so that by equation (176),

ch (le) = χ1

(
lφe k

1−φ)α n−(α+υ). (182)

Step 3. Plugging equations (180) and (181) into (174) gives a non-linear function with le being

the unknown,(
1− ασ − 1

σ

)(
gγgQi

)α(φ−1) (
lφe k

1−φ)α n1−α = ch −
1− βh
gγ

θ

(
gγqlle +

k

gQi

)
(183)
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Step 4. We can recover other related variables. We have,

n = (χ3χ0χ1le)
1

1+υ , (184)

k (le) =

 l
αφ+ 1−α

1+υ
e

χ2 (χ3χ0χ1)
α−1
1+υ

 1
1−α(1−φ)

, (185)

ch = χ1

(
lφe k

1−φ)α l−(α+υ), (186)

ql = χ0ch, (187)

i =

(
1− 1− δ

gγgQi

)
k, (188)

rf =
πgγ
βh

, (189)

p =
σ − 1

σ
, (190)

y =
(
gγgQi

)α(φ−1) (
lφe k

1−φ)α l1−α, (191)

w = (1− α)
σ − 1

σ

y

n
, (192)

ce =
σ − 1

σ
y − wn− i+ b

(
1

rf
− 1

πgγ

)
, (193)

λe =
gγ − βeηe
gγ − ηe

1

ce
, (194)

λh =
gγ − βhηh
gγ − ηh

1

ch
, (195)

r =
ϕ

λe
, (196)

ξ =
1

rf

(
1− βe

βh

)
λe. (197)

I Detailed Estimation Procedure

I.1 Observation Equations

We have the following observation equations.

• For variables X scaled down by Γt, including {Y,B,A,Q}. The model-implied growth
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rate is given by,

log
Xt

Xt−1︸ ︷︷ ︸
from data

= logXt − logXt−1

= log xt + log Γt − (log xt−1 + log Γt−1)

= log xt − log xt−1 +
1

1− α (1− φ)

[
log
(
AtQ

(1−φ)α
it

)
− log

(
At−1Q

(1−φ)α
it−1

)]
= log xt − log xt−1

+
1

1− α (1− φ)
[logAt − logAt−1 + α (1− φ) (logQit − logQit−1)] (198)

= log xt − log xt−1

+
1

1− α (1− φ)

[
logApt − logApt−1 + logAτt − logAτt

+α (1− φ)
(
logQp

it − logQp
it−1 + logQτ

it − logQτ
it−1

) ](199)

= log xt − log xt−1 (200)

+
1

1− α (1− φ)

[
log µAt +

(
logAτt − logAτt−1

)
+α (1− φ)

(
log µQit + logQτ

it − logQτ
it−1

) ] (201)

to show how the growth rate is related with parameters. Note that

log gX = log

(
Xt

Xt−1

)
=

1

1− α (1− φ)

[
log µA + α (1− φ) log µQi

]
gX =

[(
µA
) (
µQi
)α(1−φ)

] 1
1−α(1−φ)

• For variables scaled down by ΓtQit = (AtQit)
1

1−α(1−φ) , including {Kt, It}. The model

implied growth rate is given by,

log
Xt

Xt−1︸ ︷︷ ︸
from data

= log xt − log xt−1 +
1

1− α (1− φ)

[
log µAt +

(
logAτt − logAτt−1

)
+
(

log µQit + logQτ
it − logQτ

it−1

) ]

Note that

gX =
(
µAµQi

) 1
1−α(1−φ)
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• To link data and model, we have

log

(
Yt
Yt−1

)
− log

(
Yt
Yt−1

)

= log yt − log yt−1 +
1

1− α (1− φ)



log µ̃At︸ ︷︷ ︸
:=log µAt −logµAt

+
(
logAτt − logAτt−1

)

+α (1− φ)

 log µ̃Qit︸ ︷︷ ︸
:=log µ

Qi
t −log µ

Qi
t

+ logQτ
it − logQτ

it−1




• Therefore, in the model, the observation equations are,

∆ logHPRICEt

∆ logCONSt

∆ log INVt

∆ log TFPt

∆ log INV PRCt

∆ logDEBTt

INFLATIONt

FEDFUNDt


=



∆ log Γt

∆ log Γt

∆ log Γt

∆ log Γt

∆ log Γt

∆ log Γt

π

r


+



∆qlt

∆ct

∆it

∆at

∆qit

∆bt

πt

rt


note in data, investment is in consumption units, INVt := It

Qit
= It

QitΓt
Γt. So that the

observation equation is ∆ log INVt = ∆ log Γt + ∆it, where it := It
QitΓt

.

I.2 Construction of Data

We draw data of land price, consumption, output, investment, corporate bond holding, and

hours from Liu, Wang and Zha (2014). Inflation and federal fund rate is from FRED dataset.
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J Shocks

The model have the following shocks,

logAτt = ρAτ logAτt−1 + σAτ εAτ t

log µAt = (1− ρAp) log µ̄A + ρAp log µAt−1 + σApεApt

logQτ
it = ρQτi logQτ

it−1 + σQτi εQτi t

log µQit =
(

1− ρQpi
)

log µ̄Qi + ρQpi log µQit−1 + σQpi εQ
p
i t

log xt = ρ2
x log xt−1 + σxεxt

logψt =
(
1− ρψ

)
log ψ̄ + ρψ logψt−1 + σψεψt

log θt = (1− ρθ) log θ̄ + ρθ log θt−1 + σθεθt

logmt = ρm logmt−1 + σmεmt

K Calibrated Parameters

• Growth rate parameters: µA, and µQi : directly computed from the growth rate of tech-

nology shocks

– let

µQi =

(
Qit

Qit−1

)
= 1.0122

where Qit is the relative price of investment constructed in Liu, Wang and Zha (2014)

– let

µA =
At
At−1

= 1.0023

where At is Fernald (capital-utilization adjusted) TFP series.

• Steady state parameters: ψ̄, θ̄, q̄ − φ σ2
s

1−ρ2s
, βh, π, rf

– we have

q̄ (Θ)− φ (Θ)
σ2
s

1− ρ2
s

=
Qlt

Rt

= 86.4450

note by equation (), q̄ will be a combination of parameters.

– we have π as the average inflation rate

π = 1.005

so that 2% per year (fed’s target)
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– by equation

βh =
πgγ
r̃f

=
π
[(
µA
) (
µQi
)α(1−φ)

] 1
1−α(1−φ)

r̃f

– average loan to value ratio θ̄ = 0.80

b

v − b
=

θ̄

1− θ̄
= 4.00

– ces aggregate σ = 11

markup =
1

σ − 1
= 0.10

– βh = 0.9855 to match (real rate) of

– βe = 0.9855× 1.0089 to match bond excessive return

– set the price adjustment cost parameter to Ω = 112, so that, to a first-order approx-

imation, the slope of the Phillips curve in our model corresponds to that implied by

a Calvo model with a duration of price contracts of four quarters

– ψ̄ normalized to, to a first order approximation, ψ̄ does not affect dynamics, it only

affect s.s.

• Feed in parameters

– α = 0.33

– δ = 0.036

• Real estate to output (Iacoviello, 2005). Note from the land Euler equation,

qllet
y

=
βeαφp

(1− βe)− ξ
λe
θπgγ

=
βeαφ

σ−1
σ

(1− βe)− (βh − βe) θ

using
ξ

λe
=

βh
πgγ

(
1− βe

βh

)
so that

φ =
qllet
y

[
(1− βe)− (βh − βe) θ

βeα
σ−1
σ

]
so that the land value over output is given by

qlle
y

=
βeαφ

σ−1
σ

(1− βe)− (βh − βe) θ
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• All other parameters are estimated by using structural and shock parameters

L Flexible Price Model

The household side,

λht =
1

cht − ηh
gγt
cht−1

− βhEt
(

ηh
cht+1gγt+1 − ηhcht

)
ϕ = λhtrt

ψtn
υ
t = λhtwt
qlt
rt

= q̄ − φxt

1 = βhRftEt
(

λht+1

λhtgγt+1

)
Transform equation (130) into

kt =
1− δ
gγtgQit

kt−1 +

[
1− Ω

2

(
it
it−1

gγtgQit − gγgQi
)2
]
it

bt = θtEt

(
qlt+1gγt+1let +

qkt+1

gQit+1

kt

)

λet =
1

cet − ηe
gγt
cet−1

− βeEt
(

ηe
cet+1gγt+1 − ηecet

)
yt =

(
gγtgQit

)α(φ−1)
(
lφet−1k

1−φ
t−1

)α
n1−α
t

wt = (1− α)
yt
nt

1

Rft

= βeEt
(

λet+1

gγt+1λet

)
+

ξt
λet

1

qkt
=

[
1− Ω

2

(
it
it−1

gγtgQit − gγgQi
)2

− Ω

(
it
it−1

gγtgQit − gγgQi
)

it
it−1

gγtgQit

]

+βΩEt

[
λet+1

gγt+1λet

qkt+1

qkt

1

gQit+1

(
it+1

it
gγt+1gQit+1

− gγgQi
)(

it+1

it
gγt+1gQit+1

)2
]

qkt =
ξt
λet

θtEt

(
1

gQit+1

qkt+1

)
+ βeEt

{
λet+1

gγt+1λet

[
α (1− φ)

yt+1gγt+1

kt
+ (1− δ) qkt+1

gQit+1

]}

qlt =
ξt
λet

θtEt (qlt+1gγt+1) + βeEt
{
λet+1

λet

[
αφ

yt+1

let
+ qlt+1

]}
cet =

(
gγtgQit

)α(φ−1)
(
lφet−1k

1−φ
t−1

)α
n1−α
t − it +

bt
r̃ft
− qlt (Let − Let−1)− bt−1

gγt
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