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Abstract. Dispersion in marginal revenue products of capital (MRPK) across

firms may lower aggregate productivity through misallocation. Using firm-level

panel data from China, Columbia, and Chile, I document that MRPK dispersion

decreases substantially with firm age, particularly before age five. Building on

this fact, I provide a new interpretation of MRPK dispersion as resulting from

firm life-cycle learning. I formalize this idea in a dynamic model in which firms

learn about their fundamental productivity as they age and choose capital in-

puts in a frictional market based on their priors. Within each cohort of firms,

imprecise priors lead firms to differ in their ex-post MRPK even in the absence

of firm-level distortions. As firms learn over time and adjust their capital stocks,

possibly through exiting the market, dispersion in MRPK decreases. Quantita-

tive analysis of the model shows that firm life-cycle learning accounts for 7% of

MRPK dispersion in the economy, which can lead to a 10% loss in aggregate

productivity.
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1 Introduction

Differences in average income levels across countries are vast. Development accounting points

to differences in total factor productivity (TFP) as an important proximate cause of cross-

country income differences (Caselli, 2005). Yet the determinants of TFP are still not well

understood. A prominent theory of TFP emphasized in the recent literature is misallocation.

Two influential papers, Hsieh and Klenow (2009) and Restuccia and Rogerson (2008), inter-

pret dispersion in marginal revenue products of capital (MRPK) across firms as the result

of firm-level ‘distortions’ that cause misallocation. They argue that misallocation leads to

large TFP losses in developing countries. Bachas, Fattal-Jaef, and Jensen (2018) provide

evidence that size-dependent tax, a form of distortions, are more prevalent in low-income

countries.

However, the literature is still very much undecided about how to interpret dispersion in

MRPK across firms (Restuccia and Rogerson, 2017). A large body of work has provided

alternative interpretations. For example, Asker, Collard-Wexler, and De Loecker (2015)

emphasize the role of capital adjustment costs under volatility of productivity, and David,

Hopenhayn, and Venkateswaran (2016) emphasize the role of uncertainty in contemporane-

ous productivity. Both channels lead to MRPK dispersion but do not imply misallocation

from distortions. David and Venkateswaran (2017) further develop a quantitative frame-

work to decompose sources of MRPK dispersion and conclude that, while these channels are

present, a large share of dispersion still results from firm-level distortions. An open question

in the literature remains: What are the sources of MRPK dispersion?

This paper provides a new source of MRPK dispersion, building on a new pattern I document

in the data. Following firm cohorts using firm-level panel data from China for the period

1998 - 2007, I document that MRPK dispersion across firms decreases substantially with

firm age, particularly before age 5. The magnitude of this life-cycle decrease is similar to the

difference in MRPK dispersion between China and the US as reported in Hsieh and Klenow

(2009). Furthermore, for young firms, MRPK dispersion decreases at a decreasing rate with

firm age.

Yet the challenge is that identifying the age effects separately without any additional assump-

tions is impossible, because the age, year, and cohort indicators are collinear. In particular,

during my sample period, China experienced massive privatization reforms so that revenue

share of the state-owned firms in the industrial sector declined by 20 percent (Hsieh and

Song, 2015). One can expect large year effects as China underwent such reforms and opened

up to international trade. Hence, the decrease in MRPK dispersion over a firm cohort’s life

cycle could be the result of year effects, rather than age effects. Similarly, one can expect
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that each successive cohort may be founded with less MRPK dispersion across firms, as they

entered the market more for economic reasons rather than political reasons. Thus, including

controls for year effects and cohort effects is crucial in any reasonable attempt to identify

the age effects on MRPK dispersion.

My preferred identification approach imposes the testable assumption of a linear trend in

the age effects at older ages. For example, consider a special case of linear effects as no trend

in the age effects on MRPK dispersion after firm age 10. Then year effects can be identified

by following the same firm cohorts aging from age 10 because all the changes over time are

only due to year effects in the absence of cohort and age effects. I can subsequently identify

the age effects and cohort effects after knowing the year effects. Specifically, in the preferred

approach, I imposed three plausible trends of age effects at older ages for identification. I also

provide two alternative identification approaches in the paper. All three estimation results

show negative age effects on dispersion in MRPK across firms. In particular, the estimated

profile of the standard deviation of log MRPK within a firm cohort always decreases by more

than 0.2 before age five, which accounts for 13% of the initial dispersion at firm entry.

Building on the facts I document, I provide a new interpretation of MRPK dispersion as

resulting from firm life-cycle learning. It reflects informational frictions over the firm cohort’s

life cycle when firms learn about their own fundamental productivity, as in Jovanovic (1982).

Within each cohort of firms, differences in the precision of priors lead firms to differ in their

ex-post MRPK even in the absence of firm-level distortions. I formalize this idea in a dynamic

model in which firms learn over time and choose capital inputs based on their priors in a

frictional market with firm-specific distortions. Qualitatively, as priors of the firm cohort

improve through learning over time, firms with too much or too little capital stock adjust,

and the less productive firms within a cohort exit. Hence, the model predicts that MRPK

dispersion within the firm cohort decreases as firms age.

The main quantitative experiment is to compute the model’s predictions about MRPK dis-

persion within a firm cohort as the firms age. To do so, I take the joint distribution of

productivity and capital stocks among firm entrants as given in the data. I calibrate the

model to match three key moments in the data, namely, the exit rate of firm entrants, the

correlation between productivity and capital investment, and the autocorrelation of capital

investments. As a result, for the first ten years of the firm cohort’s life cycle, the calibrated

model accounts for around two thirds of the decrease in MRPK dispersion in the data.

To understand the quantitative role of learning, I decompose changes in MRPK dispersion

over the firm cohort’s life cycle by sequentially adding mechanisms in the model. If the

firms adjust capital stocks without updating their priors and without exiting the market,

MRPK dispersion barely decreases with firm age. If firms Bayesian update their priors while
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adjusting capital stocks, but still do not have the exit option, the dispersion in MRPK de-

creases around half as much as the benchmark model prediction. Further adding endogenous

firm exit under the life-cycle learning accounts for the other half of the benchmark model

prediction.

What, then, are the consequences of firm life-cycle learning for aggregate TFP, rather than for

a firm cohort? Taking into account the firms’ age distribution in the stationary equilibrium,

I compare the benchmark model predictions to a hypothetical baseline where young firm

cohorts had already completed their learning process as older firms. This comparison suggests

that informational frictions from firm life-cycle learning lead to a 10 percent loss in aggregate

TFP. I conduct the same analysis in the model after removing firm-level distortions, which

suggests that distortions and firm life-cycle learning together result in a 19 percent loss in

aggregate TFP. Therefore, omitting the contribution of firm life-cycle learning to MRPK

dispersion causes more than half of TFP losses to be incorrectly attributed to distortions.

I regard these estimates as lower bounds of TFP losses because the quantitative analysis

assumes MRPK dispersion across firms remains constant after age 10.

Before concluding, I present plant-level panel data from Colombia and Chile for an earlier

period (around the 1980s). I ask whether MRPK dispersion (measured by standard devia-

tions of log MRPK) decreases with firm-cohort age. I find that, in both countries, MRPK

dispersion decreases by around 0.4 through the first five years of the firm cohort’s life cycle,

which accounts for 29% and 24% of the initial dispersion across age-zero firms in Colombia

and Chile, respectively. I conclude that data from other developing countries broadly show

decreasing life-cycle MRPK dispersion, similar to the data from China.

Related Literature. Most existing work focuses on the aggregate level of MRPK dispersion

across firms and does not consider its dynamics over the firm cohort’s life cycle. For example,

Midrigan and Xu (2014) and Li (2015) study financial frictions, Kehrig and Vincent (2017)

combine financial frictions and adjustment costs to investigate MRPK dispersion across

plants within the same firms, Ho and Ruzic (2018) explore the variation in markups and

returns to scale, and Song and Wu (2015) consider markup dispersion, adjustment costs, and

measurement errors. In addition, all the models above are silent on endogenous firm entry

and exit. Yang (2016) studies the effects of distortions on firm entry but assumes exogenous

exit. Fattal-Jaef (2018) emphasizes that, in theory, endogenous exit may offset the effects

of distortions on long-run TFP, but does not consider informational frictions. This paper is

the first to look at life-cycle MRPK dispersion and the first to interpret MRPK dispersion

as resulting from firm learning.1

1See Restuccia and Rogerson (2017) for an in-depth literature review on the causes and costs of misalloca-
tion. Other studies focus on misallocation over the business cycle: Argente, Lee, and Moreira (2018) consider
the reallocation of products, and Senga (2015) emphasizes the rising uncertainty at the start of the Great
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This paper also relates to the literature in macroeconomics that makes cross-country com-

parisons of average firm sizes over firms’ life cycles. Hsieh and Klenow (2014) show that

plants stay much smaller in Mexico and India than in the US over the plants’ life cycles.

Bento and Restuccia (2017) use data from more countries to argue that severe distortions

in developing countries discourage investments, leading to smaller average firm sizes. Ak-

cigit, Alp, and Peters (2016) and Chen, Habib, and Zhu (2018) emphasize the importance

of delegation frictions and lack of selection in explaining smaller average plant sizes over the

plants’ life cycles in developing countries. My results pertain to MRPK dispersion across

firms rather than average firm size. The fact that the dispersion decreases with firm age

implies considerable improvement in how efficiently resources are allocated across firms over

their life cycles.

The idea of firm life-cycle learning is built on the classic model of Jovanovic (1982). By adding

capital to his original model, I bring in frictional capital markets, including adjustment

costs and fire-sale discounts upon exit. These frictions are important to match the key

pattern of life-cycle MRPK dispersion within a firm cohort. In addition, other studies, for

example, Asturias, Hur, Kehoe, and Ruhl (2017), emphasize that exits of low-productivity

firms contribute to aggregate productivity growth. By focusing on MRPK dispersion across

firms, this paper can draw further implications of the consequences of firm life-cycle learning

and exit for aggregate productivity through reallocating resources across firms.

Finally, this paper adds to the vast literature on the theories of TFP, aiming at advancing

our understanding of income differences across countries and across time. For example,

Guner, Ventura, and Xu (2008) consider the macroeconomic implication on reductions in

output of size-dependent policies. Buera, Kaboski, and Shin (2011) quantify the role of

financial frictions in economic development. David and Venkateswaran (2017) emphasize

distortions accounts for a larger share of misallocation among Chinese manufacturing firms

and adjustment costs are more salient for large US firms. Calligaris, Del Gatto, Hassan,

Ottaviano, and Schivardi (2018) argue that resource misallocation has played a sizable role

in slowing down Italian productivity growth. This paper points to the potentially important

role of firm life-cycle informational frictions and learning.

The rest of this paper is structured as follows. Section 2 describes the data from China

and presents the features of life-cycle MRPK dispersion across firms without any additional

assumptions. Section 3 reports the estimated profile of MRPK dispersion with firm age while

controlling for cohort effects and year effects. Section 4 presents the model with learning and

its qualitative predictions. Section 5 discusses the quantitative analysis. Section 6 provides

evidence from Colombia and Chile. Section 7 concludes.

Recession. Bai, Jin, and Lu (2018) consider misallocation in an open economy with trade liberalization.
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2 MRPK Dispersion across Firms over Their Life Cycles

In this section, I describe the data and present cross-sectional evidence on the pattern of

MRPK dispersion over the firm cohort’s life cycle. When tracking each firm cohort over time,

I find that the dispersion in MRPK across firms always decreases with firm age. The younger

cohorts tend to have smaller MRPK dispersion than older cohorts, and the aggregate MRPK

dispersion in a year also decreases during my sample period (1998 to 2007). I also find that,

for firm cohorts before age five, MRPK dispersion decreases at a decreasing rate.

2.1 Data and Measurement

I use the Annual Industry Surveys for 1998 - 2007 conducted by the National Bureau of

Statistics of China. The survey covers all the state-owned firms in the manufacturing sector,

as well as non-state-owned manufacturers with sales revenue above 5 million RMB (around

0.7 million USD). I follow the procedure used by Brandt, Van Biesebroeck, and Zhang (2012)

to construct the panel data. I start by matching the firms over time by registration ID. When

firms changed their registration ID due to restructure or acquisition, I use company name,

phone number, and address to identify the same firms. Note that ownership change will not

cause false exits in the data, because those firms will still be identified over time through

address and name. Throughout the paper, I focus on the firm cohorts founded after 1978,

when the “opening-up reform” started. I drop firms founded in a planned economy before the

economic reform because they may operate under very different systems. In addition, those

firms cannot be observed at ages younger than 20, and are thus less relevant for studying the

life cycles of firms. The remaining panel data have an average of around 180,000 firms per

year, growing from 106,000 firms in 1998 to over 298,000 firms in 2007. In addition, I use

the 4-digit Chinese Industry Code (CIC), birth year, wage, employee benefits, value-added,

and capital stock. 2

Let i denote an individual firm. The firm age j is calculated as the survey year minus the

reported birth year. Therefore, the age-one firms are operating for a full year. Let yit denote

the revenue output, kit the capital input, and nit the labor input. Then yit is measured

as value added, kit is measured as the book value of fixed capital net of depreciation of

the year, and nit is measured as the total of wage payments and employee benefits. The

employee benefits include unemployment insurance, old care insurance, medical insurance,

housing compensation, travailing compensation, and union expenses, but availability of the

specific variable varies across years. Hence, I inflate the labor share to match those reported

2The share of firms younger than age 10 is around 72% in every year of my sample.
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in the annual national accounts as Hsieh and Klenow (2009) did. This procedure assumes

the imputed values of missing benefits are a constant fraction of labor income.To summarize

dispersion of the key variables over the firms’ life cycles, Appendix Figure A.1 plots the

standard deviation of log value-added (yit), log capital input (kit), log labor input (nit), and

log employment by firm age. I find the dispersion of value added and labor input across

firms increases with firm age until age 15, while dispersion of capital input and employment

across firms increases very marginally with firm age.

Let the production function be Cobb-Douglas yit = ezitkα1
it n

α2
it . I assume decreasing returns

to scale, that is, α1 + α2 < 1. I also allow the capital and labor input share to vary across

industries but not over time as in Hsieh and Klenow (2009). Following their work, I use

the NBER-CES Manufacturing Industry Database to calculate α1 as the average values of

capital share at 4-digit SIC level during the period 1987-2011, and then match them to CIC

at the 2-digit level. In the empirical analysis, I set α1 + α2 to be the standard 0.85.3 By

definition, the MRPK of firm i at time t is ∂yit
∂kit

= α1
yit
kit

. I measure total factor revenue

productivity (TFPR), marginal revenue product of labor (MRPL), and MRPK in log terms

throughout the paper:

tfprit = log(yit)− α1log(kit)− α2log(nit) (1)

mrpkit = log(α1) + log(yit)− log(kit). (2)

mrplit = log(α2) + log(yit)− log(nit). (3)

I drop the observations with missing values and trim the 1% tails of measured MRPK or

TFPR in each industry-year-age group. The remaining data have an average of around

169,000 firms per year, consisting of more than 480,000 unique firms recorded during the

sample period. Around 48% of the unique firms survived for at least four years.

2.2 Dispersion of Marginal Products by Firm Age

Consider an industry-year-age bin, denoted as stj, consisting of firms observed in calendar

year t at firm age j in the 4-digit industry s. To measure MRPK dispersion within a stj

bin, I use the standard deviation of mrpkit, denoted as σmrpk,stj, and the 90th minus the

10th percentile mrpkit, denoted as D90−10
mrpk,stj. Note that, by construction, MRPK dispersion

across firms within an industry-year-age bin is always measured within the same firm cohort

c of firms, which are founded in year t− j. When summarizing MRPK dispersion at a give

3I conduct the same analysis assuming constant returns to scale as in Hsieh and Klenow (2009), letting
α2 = 1− α1, and get similar results.
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age or in a given year, I will always weight σmrpk,stj by Nstj, the number of firms in an

industry-year-age bin.

Figure 1: Dispersion of MRPK by Firm Age
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Note: This figure plots the weighted average standard deviation of MRPK (σ̄j) and the weighted average

value of the 90th minus the 10th percentile (D̄90−10
j ) by firm-cohort age.

Define the weighted average dispersion in MRPK at a given firm-cohort age j in both mea-

sures

σ̄j ≡
∑
s

∑
t

σmrpk,stj · ωst

D̄90−10
j ≡

∑
s

∑
t

D90−10
mrpk,stj · ωst,

where the weight ωst =
Nstj∑

s

∑
tNstj

. Figure 1 then plots σ̄j (black solid line with round markers)

and D̄90−10
j (blue dashed line with triangle markers) by firm-cohort age. The weighted average

standard deviation of MRPK, σ̄j, deceases substantially from 1.5 by almost 0.4 points by

age 28. Note that this change is huge, and has the same magnitude as the difference between
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China and the US reported in Hsieh and Klenow (2009).4 The plotted average log differences,

D̄90−10
j , show the average ratio of the 90th to the 10th percentile MRPK decreases from more

than 33 (e3.5) to only 12 (e2.5) as the firm cohort ages from zero to around 25. Similar to the

patterns of MRPK standard deviations, the 90-10 percentile difference in MRPK decreases

substantially with firm age. I will focus on the standard deviation of MRPK (σmrpk,stj) as

the dispersion measure for the rest of the paper because it has been used more broadly in

the literature. More importantly, I will show later that σmrpk,stj translates directly to TFP

losses.5

Meanwhile, how does the dispersion of MRPL across firms change as firms age? Appendix

Figure A.2 plots the weighted average standard deviation of MRPL and the weighted average

value of the 90th minus the 10th percentile MRPL by firm age. Both measures of dispersion

in MRPL decrease very marginally before age 5, and they increase slightly afterward. There-

fore, this paper focuses on MRPK dispersion and abstracts from the discussion of MRPL

dispersion.

A natural explanation is that, MRPK dispersion decreases with firm age because the less

productive firms within a cohort learn about their type and exit gradually over their life

cycles. This implies that TFPR dispersion also decreases at a decreasing rate with firm

age. As learning and the selection in firm exits becomes less pronounced, the dispersion in

both MRPK and TFPR does not decrease further. Denote the weighted average standard

deviation of TFPR at age j as σ̄tfpr,j. Appendix Figure A.3 shows that σ̄tfpr,j decreases

at a decreasing rate from around 0.99 at entry to around 0.9 at age five, and fluctuates

between 0.85 and 0.95 afterward. Alternatively, if one thinks of the production process as

the less productive firms catching up with the most productive firms due to stable innovation

investments or spillover effects, one should expect TFPR dispersion to continuously decrease

at older ages, which is not observed in the data.6 Furthermore, Appendix Figure A.4 plots

MRPK dispersion for the balance panel, which consists of firms that I can observe every

year during the sample period of 1998-2007. It shows that, when firm exits are shut down,

MRPK dispersion decreases with firm age with a smaller magnitude.

However, the summary statistics by firm-cohort age presented above is the result of a com-

bination of age, cohort, and year effects. In a fast-changing economy like China, one may

expect large variations across firm cohorts born in different years. For example, as China

4Table 2 in their paper reports the difference of 0.14 in the standard deviation of tfpq between China
and the US in 2005. It implies a MRPK dispersion difference of 0.4 points in their model under the standard
capital share of 0.3.

5As an alternative measure of dispersion in MRPK, the average ratio of the 75th to the 25th percentile
MRPK decreases monotonically from 6 to 4 as the firm cohort ages from zero to around 25.

6Note that σ̄tfpr,j is at a lower scale than σ̄mrpk,j , due to a large dispersion in kit, which is not offset by
the empirical correlation between yit and kit, thus being reflected in σ̄mrpk,j .
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moves from an economy of state-owned enterprises to one with mostly private enterprises,

each successive cohort of firms may be founded with a smaller dispersion in MRPK. To in-

vestigate the life-cycle pattern within each firm cohort c = t− j, define the weighted average

dispersion across firms at age j as

σ̄jct−j ≡
∑
s

σmrpk,stj · ωsc,

where the weight ωsc =
Nstj∑
sNstj

.

Figure 2: Dispersion of MRPK by Firm Age and Cohort
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Note: This figure plots the weighted average dispersion, σ̄j,ct−j
, by firm age within each cohort born in

year 1979, 1984, 1989, 1994, and 1999, respectively.

Figure 2 then plots σ̄j,ct−j against firm-cohort age by following each cohort born in 1979,

1984, 1989, 1994, and 1999, respectively. For all the cohorts, we see a general decrease

in MRPK dispersion with firm-cohort age. The older firm cohorts tend to have a larger

dispersion in MRPK than the younger cohorts at the same ages. In particular, for the firm

cohort founded in 1999, MRPK dispersion declines by almost 0.4 from age zero to age eight.
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Figure 3: Dispersion of MRPK by Firm Age, Young Cohorts
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Note: This figure plots the weighted average dispersion, σ̄j,ct−j
, by firm age within each of the nine

cohorts born during 1998 to 2006.

Furthermore, Figure 3 plots MRPK dispersion for the nine firm cohorts founded between

1998 and 2006, which can be tracked from age 0 at the entry year. Similar to the 1999 firm

cohort in Figure 2, the decline in MRPK dispersion across firms is substantial through the

first five years of the firms’ life cycles for all nine cohorts. In addition, the older cohorts

among the nine again tend to have a larger MRPK dispersion, as we see the black lines are

above the blue and the blue are above the orange.7

Similarly, it is difficult to imagine the Chinese economy with little year effects as the priva-

tization reforms deepen over time. Define the weighted average dispersion in a given year t

as σ̄t ≡
∑

s

∑
j σmrpk,stj · ωsj , where the weight ωsj =

Nstj∑
s

∑
j Nstj

. Appendix Figure A.5 plots

σ̄t during my sample period. The average aggregate dispersion in MRPK decreases from 1.4

7Appendix Figure A.8 plots the exit rates by firm-cohort age of the same firm cohorts in Figure 2 after
removing zero-sum year effects using the identification approach in Section 3.1. Patterns of the exit rates
resemble those of the MRPK dispersion.
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in 1998 to less than 1.3 in 2007.

In summary, by following each firm cohort over time, I find that MRPK dispersion decreases

substantially with firm-cohort age. However, the decrease is not necessarily the result of

age effects, because it reflects both age effects and year effects. Instead, the substantial

decrease could be the result of potentially sizable year effects, because China underwent

its reforms and opened up over time. Therefore, in any reasonable attempt to identify age

effects, controlling for cohort effects and year effects is crucial.

2.3 Industry Variations

In different industries, MRPK dispersion decreases at different rates with respect to firm-

cohort age. I use this variation to shed light on the mechanisms of decline in MRPK dis-

persion over the firm cohort’s life cycle. Define the weighted average dispersion in MRPK

across firms at age j in industry s as σ̄sj ≡
∑

t σmrpk,stj · ωt, where the weight ωt =
Nstj∑
tNstj

.

I investigate how the correlation between σ̄sj and firm age j varies across industries, and

discuss how it relates to the industry characteristics.

Within each industry, I use κs in the linear model below to summarize MRPK dispersion

over the firm cohort’s life cycle:

σmrpk,stj = κ0s + κsagestj + εstj. (4)

Estimate κ̂s describes how σ̄sj changes with firm-cohort age under the linear specification.

The average value of κ̂s across industries is -.014, with a standard deviation of 0.026. There-

fore, in the majority of industries, MRPK dispersion decreases with firm age, and on average,

σ̄sj decreases more than 1% per age.

To utilize the standard industry-level characteristics commonly used in the trade literature,

I mapped the 4-digit 2003 CIC to the 6-digit US Input-Output classification, and used the

industry indexes from Antras (2015). Table 1 reports the results of regressing estimated

κ̂s on various industry characteristics with bootstrap standard errors. It shows that when

the capital-labor ratio increases by 1 log point, the decrease of σmrpk,stj per age is 0.005

points larger, which is more than one third of the average value 0.014 across all industries.

The significant positive coefficient on log capital per worker suggests that industries with

higher capital shares are better at decreasing MRPK dispersion over the firm cohort’s life

cycle. One possible explanation could be that the costs related to capital, such as storage

and maintenance costs or adjustment costs, push firms to adjust capital more responsively,

reallocating resources to the more productive incumbent firms. Meanwhile, industries that
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Table 1: Industry Characteristics and Life-Cycle σmrpk,stj

κ̂s (1) (2) (3) (4)

Log(Capital Per Worker) -.005∗∗∗ -.005∗ -.006∗∗ -.006∗∗
(.002) (.002) (.003) (.003)

Log(R&D/Sales) -.002∗∗ -.002∗∗ -.002∗
(.001) (.0008) (.0009)

Contractibility -.006 -.006∗∗
(.005) (.003)

Financial Dependence -.004 .003
(.003) (.016)

Input Substitutability -.00004 -.00004
(.0002) (.0003)

Log(Capital per worker)*Financial Dependence -.002
(.004)

Obs. 423 408 408 408

R2 .015 .034 .044 .044

Note: ***, **, and * indicate statistical significance at the 1-percent, 5-percent, and 10-percent levels, respec-

tively. Independent variable Log(Capital per worker) is the industry average calculated during sample period

1998 - 2007 in China. The source of the industry indexes is Antras (2015): industry-level Log(R&D/Sales)

is from Nunn-Trefler (US, 2000-2005); upstream Contractibility from Nunn (2007) based on liberal classifi-

cation; Financial Dependence is measured as the External Capital Dependence from Rajan-Zingales (1997)

calculated using 1980s Compustat data. Input Substitutability is measured as the Import Demand Elasticity

(based on SITC33).

larger innovation expenditure shares are better at decreasing MRPK dispersion over firm-

cohort age. Additionally, a slightly significant positive correlation exists between resource

reallocation and contractibility: Industries in which it is easier to contract the sales of their

capital inputs at less discounted values upon exit also experience a faster decrease in MRPK

dispersion with firm-cohort age. I will build these ideas formally in the dynamic firm model

in section 4 to assess their explanatory power.

3 Life-Cycle MRPK Dispersion: Controlling for Cohort and Time

The previous section reports the average MRPK dispersion by firm-cohort age simply. Al-

though understanding the data with minimal structure and assumptions is useful, this exer-
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cise does not address certain issues. The identification of first-order age effects is a well-known

challenge due to the collinearity between age, year, and cohort indicators. In this section, I

address the identification issues.

Though Figures 2 and 3 track the same firm cohorts over time and find a consistent trend

of decreasing dispersion with firm-cohort age, they still leave open the possibility that the

trend is driven by year effects rather than age effects. For instance, one may expect large

negative year effects as China deepens its privatization reforms and shuts down the inefficient

state-owned enterprises. The year effects, which are cohort-neutral, could lead to decreasing

life-cycle MRPK dispersion within every cohort. In this scenario, year effects lead to a

spurious relationship between MRPK dispersion and firm-cohort age for all the cohorts.

The goal of this section is to estimate flexible versions of the MRPK dispersion profile with

firm age. The specifications take the following form:

σmrpk,stj = α0 +
∑
j∈J

φjDj + χc + ψt + θs + εstj. (5)

Dj is a dummy equal to 1 if firms in the industry-year-age bin stj are observed at age j. ψt

captures year fixed effects, χc captures cohort fixed effects, θs captures industry fixed effects,

and εstj is a mean-zero error term.

3.1 Three Approaches to Identifying Age Effects

The main challenge to estimat the age effects on MRPK dispersion is that age indicators

are correlated with cohort indicators and year indicators. Therefore, identifying the age

effects separately without any additional assumption is impossible. This section uses three

approaches to identify age effects while controlling for cohort and year effects.

To resolve the difficulty of collinearity, I follow Deaton (1997) and imposes one additional

linear restriction on the set of cohort and time effects to estimate equation (5). Consider the

decrease in aggregate MRPK dispersion over time, as plotted in Figure A.5, which reflects

the combined result of cohort-neutral year effects and effects of changes in the composition

of firm cohorts in a calendar year. To identify age effects, I need to discipline the relative

role of year effects and cohort effects in the decrease in aggregate MRPK dispersion over

time.

Preferred Approach. My preferred identification approach assumes a linear trend in age

effects on MRPK dispersion after age 10. For example, consider the assumption of no trend

in the age effects after firm-cohort age 10 as a special case of the linear effects. Then year
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effects can be identified by following the firm cohorts older than age 10 because all the

changes over time are only due to year effects in the absence of cohort and age effects. This

assumption is actually also in accord with the empirical findings of Haltiwanger, Jarmin,

and Miranda (2013): Mature firms in the US have stable dynamics compared to the younger

firms.

Furthermore, I can also test this assumption, because the second derivatives of age effects,

which inform the curvature of age effects, are always identified as shown in McKenzie (2006).

I find the age effects are convex for the young firms, meaning MRPK dispersion decreases at a

decreasing rate with firm cohort age. In addition, I cannot reject the null hypothesis that the

age effects on MRPK dispersion are linear after age four. I describe the econometric details

in section A.1. The test results provide econometric foundations for identifying first-order

age effects by assuming a linear trend in the age effects at older ages.

Figure 4 plots the estimated profile of MRPK dispersion by firm-cohort age using the second

identification approach. In particular, I impose three different plausible magnitudes of the

linear trend in the age effects on MRPK dispersion after firm-cohort age 10: (a) no trend in

the age effects after age 10 (dashed orange line with circle markers); (b) a small decreasing

trend of 0.005 points per age after age 10 (long-dashed blue lines with triangle markers);

(c) a moderate decreasing trend of 0.010 points per age after age 10 (solid black lines with

square markers). The three different trends imposed on age effects after firm-cohort age 10

all yield a substantial and convex decline of dispersion in MRPK for the young firms. In

particular, MRPK dispersion decreases 0.22 to 0.25 point before age five.

Alternative Approach One. Instead of picking a plausible magnitude of the trend in age

effects, the alternative identification approach estimate it by imposing the assumption that

two consecutive old cohorts are the same, as in Hall (1971). In the context of my sample

between 1998 and 2007 in China, this assumption is based on the background that old firm

cohorts founded in the late 1970s are similar because they were founded at the beginning of

the economic reform and were adapting gradually, whereas the young firm cohorts could be

drastically different because they are founded in different years in the fast-changing economy

as China deepened its privatization reforms and largely opened up. The assumption in this

approach is also a relaxed constraint of the assumption in Hall (1971) (p.248), who assumed

all vintages have the same cohort effects to identify the age effects on the prices of used

trucks.

This assumption identifies the slope of the linear trend in age effects by observing the old

cohorts in the same years. Consider the two consecutive old firm cohorts founded in 1979

and 1980, both observed in the year 1998: one at age 18 and the other at age 19. Because

they are observed in the same year, there is no difference in the year effects. The cohorts
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Figure 4: Estimated MRPK Dispersion by Firm Age, Preferred Approach
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Note: This figure plots the estimated profile of MRPK dispersion by firm-cohort age in equation (6) using

the second identification approach, which assumes (a) no trend in the age effects on MRPK dispersion

after age 10 (dashed orange line with circle markers); (b) a small decreasing trend of 0.005 points per

age after age 10 (long-dashed blue lines with triangle markers); (c) a moderate decreasing trend of 0.01

points per age after firm age 10 (solid black lines with square markers).

effects are the same as well under the assumption; hence, the difference in MRPK dispersion

is only due to the different age effects at age 18 and age 19. In total, they are observed for

ages 19-28 and 18-27, respectively, during 1998-2007. The average difference across years

then gives the least-squares estimate of the age effect per year. In addition, by following all

firm cohorts over time, this assumption can now help identify the trend in year effects given

the age trend.

I implement this approach by estimating equation (5) in the framework as described in

section A.3. In practice, I assume every two adjacent cohorts founded during 1979 to 1983

are the same. They are observed from age 15 to 28. For each of the four pairs of adjacent

cohorts, I calculate the difference in MRPK dispersion in each year between 1998 and 2007.

Then I take the average of the differences of the four pairs as the trend in age effects after

15



age 15, which turns out to be .009. I force the cohort effects of firms born in 1979 - 1983 to

be the same.

Figure 5 plots the estimated profile of MRPK dispersion by firm-cohort age using this ap-

proach: MRPK dispersion decreases substantially through the first five years of a firm co-

hort’s life cycle, accumulating to more than -0.24 points. It further decreases after age five,

though at a slower rate, accumulating to -0.35 points at age 28 compared to age zero.

Figure 5: Estimated MRPK Dispersion by Firm Age, Alternative Approach One
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Note: This figure plots the estimated profile of MRPK dispersion by firm-chort age when assuming the

two adjacent firm cohorts founded in 1979 - 1983 have the same cohort effects.

Alternative Approach Two. This approach makes econometric assumptions to split the

decreasing trend of dispersion over time between time effects and cohort effects as in Deaton

(1997), and does not make assumptions on the curvature of age effects. This approach also

illustrates the econometric difficulty in disentangling the three effects.8

8This methodology is commonly used in the literature on individuals’ life-cycle consumption and income
dynamics (e.g., Lagakos, Moll, Porzio, Qian, and Schoellman 2018), and was recently used for firms in
Moreira (2017) and Argente, Lee, and Moreira (2018).
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In practice, I implement two ways to split the decline in aggregate MRPK dispersion over

time: One version attributes all the decline to cohort effects, and the other version attributes

all the decline to cohort-neutral year effects. I show in Appendix section A.2 that the two

restrictions provide the lower and upper bounds of age effects if all three effects of age, year,

and cohort on MRPK dispersion have non-positive trends. The condition of a non-negative

trend in all three effects is a plausible case because the patterns of MRPK dispersion decrease

with firm age, calendar year, and the birthyear of a firm cohort, as shown in section 2.2.

Specifically, I estimate equation (5) under restrictions. The first version attributes all the

decline over time to cohort effects. It makes the same assumption as in the original analysis

in Deaton (1997) and uses year dummies to capture only cyclical fluctuations. In practice,

the first age dummy and the first cohort dummy are omitted as the benchmark reference,

and the time dummies are transformed to meet the restriction that the time effects are

orthogonal to a time trend. The second version is the opposite extreme case and attributes

all decline to time effects. In this version, I assume the cohort effects are orthogonal to a

time trend. See Appendix A.3 for a formal description of this approach and the details of

implementing it.

The long-dashed line in Figure 6 plots MRPK dispersion with firm-cohort age estimated

under the assumption in the first version that all decline is driven by cohort effects. It

provides the lower bound of the age effects, if all three effects of age, cohort, and year have

non-positive trends, as shown in Appendix section A.2. In this version, MRPK dispersion

decreases substantially with firm age, accumulating to a magnitude of 0.6 points at age

28. The dashed line in Figure 6 plots the profile of MRPK dispersion estimated in the

second version, where I assume all the decline over time is driven by year effects. In the

second version, MRPK dispersion again decreases with firm age; note the decrease is most

substantial before age five and flattens out afterward. This version also provides the upper

bounds of age effects, as shown in Appendix section A.2.

In conclusion, the first alternative approach shows MRPK dispersion decreases substantially

with firm age, both in the lower and upper bounds. In particular, MRPK dispersion within

a firm cohort decreases more than 0.04 points per age on average until age five, though the

slope of MRPK dispersion at older ages is sensitive to the restrictions used for identification.

When I attribute all the decline in MRPK dispersion over time to year effects, the estimated

profile of MRPK dispersion closely resembles the results in the preferred approach.

In summary, although identifying the first-order age effects directly without any additional

assumptions is impossible, the three identification approaches in this section establish a

substantial decrease in MRPK dispersion with firm-cohort age. The estimation result of the

three cases in the preferred approach lies between the upper and lower bounds (estimated

17



Figure 6: Estimated MRPK Dispersion by Firm Age, Alternative Approach One
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Note: This figure plots the estimated MRPK dispersion by firm-cohort age using the first approach.
The long-dashed line plots MRPK dispersion by firm-cohort age estimated using equation (5), under the
assumption that all the decline in MRPK dispersion over time is driven by cohort effects. The dashed line
plots MRPK dispersion by firm cohort age estimated using equation (5), under the assumption that all the
decline over time is driven by year effects. See Appendix A.3 for a detailed description of implementing
this methodology.

in alternative approach two). The result from alternative approach one is also consistent

with the upper and lower bounds, with estimates closer to the lower bounds. All three

approaches conclude a substantial decrease in MRPK dispersion within the firm cohorts at

young ages, accumulating to a magnitude of 0.2 to 0.3 by age five. In addition, the estimated

profiles of MRPK dispersion through the first five years of the firm cohort’s life cycle are

convex, as McKenzie tests predict. The age effects on MRPK dispersion after age five are

generally negative across the three approaches, though the magnitude is sensitive to the

specific identification assumptions.
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3.2 Robustness

This section assesses the robustness of the fact I document that MRPK dispersion decreases

substantially with firm-cohort age. In particular, I consider other plausible factors that

can affect the profile of life-cycle MRPK dispersion within a firm cohort: exit selection,

time-series volatility of productivity, firm ownership, financial frictions, firm size, and mea-

surement errors.

3.2.1 Controlling for the Volatility of Productivity

In this section, I investigate the life-cycle MRPK dispersion after controlling for the volatility

of productivity at each age of the firm cohort. Asker, Collard-Wexler, and De Loecker

(2015) argue the dispersion in MRPK can largely be explained by capital adjustment costs

in an environment with productivity volatility, where firms choose the capital stocks in the

current period, taking into consideration that the volatility of productivity in the future,

thus resulting in ex-post static MRPK dispersion in the current period. If volatility in

productivity decreases as the firm cohort ages and matures, the older firms will tend to have

less dispersion in the ex-post MRPK than the younger firms. In this case, MRPK dispersion

may decrease over the firms’ life cycles due to decreasing productivity volatility with firm-

cohort age. Therefore, not controlling for the volatility of productivity could overstate the

magnitude of negative age effects.

I define the time-series productivity volatility to be σ∆z,stj, as in Asker, Collard-Wexler,

and De Loecker (2015), which measures the standard deviation of productivity changes,

(zit − zit−1), from one period to the next. The index stj indicates the standard deviation

is taken across firms within the same industry-year-age bin. Adding σ∆z,stj as a control

variable in equation (5), I use the second identification approach to estimate

σmrpk,stj = α0 + αvol · σ∆z,stj +
∑
j∈J

φjDj + θs + χc + ψt + εstj.
9 (6)

Consistent with Asker, Collard-Wexler, and De Loecker (2015), I find higher productivity

volatility is correlated with a higher level of dispersion in marginal capital products. A

one unit increase in the volatility of productivity predicts a 0.32-point increase in the cross-

sectional MRPK dispersion, significant at the 1-percent level. The estimated profile of

MRPK dispersion, after controlling for volatility of productivity, also decreases with firm

9The third approach, which assumes two adjacent old cohorts have the same cohort effects, becomes less
straightforward here, because the two cohorts have different volatility of productivity even when observing
in the same year.
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age. As before, the decrease is most substantial through the first few years of a firm cohort’s

life cycle, though at a slightly smaller magnitude, accumulating to -0.18 to -0.22 points by

age five compared to entry. I conclude that the decrease in MRPK dispersion with firm-

cohort age cannot be explained by declining volatility of productivity as a firm cohort ages.

See the estimation results plotted in Appendix Figure A.9.

3.2.2 State-owned and Non-state Firms

The misallocation of capital between the state-owned and the non-state-owned firms is a

salient feature in the Chinese economy (see, e.g., Bai, Jin, and Lu, 2018; Brandt, Kambourov,

and Storesletten, 2016; Brandt, Tombe, and Zhu, 2013). One may worry that the life-

cycle production of state-owned enterprises (SOEs) in China responds largely to government

policies and do not reflect the market outcomes. The SOEs might drive the pattern of

MRPK dispersion over the firm cohort’s life cycle. This section reports the life-cycle MRPK

dispersion by firm ownership.

Figure 7: MRPK Dispersion by Firm Ownership
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Note: This figure plots the weighted average MRPK dispersion for the SOEs, the non-state firms, and

the pooled sample.
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I define the firm as a SOE if more than half of its assets is owned by the state, and define the

firm as a non-state firm otherwise. Figure 7 plots the weighted average MRPK dispersion

for the SOEs, the non-state firms, and the pooled aggregate sample. The life-cycle MRPK

dispersion of the non-state firms closely resembles that of the pooled sample, which decreases

from 1.5 to around 1.2 between entry and age 27. Dispersion in MRPK across SOEs within

a cohort also decreases with firm age. In addition, it constantly remains at a higher level

than the dispersion among non-state firms, which may reflect larger informational frictions

or less learning among SOEs. I conclude that MRPK dispersion robustly decreases with

firm-cohort age, both for the SOEs and the non-state firms.

Table 2: Dispersion of MRPK by Firm Age

σ̄j Full Sample Non-state Firms

Dispersion at Age 1 -.04∗∗∗ -.03∗∗
(.01) (.01)

Dispersion at Age 5 -.18∗∗∗ -.19∗∗∗
(.01) (.01)

Dispersion at Age 10 -.23∗∗∗ -.25∗∗∗
(.01) (.01)

Dispersion at Age 20 -.30∗∗∗ -.37∗∗∗
(.02) (.02)

Dispersion at Age 27 -.41∗∗∗ -.44∗∗∗
(.04) (.04)

Note: This table reports σ̄j , the average standard deviation of MRPK at a given age, in the data compared

to entry with the estimate of standard error in parentheses. Row 1 uses the full sample, and Row 2 uses

only the non-state firms.

In addition, Table 2 reports the difference in the dispersion of MRPK at an older age relative

to entry, for the full sample and for only the non-state firms. The t-test results of the equal

means show that all the differences are strongly significant. For the full sample, the dispersion

in MRPK decreases by 0.4 points until age 27. This decline through entry to age 27 is slightly

larger for the non-state firms. Both for the full sample and for the non-state firms, MRPK

dispersion decreases substantially before age five. In particular, it drops by almost 0.2 points

until age five compared to entry, which accounts for around half of the decrease in MRPK

dispersion during firm entry to age 27.

To further identify age effects, I estimate the dispersion in MRPK with firm-cohort age after

restricting the sample to only non-state firms, using the second identification approach and

controlling for volatility of productivity. It yields the same coefficient on volatility (0.32),
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significant at 1%, as the full sample. Dispersion in MRPK across non-state firms decreases

0.20 to 0.25 points by age five compared to age zero, which has a slightly larger magnitude

than the estimates using the pooled sample. See the estimation results plotted in Appendix

Figure A.10.

3.2.3 Financial Frictions

An alternative explanation for the pattern I document is financial frictions, which could

generate MRPK dispersion if they were high for some firms and low for others. Then they

could gradually go away for various reasons, such as internally generated funds, or learning

by banks. If young firms overcome financial constraints over time, they will start with high

marginal product, and then decrease it.

However, financial frictions cannot explain why some firms start out with low marginal

product and then raise it. In the data, 56% of the firms have higher MRPK than the previous

year. In particular, 67% of the survived firm entrants have higher MRPK at age 1, and 59%

of the survived age-one firms have higher MRPK at age 2; this percentage fluctuates between

54% to 56% from age 3. Because financial frictions cannot reconcile MRPK dynamics over

time of these many firms in the data, I conclude financial constraints are not the driving

force of the decline in MRPK dispersion with firm age.

3.2.4 Firm Size and Measurement Error

Because average firm size and firm-cohort age are strongly and positively correlated, one may

worry about whether the fact that I document is robust across firm groups with different

average sizes. This section assesses the robustness of the decreasing MRPK dispersion with

firm-cohort age to firm size.

Figure 8 plots the weighted average MRPK dispersion by firm size. The bottom-quartile

firms have around 45 employees on average, and the top quartile firms on average have more

than 166 employees. For firms in quartile two and three, and the top-quartile of firm-size

distribution, MRPK dispersion decreases substantially with firm age, particularly for young

firms. For firms in the bottom quartile, MRPK dispersion within a firm cohort decreases

through the first five years but increases afterward. I conclude the age effects, particularly

before age five, are robust to firm size. This is also consistent with the finding in Haltiwanger,

Jarmin, and Miranda (2013) that effects of firm size become insignificant after controlling

for firm age.

Measurement error has been an important and challenging concern for the misallocation lit-
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Figure 8: MRPK Dispersion by Firm Size
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Note: This figure plots the weighted average MRPK dispersion by firm-size quartile.

erature and, more broadly, for measuring capital stocks and revenue outputs using firm-level

data.10 For this paper in particular, one may worry that measurement errors are larger for

young and small firms because they lack the resources and experiences to report measure-

ments precisely. If one thinks of larger firms as those that are competent in corporate finance

and accounting, and thus have relatively small measurement errors in reported revenue out-

put and capital stocks, then there is less concern about measurement errors when we look at

MRPK dispersion within large firms. The black lines in Figure 8 show that MRPK dispersion

decreases robustly with firm-cohort age for the third-quartile and top-quartile firms, which

have an average of 120 and 520 employees, respectively. That MRPK dispersion across large

firms decreases over the firm cohort’s life cycle provide indirect evidence of the pattern’s

robustness to measurement error.

10Rotemberg and White (2017) argue that the editing strategies used for U.S. Census of Manufactures may
largely decrease the measured MRPK dispersion in the cleaned dataset, leading to lower MRPK dispersion
in the US than in India. However, because I focus on the firm panel-data within one country, differential
data editing strategies across countries is much less concerning.

23



In addition, I follow the approach in Bils, Klenow, and Ruane (2017) to estimate how much

additive measurement errors in the revenue output and capital input for firms at each age

accounts for observed MRPK dispersion (σ2
mrpk). This approach essentially involves estimat-

ing the following regression: ∆log(yit) = φerrmrpkit + Ψerr∆log(kit)−Ψerr(1− λerr)mrpkit ·
∆log(kit)+Dst+εit, where ∆log(yit) and ∆log(kit) denote changes in log revenue output and

capital, and Dst denotes the industry-year fixed effects. They show that (1−λerr) represents

the contribution of measurement error to observed variance in MRPK under certain assump-

tions. The estimates of 1 − λerr, using samples restricted to firm cohorts at age one to 28,

respectively, have an average value of 0.02, which suggests measurement errors contribute to

only 2% of the observed MRPK dispersion on average. Regressing the estimated 1− λ̂err on

age j, one will find a positive and insignificant coefficient of 0.15 with a P-value of 0.19, thus

suggesting that the additive measurement error does not contribute differently to MRPK

dispersion within firm cohorts at different ages.

3.3 Empirical Evidence of Firm Life-Cycle Learning

Figure 9: Variance of Investment by Firm Age
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Note: This figure plots the weighted average variance of investments by firm age.
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The decline in the variance of firm growth with firm age is evidence of firm life-cycle learning

(Evans, 1987). Corresponding to the focus of this paper on MRPK, I use capital investment,

the difference in the capital between two consecutive years, as the measure of firm growth.

Figure 9 then plots the weighted average variance of investments across industry-year-age

bins by firm age. It shows that investment dispersion decreases substantially with firm age,

particularly for young firms. This is consistent with the basic Bayesian learning mechanism:

firms enter with imprecise beliefs about their true productivity and they learn over time by

observing revenue output realizations. Therefore, young firms face larger uncertainty about

their productivity and revise their beliefs and investments relatively more, compared to the

older firms, who are better informed with more observations. Furthermore, the pattern of

decreasing variance of investment with firm age highly resembles that of MRPK dispersion,

which implies the decline in MPRK dispersion with firm age is likely to be associated with

learning. 11

4 Model of Firm Life-Cycle Learning

In this section, I develop a general equilibrium model to match the convexly downward

sloping profile of MRPK dispersion with firm-cohort age in the data. The model features

firm life-cycle learning and endogenous exit as in Jovanovic (1982). By adding capital to

his original model, I bring in capital adjustment costs and capital fire-sales upon exiting the

market, which are important to match the fact that firms scale down their capital stocks

prior to exiting the market. Furthermore, the model with capital input choices in this paper

generates losses in aggregate productivity due to informational frictions and capital market

frictions over the firms’ life cycles.

To conduct quantitative analyses, I build the model with multiple market frictions and firm-

level distortions that can contribute to MRPK dispersion. Firms choose inputs facing (i)

informational frictions, in the form of imperfect signals about their own fundamental pro-

ductivity as well as contemporaneous uncertainty due to idiosyncratic shocks in each period,

(ii) exit frictions, in the form of discount value from capital fire-sale on exit, (iii) technolog-

ical frictions, in the form of quadratic capital adjustment costs, and (iv) a generic class of

idiosyncratic firm-level distortions as in Hsieh and Klenow (2009). The key mechanism is

that as firms learn over time, those with too much or too little capital stock adjust and the

less productive firms within a cohort exit over time, leading to decreases in MRPK dispersion

over a firm cohort’s life cycle.

11Using firm-level panel data from Japan, Chen, Senga, Sun, and Zhang (2018) show that older firms make
less forecasting errors about their idiosyncratic demand than younger firms, which is more direct evidence
of firm learning.
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4.1 Environment and Equilibrium

Consider a discrete-time, infinite-horizon economy, populated by a representative household.

The household inelastically supplies a fixed amount of labor N and has a preference over

consuming the final good. The household discounts time at rate β. I deliberately keep the

household side of the economy simple because of its limited role in the analysis.

Distribution of fundamentals. The distribution of firm fundamental productivity xi is

log-normally distributed, that is, xi ∼ N(µx, σ
2
x). In each period, with probability λ ∈ (0, 1),

a firm i carries over the same fundamental to the next period, and with probability 1 − λ,

the firm exits exogenously.

Production. At the beginning of every period, each firm draws a productivity zit, which

combines its fundamental and an idiosyncratic transitory shock eit ∼ N(0, σ2
e). That is,

zit = xi + eit. I assume the standard Cobb-Douglas production function, where output

yit(kit, nit; zit) = ezitkα1
it n

α2
it with α1 + α2 < 1. Recall that kit denotes capital input and nit

labor input. Note the assumption of decreasing return to scale is equivalent to an alterna-

tive environment in which firms produce differentiated products and face downward-sloping

demand curves due to decreasing marginal utility of consumption. In that setup, zit can

be interpreted as an idiosyncratic demand shifter. In this paper, I will refer to zit as the

productivity specific to firm i at time t.

Learning. Firms learn about their own fundamental productivity by experimenting and

observing realized outputs in the previous periods, as in Jovanovic (1982) and Kerr, Nanda,

and Rhodes-Kropf (2014). The firms’ beliefs about their fundamentals are summarized in

expected mean x̂it and expected variance σ̂2
it. At the beginning of the firm-entry period,

where t = 0 and no realizations of productivity zit arrive yet, firms have a common prior

belief about their fundamental technology as N(x̂i0, σ̂
2
i0) ≡ N(µx, σ

2
x). In every period t,

they use the noisy signal zit to update and form a posterior belief about their fundamental

productivity xi as N(x̂i,t+1, σ̂
2
i,t+1). Bayesian updating is based on the following equations:

x̂i,t+1 =
σ̂2
itzit + σ2

e x̂it
σ̂2
it + σ2

e

(7)

σ̂2
i,t+1 =

σ̂2
itσ

2
e

σ̂2
it + σ2

e

. (8)

Fixed and Input Costs. Firms pay a fixed operation cost fo in every period they produce.

Labor is hired period by period in a spot market with the competitive wage w. With capital

depreciation rate δ and quadratic adjustment costs parameter ξ, the total cost of choosing
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capital stock ki,t+1 is given by

Φ(kit, ki,t+1) = ki,t+1 − (1− δ)kit +
ξ

2

(
ki,t+1

kit
− (1− δ)

)2

kit. (9)

I also consider other factors that affect capital stock choices in addition to the fundamental

productivity or demand. These factors include, for example, government policies, such as

size-dependent taxes, or institutional environment, such as legal forms. As in Hsieh and

Klenow (2009) and David and Venkateswaran (2017), to capture these factors, I introduce

a class of idiosyncratic firm-level “distortions” that appear in the firm’s problem as pro-

portional taxes on capital. I leave out the wedges on hiring decisions for simplicity. I allow

distortions on capital to covary with contemporaneous productivity, that is, taxes T kit = ezitτk ,

where τk denotes the correlation that determines the extent to which the capital price co-

moves with the contemporaneous productivity. If τk is positive, distortions discourage the

investment of firms with stronger fundamentals while protecting those with weaker funda-

mentals, which is arguably the empirically relevant case (Bento and Restuccia, 2017; Hsieh

and Olken, 2014). The opposite incentive is true if τk is negative.

Firm’s problem. At the beginning of each period t, firms choose whether to exit perma-

nently or continue operating the business, and choose capital stocks ki,t+1 if they continue

operating. When exiting the market, firms turn to fire sales for their capital stocks and

retain discounted values of γkit, as in Ramey and Shapiro (2001). A firm’s state vari-

ables, or information set, includes the capital stock kit, the observation of a noisy signal

in productivity zit, and the belief about the their fundamentals, summarized in x̂it and

σ̂2
it. Because σ̂2

it has a deterministic path over firm age j, I make the j an explicit state

variable instead of σ̂2
it. Therefore, the value of an incumbent firm at age j is given by

V (kit, zit, x̂it, j) = maxD∈{0,1}
{
V E(kit, zit, x̂it, j), V

C(kit, zit, x̂it, j)
}

, where the dummy vari-

able D denotes the exit choice, V C(kit, zit, x̂it, j) denotes the value of continuing operation,

and V E(kit, zit, x̂it, j) = γkit is the value of exit. Writing the value of continuation in the

recursive form yields

V C(kit, zit, x̂it, j) = max
ki,t+1,nit

{ezitkα1
it n

α2
it − wnit − T kitΦ(kit, ki,t+1)− fo+

β
(
(1− λ)EV (ki,t+1, zi,t+1, x̂i,t+1, j + 1) + λV E(ki,t+1, zi,t+1, x̂i,t+1, j + 1)

)}
,

where E denotes the firm’s expectation of the value in t + 1 conditional on the current in-

formation set {kit, zit, x̂it, j}. Maximizing over the choice of labor inputs yields nit(zit, kit) =(
α2

ezitk
α1
it

w

) 1
1−α2 . After substituting the optimal choice of labor inputs, the value of continu-
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ation becomes

V C(kit, zit, x̂it, j) = max
ki,t+1

{GAkαit − TkΓ(kit, ki,t+1)− fo+ (10)

βλγki,t+1 + β(1− λ)V (ki,t+1, zi,t+1, x̂i,t+1, j + 1)},

where G ≡ (1 − α2)
(
α2

w

) α2
1−α2 , A = e

z 1
1−α2 , and α ≡ α1

1−α2
is the curvature of revenues net of

wages.

Stationary equilibrium. We can now define a stationary equilibrium as follows: (i) a

wage w; (ii) a set of value and policy functions of the firm: V (kit, zit, x̂it, j), D(kit, zit, x̂it, j),

and ki,t+1(kit, zit, x̂it, j); and (iii) a joint distribution of Ω(kit, zit, x̂it, j) such that (a) taking

wages and the law of motion for information set as given, the value and policy functions

solve the firm’s optimization problem, (b) the labor market clears as labor demand equals

labor supply:
∫
nit(zit, kit)dΩ(kit, zit, x̂it, j) = N , and (c) the joint distribution is the fixed

point through time.

4.2 Intuitions of the Firm’s Problem

Intuitively, without distortions (i.e., τk=0), the choice of the next period’s capital ki,t+1

should be weakly increasing in the three state variables kit, zit, and x̂it at any age j. However,

sufficiently large distortions, which disincentivize investment of more productive firms, may

lead to less investment of more productive firms. Although ki,t+1 is always weakly increasing

in kit given the other state variables, it is not necessarily increasing x̂it given the other state

variables. In section 5, I discuss the relevant case of distortions and investment decisions.

Figure 10 plots two examples of one firm’s state variables over the firm’s life cycle, using the

same parameter values as in section 5. The left panel plots a firm with a low fundamental,

in which case the firm chooses to downsize its capital stock in the next period after updating

its belief of xi from zero to negative at age two. When a large negative shock arrives at age

three, this firm chooses to exit. The right panel plots a firm with a high fundamental, in

which case the firm updates its belief of xi upward smoothly and accumulates the capital

stably through the first 10 years of its life cycle. This figure shows that less productive firms

endogenously exit the market over time, whereas more productive firms stay and grow larger.

Because initial capital stocks at entry may not match the firms’ fundamentals for various

reasons, including imprecise priors and large shocks, MRPK dispersion is large within the

firm cohort at entry. This dispersion decreases over time as firms learn over time, adjust

their capital stocks, and some firms exit the market.

Now I turn to a formal expression of computing the effects of MRPK dispersion on aggregate
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Figure 10: Examples of One Firm’s Life Cycle in the Model
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Note: This figure plots two examples of a firm’s state variables over the firm’s life cycle. The maroon

line plots realizations of productivity zit over time; the black line plots corresponding beliefs of the

fundamental x̂i,t+1 with a 95% confidence interval based on σ̂2
i,t+1; and the blue line plots capital stock

kit.
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productivity. As shown in Appendix A.4, combining the firm’s optimal labor choice with

the labor market and capital market clearing condition gives the expression of aggregate

productivity as

z = z∗ − 1

2

α1(1− α2)

(1− α1 − α2)
σ2
mrpk, (11)

where z∗ is the TFP in the frictionless and undistorted economy without any dispersion

in MRPK, and σmrpk is the aggregate standard deviation of MRPK. Taking the partial

derivative of equation (11) reveals the relationship between MRPK dispersion (σ2
mrpk) and

productivity losses (z − z∗):

dz

dσ2
mrpk

= −1

2

α1(1− α2)

(1− α1 − α2)
.

This expression provides a natural way to quantify the effects of changes in σ2
mrpk on aggregate

productivity. In Section 5.2, I use this strategy to decompose the quantitative contribution

of each factor to MRPK dispersion and TFP losses.

5 Quantitative Analysis

Throughout the analysis, I focus on dynamics of MRPK dispersion over the firm cohort’s

life cycle. Consider an economy with exogenous firm entry: Every period, the firm cohort

with a joint distribution over {ki0, xi, ei0} enters. The model can predict the firm cohort’s

distribution over its life cycle by solving the firms’ optimization problems. The joint distri-

bution over {x̂it, zit, kit} is then fixed over time for any given firm-cohort age j. Therefore,

stationary equilibrium must exist given the distribution of the firm cohort at entry, as long

as exogenous exit rate λ is positive.

5.1 Parameterization

I begin by directly assigning parameter values in the production function based on aggregate

moments in the Chinese economy. I set the capital share α1 to 0.28, which is the weighted

average capital share in the manufacturing sector, and set the labor share to 0.53 as in

the Annual National Accounts. These two numbers lead to decreasing returns to scale as

α1 +α2 = 0.82, which is in line with the standard value in the literature. The discount factor

is set to 0.97 based on an interest rate of 10-year China government bonds of 3% during my

sample period. I set the discount rate of capital fire-sale upon exit to 0.5, as used in Ramey
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and Shapiro (2001). I set the depreciation rate to 0.1, which is close to the median ratio

of reported current-year depreciation value to capital stock. I use an exogenous firm exit

rate of 0.04, which is close to the average exit rate of old firms in the US. I normalize µx,

the mean of the firm cohort’s fundamentals at entry, to be zero, which is also the common

initial belief of expected fundamentals. Regarding the productivity process in the model

with time-invariant fundamental xi, the dispersion of fundamentals and transitory shocks,

σ2
x and σ2

e , are exactly identified by the TFPR variance of the entrants, V ar(zit|j = 0), and

the variance of time-series TFPR changes, V ar(zi,t+1 − zit).

Treating entry as exogenous in the model, I take directly the joint distribution of capital

stocks and TFPR of all 60,972 age-zero firms in my sample as the initial distribution of

{ki0, zi0} among the firm cohort. I back out the fundamentals xi = zi0− ei0, using randomly

generated ei0 ∼ N(0, σ2
e). Now, given the initial joint distribution of {ki0, xi0, ei0}, a unique

stationary equilibrium always exists.

I calibrate the remaining three parameters to jointly match three key moments in the data.

The three parameters are the correlated distortion τk, the fixed operating cost every period f0,

and the parameter in quadratic adjustment cost ξ. Let capital investment be iit = ki,t+1−kit.
The three moments are the exit rate of the firm entrants (11%), the autocorrelation of firm

investments (-0.21), and the correlation of investment and productivity (0.17).12

Table 3 reports each parameter I used in the calibration. In particular, the calibrated

value of correlated distortion τk is 0.5. The positive value is consistent with the positive

correlation between distortion and fundamental in the literature (David and Venkateswaran,

2017; Yang, 2016). In addition, Bento and Restuccia (2017) and Fattal-Jaef (2018) show

evidence of stronger correlation in poorer countries than in richer countries. Because a large

correlation can potentially offset the positive correlation between capital investment and

productivity, it is helpful to get a sense of the magnitude of τk in the calibration. Appendix

Figure A.11 plots the policy functions of ki,t+1 in the calibrated model, which shows ki,t+1

is always increasing in kit, as I discussed earlier. In addition, the intuition that firms with

lower capital stock and lower idiosyncratic productivity are more likely to exit carries to the

calibrated model with distortions. However, firms with the strongest beliefs of fundamentals

and the highest contemporary productivities choose smaller capital stocks in the next period

12Because the China Annual Industry Surveys keep the non-state firms only if their revenues are above
5 million RMB, exit in the survey does not necessarily mean the firm goes out of business. To get a more
precise measure of firm exit rates, I searched the operating status of a random sample of firms that exited
from the survey during my sample period on the “National Enterprise Credit Information Pulicity System”.
Among the 528 firms I did find a record, 58% of the firms did shut down and unregistered. Therefore,
I calibrate the model to target the adjusted exit rate of 11% rather than the 19% attrition rate for the
firm entrants in the survey. If I nonetheless targets an exit rate of 19% in the calibration, the model then
over-explains 10% of the data dynamics of MRPK dispersion.

31

http://www.gsxt.gov.cn/index.html


Table 3: Parameter Values

Parameter Value

Panel A: Pre-assigned Parameters

α1 - Capital share 0.28

α2 - Labor share 0.53

β - Discount factor 0.97

δ - Depreciation rate 0.1

γ - Exit discount in capital 0.5

λ - Exogenous Exit Rate 0.04

µx - Mean of fundamentals 0

Panel B: Exactly Matched Parameters

σ2
x - Dispersion of fundamentals 0.70

σ2
e - Dispersion of transitory shocks 0.33

Panel C: Calibrated Parameters

τk - Correlated distortion 0.50

f0 - Fixed operating costs 0.41

ξ - Adjustment cost 7.20

than firms with weaker beliefs and fundamentals due to severe distortions, as shown in the

bottom-right panel in Figure A.11. Therefore, correlated distortions in the model calibration

under τk = 0.5 are substantial, which strongly disincentivise more productive firms.

Table 4: Moments Targeted in the Model and Data

Moments Target Model

ρ(i, z) 0.17 0.17

Exit rate of the entrants 11.0 12.1

ρ(i, i′) -0.21 -0.18

Table 4 reports the targeted moments in the data and model, which match decently. Al-

though the three parameters are disciplined jointly by three moments, some useful intuitions

apply. As in standard firm models, fixed operation costs positively relate to exit rates; and

capital adjustment costs are most informative about the autocorrelation of investments. The
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correlated distortions captured in τk are informative about the correlation between capital

investments and productivity. This is because a larger τk mitigate the investment responses

to the productivity signals for the young firms, but asymptotically ρ(i, z) always goes to 1 for

the mature firms, independent of the value of τk. Hence, τk is negatively associated ρ(i, z).

5.2 Quantitative Predictions

I take the initial distribution of the firm cohort at entry as given in the data and report

predictions of the calibrated model on the dynamics of MRPK dispersion over the firm

cohort’s life cycle. This section focuses on the model predictions over the first 10 years

of the firm cohort’s life cycle, where the data MRPK dispersion decreases robustly with

firm-cohort age. In addition, the model MRPK dispersion stabilizes after age 10.

Figure 11: MRPK Dispersion (σmrpk) in the Model and Data
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Figure 11 plots MRPK dispersion by firm-cohort age in the model and data. As the cohort of

firms learn over time and adjust their capital stocks, the model predicts a decrease in MRPK

dispersion by 0.15 points until age 10, compared to 0.22 in the data. Hence, the decrease in

the model accounts for around two thirds of the magnitude in the data. Accordingly, within
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the firm cohort, σ2
mrpk decreases by 0.43 (that is, 1.502 − 1.352) from age zero to age 10,

corresponding to 15% TFP gains, based on equation (11). The sizable TFP gains over the

firms’ life cycles suggest considerable improvements in how efficiently resources are allocated

across firms within the firm cohort.

Table 5: Second Derivatives φ̃j in the Model and Data

Age 0 Age 1 Average of Age 2 - 9

Data 95% CI (0.005, 0.05) (0.02,0.05) (-0.01, 0.02)

Model 0.01 0.03 -0.005

Furthermore, the model correctly predicts the convex relationship between MRPK dispersion

and firm-cohort age, matching the curvature in the data without targeting it directly. Table

5 reports second derivatives of the age effects in the model, which are 0.01 at age zero

and 0.03 at age one, respectively. These estimates fall right in the confidence interval of

second derivatives in the data, as plotted in Figure A.6. The average second derivative for

firms between two and nine years of age is close to zero in the model, consistent with the

insignificant values in the data. That MRPK dispersion decreases at a decreasing rate with

firm age both in the model and data is consistent with the theory of firm life-cycle learning.

For young firms, the number of observations is small, which limits the precision of firm priors.

Hence, marginal gains of learning are larger at younger ages, which leads to larger decreases

in MRPK dispersion.

To emphasize the selection in exit over the firms’ life cycles, Figure 12 plots the distribution of

firm productivity at age 0, 1 and 5. As in the data, the model predicts that the productivity

distribution shifts to the right (i.e., the average productivity increases) as less productive

firms exit over time. The growth rate of average productivity from age zero to age one is

around 5.7% in the model, which matches the growth rate of 5.4% in the data, without

targeting it directly.

In order to understand the quantitative contribution of each mechanism in the decrease

in MRPK dispersion, I simulate how MRPK dispersion changes with firm-cohort age by

sequentially adding mechanisms in the model. In the basic version, I shut down the exit

channel by setting the fixed operation cost and capital fire-sale value to zero, and shut down

the learning channel by solving the optimization problem when the firms never updated

their beliefs. I find the dispersion barely decreases over age in this scenario. Specifically,

σmrpk decreases 0.007 points by age 10 in a model without firm life-cycle learning and an

endogenous exit option, which is only 5% of the 0.15-point decrease in the benchmark model.

Next, I add Bayesian updating to firms’ beliefs about their fundamental productivity but
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Figure 12: Distributions of Productivity in Model and Data
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still do not allow endogenous exits. The model then predicts a decrease of 0.08 points in

MRPK dispersion by age 10, which accounts for as much as 54% of the decrease in the

benchmark model. Further adding endogenous exit brings the model back to the benchmark

version and accounts for the remaining half of the life-cycle decrease in MRPK dispersion as

plotted in Figure 11.13

What are then the consequences of life-cycle learning for aggregate TFP rather than for

one firm cohort? I begin with a hypothetical baseline in which all firms have completed

their life-cycle learning. In particular, I assume MRPK dispersion within each firm cohort

remains constant after age 10 in the stationary equilibrium. This assumption is consistent

with quantitative predictions in the calibrated model. In effect, I regard the firm cohorts

age 10 and older as having learned sufficiently about their fundamental productivities that

they cannot reduce their levels of MRPK dispersion by further learning.

Consider the model predictions on two moments: the age distribution of firms, and MRPK

dispersion at each age. The aggregate MRPK dispersion is given by the average MRPK

dispersion across all firm ages weighted by the number of firms at each age in the equilibrium,

that is, 1.46 in the model. Meanwhile, aggregate MRPK dispersion in the hypothetical

baseline is calculated by replacing the model MRPK dispersion across firms at ages zero to

nine with the dispersion of age-10 firms, while keeping the age distribution of firms the same

as in the benchmark model predictions. Mechanically, the aggregate MRPK dispersion is

lower in the hypothetical baseline than in the model, because of the absence of firm life-cycle

adjustments. I can use equation (11) to compute the implied TFP losses, ∆z, for any given

model prediction on σmrpk relative to the hypothetical baseline.

In the first column of Table 6, I report the differences in aggregate MRPK dispersion and

in log TFP between predictions of the benchmark model and its hypothetical baseline. Ag-

gregate MRPK dispersion in the hypothetical baseline is 0.11 points lower. This difference

shows firm life-cycle adjustments accounts for 7% of MRPK dispersion across firms in the

economy, which lead to a 10 percent loss in TFP.

To consider the consequences of firm-level distortions for aggregate TFP, I conduct the

counterfactual experiment of removing firm-specific distortions by setting τk to 0 in the

benchmark model. The standard deviation of MRPK (σmrpk) across firms at age 10 becomes

1.25, which is 0.1 points smaller than in the benchmark model. As reported in the second

column of Table 6, in the corresponding hypothetical baseline, which removes both distor-

13If I consider the decomposition of aggregate capital stock within the firm cohort by age, from age zero
to age 10, as in Olley and Pakes (1996), the covariance between capital stock and market share (defined
by revenue output share) increases by 72%, from 0.11 to 0.19. This increase in covariance with firm age is
consistent with the theory of firm life-cycle learning, but unlike the quantitative analysis of my model, it
cannot estimate the contribution of life-cycle capital adjustments separately from learning.
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Table 6: Consequences of Firm Life-Cycle Learning in the Model

Learning Distortions + Learning

∆σmrpk 0.11 0.21
∆σmrpk
σmrpk

7% 14%

∆z 0.10 0.19

tions and firm life-cycle adjustments, the aggregate MRPK dispersion would decrease 0.21

points, from 1.46 to 1.25. Hence, distortions and firm life-cycle learning together account for

14% of MRPK dispersion in the economy, which leads to a 19 percent loss in TFP. Omitting

learning over the firm cohort’s life cycle will attribute all changes in MRPK dispersion in

the hypothetical baseline to distortions, which causes more than half of the TFP losses to

be incorrectly attributed to distortions.

I conclude that the model featuring firm life-cycle learning explains around two thirds of

the life-cycle MRPK dispersion. Without targeting the curvature of age effects and the

productivity growth over the firm cohort’s life cycle directly, the model correctly matches

these moments in the data. Through the lens of this model, omitting firm life-cycle learning

leads to a sizable overestimation of TFP losses from misallocation.

6 Evidence from Colombia and Chile

In this section, I report patterns of MRPK dispersion over the firms’ life cycles using older

data from the manufacturing sectors in Colombia and Chile.14

The Colombia Industrial Surveys during the period 1977 - 1991 cover around 6,600 plants

per year on average. I measure the capital stock (kit) as the book value of fixed assets, and

measure revenue output (yit) as value added constructed by subtracting intermediate inputs

from the sum of the value of production, inventory changes, and sales tax (Roberts and

Tybout, 1996). Again, I use the industry-level capital share from the NBER-CES database

and equation (3) to calculate MRPK in log terms. To keep sufficient observations to measure

dispersion, I calculate the standard deviation of MRPK across plants within the same year-

age bins, rather than the same industry-year-age bins.

Figure 13 reports the average MRPK dispersion with firm cohorts measured in two ways as

firms age from zero to 10 in Colombia. The standard deviation of MRPK decreases from

almost 1.4 to 1 by age five, and remains below 1.1 until age 10. The log difference of MRPK

14I thank Mark Roberts for sharing his data with me.
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Figure 13: MRPK Dispersion by Firm Age, Colombia
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between the 90th and the 10th percentile plant decrease from 3.4 to around 2.6 by age five

and stays at around 2.8 till age 10. That is, the ratio of the 90th to the 10th percentile

MRPK drops one half, from 30 to around 15, during the first five years of the firm cohort’s

life cycle. In addition, similar to the convex age effects estimated using Chinese data, both

measures of MRPK dispersion in Colombia decrease at a decreasing rate before age 10.

The data I have on the manufacturing sector in Chile cover plants with at least 10 employees

during the period 1979 - 1986. Though the year of plant entry is not reported in the survey,

based on the panel structure of the data, I can identify the year of plant entry t if one plant

does not have a record in year t− 1 but shows up in year t. Hence, the oldest plant cohort

with a well-defined plant age is established in 1980 and can be observed until age five. The

final sample size grows from 226 plants in 1980 to 1,037 plants in 1986.

Using the older and much smaller dataset from Chile, I measure revenue output (yit) as

value added, and measure capital stocks (kit) by summing up the annual investments in

buildings, machinery, and vehicles net of depreciation since birth year (Roberts and Tybout,

38



1996). Then I calculate MRPK in log terms using equation (3) as before, and I calculate

the standard deviation of MRPK across plants within the same year-age bins. I find that,

between firm-cohort age zero and five, the average standard deviation of MRPK in Chile

decreases from 1.7 to less than 1.2, and the average log difference of MRPK between the

90th and the 10th percentile plant decrease from 4.5 to around 2.5. Note the decrease in

MRPK dispersion in the Chilean data is larger than that in China and Colombia during the

same age range. Because of the large confidence intervals due to the small number of firms in

Chile, I report the t-test results of the differences of average MRPK dispersion between age

0-1 and age 2-5 firms. Table 7 shows that both the standard deviation and 90-10 percentile

difference of MRPK are significantly larger for young firms in Chile.

Table 7: Chile: MRPK Dispersion by Firm Age Group

Age 0-1 Age 2-5 Difference

Average σmrpk,tj 1.60 1.48 -0.12∗∗∗

Average 90-10 4.00 3.62 -0.38∗∗∗

Obs. of firms 1,935 989

I conclude that evidence from Colombia and Chile is in accord with my finding using Chinese

data that MRPK dispersion decreases over the firm cohort’s life cycle. In Colombia, MRPK

dispersion decreases substantially before age five and at a decreasing rate. As in the Chinese

data, this pattern is consistent with the theory of firm life-cycle learning, which has larger

impacts at younger ages.

7 Conclusion

This paper provides a new interpretation of MRPK dispersion as firm life-cycle learning.

I draw on the panel firm-level data in China to document substantial decreases in MRPK

dispersion with firm-cohort age. In addition, for young firm cohorts, MRPK dispersion de-

creases substantially and at a decreasing rate. The pattern also holds broadly for data on

the manufacturing sectors in Colombia and Chile. Building on the new facts, I develop

a dynamic model featuring informational frictions over the firm cohort’s life cycle as the

firms learn about their own fundamental productivity. The model predicts that as firms

learn over time and adjust their capital stocks, possibly through endogenously exiting the

market, MRPK dispersion decreases over their life cycles. I highlight the importance of

firm life-cycle learning to ex-post aggregate MRPK dispersion. Quantitative analysis sug-

gests that omitting this dimension leads to sizable overestimation of the TFP losses due to

39



misallocation. In addition, TFP losses resulting from firm life-cycle learning to overcome

informational frictions is an optimal constrained equilibrium, which may not be fixed by

policy interventions.

Though direct measurements of firm- or individual-level information learning is scarce,

Tanaka, Bloom, David, and Koga (2018) provide empirical evidence that more productive

Japanese firms make more accurate forecasts about the macro economy. Their findings sug-

gest learning may be endogenous: firms can pay costs to learn better information. Although

the learning process in this paper is essentially mechanical and homogeneous across firms, I

leave the discussion of richer learning models to future research.

This paper shows that data from developing countries generally show decreasing MRPK

dispersion over the firm cohort’s life cycle. Further exploration of the profiles of life-cycle

MRPK dispersion in developed countries would be worthwhile. Comparing economies at

different income levels can potentially shed light on the theory of cross-country TFP.
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Appendices

Figure A.1: Dispersion of Key Variables by Firm Age
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Note: This figure plots the standard deviation of log value-added (yit), log capital input (kit), log labor
input (nit), and log employment by firm age.

Figure A.2: Dispersion of MRPL by Firm Age
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Note: This figure plots the weighted average standard deviation of MRPL and the weighted average value
of the 90th minus the 10th percentile MRPL by firm age.
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Figure A.3: Dispersion of TFPR (σ̄tfpr,j) by Firm Age
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Note: This figure plots the average standard deviation of TFPR (σ̄tfpr,j) over age, weighted by the
number of firms in industry-year-age bins. The gray line replicates the dispersion in MRPK as Figure 1
for reference.

Figure A.4: Dispersion of MRPK by Firm Age, Balanced Panel
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Note: This figure plots the weighted average standard deviation of MRPK (σ̄j) and the weighted average

value of the 90th minus the 10th percentile (D̄90−10
j ) by firm-cohort age, for the firms are recorded every

year during the sample period 1998 - 2007.
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Figure A.5: Dispersion of MRPK by Year
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Note: This figure plots the weighted average σmrpk,stj during 1998 - 2007.
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A.1 Curvature of the Age Effects

I use the second derivatives of age effects to test the curvature of age effects. Though none

of the first-order effects of age, cohort, or time can be identified separately, their second

derivatives are always identified (McKenzie, 2006). Recall that the cohort of firms aged

j in time period t is denoted as ct−j. Consider equation (5) for the cohort ct−j observed

in year t and t + 1. To eliminate cohort effects, taking the first difference yields the sum

of the first-order age effect between j and j + 1 and the year effect between t and t + 1:

∆σmrpk,stj ≡ σmrpk,s,t+1,j+1 − σmrpk,stj = (φj+1 − φj) + (ψt+1 − ψt) + ∆cεstj, where ∆cεstj ≡
εs,t+1,j+1 − εstj. Consider an older firm cohort ct−j−1, observed at age j + 1 and j + 2 in the

same year t and t+ 1. Again, we can identify the sum of the first-order age effect and year

effect: (φj+2 − φj+1) + (ψt+1 − ψt). Now taking the difference of the two first-order effects

gives the second derivative of age effects:

φ̃j ≡ (φj+2 − φj+1)− (φj+1 − φj).

The second derivative of age effects φ̃j is the difference between two slopes: one slope of

MRPK dispersion between age j + 2 and age j + 1, and the other slope between age j + 1

and age j. If φ̃j = 0, that is, if the two slopes are the same, the age effects between age j

and j + 2 are linear. If φ̃j > 0, the profile of MRPK dispersion is convex between age j and

j + 2. Therefore, I can estimate φ̃j to inform the curvature of age effects.

I estimate φ̃j for each age j between zero and nine, and put the older ages into groups for

tighter confidence intervals. Figure A.6 plots the second derivatives of age effects with 95%

confidence intervals. It shows the second derivatives are significantly positive at age zero,

one, and three, and become near zero and insignificant after age five. Based on the point

estimates, firm age has convex effects on MRPK dispersion through the first five years of the

firm cohort’s life cycle; that is, MRPK dispersion decreases at a decreasing rate before age

five.

Table A.1: McKenzie Test of Linear Age Effects

H0: Linear Range Age 0-5 Age 5-10 Age 10-28

P-value 0.00 0.30 0.15

H0: Linear Range Age 5-28 Age 4-28 Age 3-28

P-value 0.12 0.14 0.03

Note: This table reports the p-value of the McKenzie test of linear age effects over several age ranges.
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Figure A.6: Second Derivatives of Age Effects
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Note: This figure plots the estimates of the second derivatives of age effects φ̃j with 95% confidence
intervals. It is estimated for each age between zero and nine, and for each four-age group afterward in
order to get tighter confidence intervals.

Table A.1 further reports p-values of the Mckenzie tests on linear age effects. It is essentially

a formal Wald test for the null hypothesis H0 of φ̃j being jointly zero for a set of j values.

Jointly zero second derivatives imply the corresponding age effects are linear. The tests in

the first row strongly reject the hypothesis that the age effects are linear between age zero

and age five, but cannot reject they are linear between age 5 to 10 or 10 to 28. The tests in

the second row show one cannot reject the null hypothesis of linear age effects between age

four or five and age 28. But the McKenzie test rejects the linear age effects with a p-value

of 0.03 if one extends the age range to between three and 28. Based on these results, I will

assume a linear trend in age effects after age 10 in the second alternative approach to identify

the first-order age effects.
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A.2 Lower and Upper Bounds of Age Effects

In this section, I show the two restrictions that I impose in the second alternative approach

provide the upper and lower bounds of age effects if all three effects of age, year, and cohort

on MRPK dispersion have non-positive trends.

Consider the case of a linear trend in the three effects of age, year, and cohort: φj = gφj+uψ,j,

ψt = gψt + uψ,t, and χc = gχc + uχ,c. The condition that all three effects of age, year, and

cohort have non-positive trends on MRPK dispersion gives gφ, gψ, gχ ≤ 0. I show below that

(i) gψ = 0 (attributing the entire decline in MRPK dispersion over time to year effects) yields

the upper bounder of gφ, and (ii) gχ = 0 (attributing the entire decline in MRPK dispersion

over time to cohort effects) yields the lower bounder of gφ.

Substituting the identity of cohort birth year c = t− j into the observed result, which is the

sum of three effects:

φjj + ψtt+ χcc = (gφ − gχ)j + (gψ + gχ)t+ u,

where u = uψ,j + uψ,t + uχ,c. Denote gM∗ = gφ − gχ and gM = gψ + gχ. The unobserved

negative trend in age effects gφ can be expressed as gM∗ + gχ. Note that gM is negative by

definition; thus, the trend in cohort effects satisfies gχ ∈ [gM , 0], given the condition of three

non-positive trends. Therefore, gφ is bounded between gM∗ + gM and gM∗ .

The first restriction, which attributes the entire deline in MRPK dispersion over time to

cohort effects, gχ = 0 is now equivalent to gχ = gM . Hence, it gives the lower bound of the

negative gφ, that is, gM∗ + gM . Similarly, the second restriction, gχ = 0, yields the upper

bound of the negative gφ, that is, gM∗ . Figure 6 shows the first restriction indeed yields a

much steeper profile of MRPK dispersion with firm-cohort age.

A.3 Details of Alternative Approach Two

Here I explain the details of estimating equation (5) under the framework of imposing one

additional linear restriction as in Deaton (1997). In particular, I describe the two different

linear restrictions I impose for results in section 3.1 and how to implement them in practice.

To derive the restrictions, consider the weighted average dispersion of marginal products in

year t:

SDt =
∑
c∈Ct

ωstj · SDstj(mrpkit),

where ωstj is a weight defined as the number of firms in an industry-age-year bin divided by
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the total number of firms. Let CIC denote the set of all 4-digit industry codes. Substituting

in SDstj(mrpkit) from equation (5), it is easily shown that the weighted average can be

written as

SDt = α + ψt + X̄t + Φ̄t (A.1)

X̄t =
∑
c∈Ct

Φct

Φ̄t

χc

Φ̄t =
∑
c∈Ct

Φct, and Φct =
∑
s∈CIC

ωstj(φjDj + εstj).

We see in Figure A.5 that the weighted average dispersion of marginal products of capital

(or SDt) declines from one year to the next. equation (A.1) shows clearly that the decline

of dispersion has three sources: the decline due to the time effects ψt, the decline due to

the aggregate cohort effects captured in X̄t, and the decline due to composition of firms at

different ages captured in Φ̄t. The restrictions will be imposed on the term

Ωt = α + ψt + X̄t. (A.2)

This term Ωt captures the year-specific aggregate effects. It changes over time as a result of

two effects: (i) cohort-neutral effects captured in ψt, and (ii) effects due to the changes in

the composition of active cohorts operating, captured in X̄t. For example, if younger cohorts

are born with a small dispersion of marginal products, the observed aggregate dispersion can

decease over time only because young cohorts enter and older cohorts exit the market.

The basic idea of this approach is to decompose the time series of Ωt into a trend component

and a cyclical component. To identify cohort and year effects in addition to age effects,

this approach makes assumptions on the relative role of time and cohort effects in the trend

component.

In practice, the first step of implementation is to transform the time dummies as equation

(2.94) in Deaton (1997) such that two restrictions are satisfied: (i) the year dummies add to

zero:
∑T

t=0 t = 0, and (ii) the normalization of all year effects adding up to zero: 1
T

∑T
t=0 ψt =

0. I also want to normalize the cohort effects X̄t such that 1
T

∑T
t=0 X̄t = 0. I do so by

appropriately choosing the constant term α in equation (A.2). Second, the time series of ψt

and X̄t can be decomposed into a trend component and a cyclical component:

ψt = gψt+ uψ,t, X̄t = gχt+ uχ,t, (A.3)
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where gψ =
∑T
t=0 ψtt∑T
t=0 t

2
and gχ =

∑T
t=0 X̄tt∑T
t=0 t

2
. Intuitively, the estimates are simply regressing ψt and

X̄t on time, thereby decomposing each time series into a trend component and the cyclical

component orthogonal to time. It is the same method as proposed in Hamilton (2017).

Finally, substituting equation (A.3) into equation (A.2) gives

Ωt = α + gM t+ uM,t,

where uM,t = uψ,t + uχ,t and recall that gM = gψ + gχ. The restrictions I used in Section 3.1

simply make assumptions on how gM is split between gψ and gχ.

I can also use the McKenzie test, as described in section A.1, to test the linearity restriction

on the series of ψt. In practice, I first take the difference of MRPK dispersion of the same

cohort observed in the two adjacent years to eliminate the cohort effects ∆cSDstj. Then

I take the second difference for observations of the same age but in two adjacent years:

∆c∆aSDstj = ∆cSDstj − ∆cSDst′j. Therefore, I can test the hypothesis that the second

derivative of time effects, (ψt+2 − ψt+1) − (ψt+1 − ψt), is zero. As a result, I cannot reject

the linear hypothesis except for t equal to 2003 and 2004, meaning linear specifications are

good enough to estimate the time effects at all other sample years. This McKenzie test

result is intuitive by looking at Figure A.5. We cannot reject the linear hypothesis at year

2003 and 2004, because the MRPK dispersion deviates from the linear fit in 2004, thus

decreasing relatively significantly between year 2004 and 2005. Actually, even at this outlier,

the deviation from the linear trend is only around 0.01 point in A.5. This deviation from

the linear trend is relatively small compared to the age or time effects I estimated, which

have magnitudes around 10 times larger. So I conclude that the linear restriction in the first

approach is a reasonable approximation.

Specifically, the two restrictions I use to get the results in Figure 6 are the following:

Restriction 1 (All Decline due to Cohort Effects):

gψ = 0, gχ = gM

By the definition of gψ, this restriction implies
∑T

t=0 ψt = 0, meaning that the year effects gψ

only capture the cyclical variations and are orthogonal to the time trend. This restriction is

the same as illustrated by (Deaton, 1997, pp. 123 - 127).

Restriction 2 (All Decline due to Time Effects):

gψ = gM , gχ = 0
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This restriction actually implies the linear restriction
∑T

t=0 X̄tt = 0, or

T∑
t=0

∑
c∈Ct

Φct

Φ̄t

χct = 0.

Note the term Φct enters this restriction, which requires estimating equation (5). In practice,

I use an iterative algorithm to meet this restriction.

Figure A.7 plots the estimates of the cohort and time effects under the two restrictions above.

The top-panel results impose Restriction 1, so we see a declining trend in the cohort effects,

but the time effects are relatively flat. The bottom-panel results impose Restriction 2, so

the cohort effects are relatively flat but the time effects have a declining trend. Note the

cohort and time variations are large, with the largest magnitudes at -0.3 for cohort effects

and -0.1 for the year effects.

In addition, Figure A.8 plots the exit rates by firm-cohort age of the same firm cohorts in

Figure 2 after removing zero-sum year effects using this methodology.
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Figure A.7: MRPK Dispersion by Cohort and Year in Alternative Approach One

(a) All MRPK Decline Driven by Cohort Effects
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(b) All MRPK Decline Driven by Time Effects
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Note: This figure plots the MRPK dispersion by birth year of the firm cohorts and by calendar year

estimated using the first alternative approach. The top panel shows the dispersion-cohort and dispersion-

year profiles estimated in equation (5) using Restriction 1: gψ = 0. The bottom panel shows the

dispersion-cohort and dispersion-year profiles estimated in equation (5) using Restriction 2: gχ = 0.
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Figure A.8: Exit Rates by Cohort
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Note: This figure plots the exit rates by cohorts born in 1979, 1984, 1989, 1994, and 1999, respectively,
after removing the zero-sum year effects following Deaton (1997).
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Figure A.9: Dispersion Profiles over Age, Robustness with Volatility of Productivity
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Note: This figure plots the estimated profile of MRPK dispersion by firm-cohort age in equation (6) using
the second approach, which assumes (a) no trend in the age effects on MRPK dispersion after age 10
(dashed orange line with circle markers), (b) a small decreasing trend of 0.005 point per age after age
10 (long-dashed blue lines with triangle markers), (c) a moderate decreasing trend of 0.01 points per age
after age 10 (solid black lines with square markers).
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Figure A.10: Dispersion Profiles over Age, Robustness with Only Non-state Firms
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Note: This figure plots the estimated profile of MRPK dispersion by firm-cohort age in equation (6)
using the second approach when restricting the sample to only non-state firms. It plots the estimation
results assuming (a) no trend in the age effects on MRPK dispersion after age 10 (dashed orange line
with circle markers), (b) a small decreasing trend of 0.005 point after age 10 (long-dashed blue lines with
triangle markers), (c) a moderate decreasing trend of 0.005 point after age 10 (solid black lines with
square markers).
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A.4 Aggregate Productivity and MRPK Dispersion

Substituting the optimal labor choice of nit(zit, kit) =
(
α2

ezitk
α1
it

w

) 1
1−α2 into the production

function gives

yit =
(α2

w

) α2
1−α2 e

zit
1

1−α2 k
α1

1−α2
it . (A.4)

Meanwhile, the labor market clearing condition requires that the fixed labor supply equals

the aggregate labor demand N =
∫
nitdi =

(
α2

w

) 1
1−α2

∫ (
ezitkα1

it

) 1
1−α2 di, so that

(
α2

w

) 1
1−α2 =

N∫ (
ezitk

α1
it

) 1
1−α2 di

. Substituting this expression in yit gives

yit =
e
zit

1
1−α2 k

α1
1−α2
it Nα2(∫ (

ezitkα1
it

) 1
1−α2 di

)α2
.

Further taking derivative with respect to kit yields MRPKit = α1

1−α2

e
zit

1
1−α2 k

α1+α2−1
1−α2

it Nα2(∫ (
ezitk

α1
it

) 1
1−α2 di

)α2 ,

which can be rearranged to express kit in terms of MRPKit:

kit =

(
α1

1−α2
e
zit

1
1−α2

MRPKit

) 1−α2
1−α1−α2

·
( N∫ (

ezitkα1
it

) 1
1−α2 di

)α2(1−α2)
1−α1−α2 .

Meanwhile, capital market clearing condition implies

K =

∫
kitdi =

( α1

1− α2

) 1−α2
1−α1−α2

( N∫ (
ezitkα1

it

) 1
1−α2 di

)α2(1−α2)
1−α1−α2

∫ ( ezit 1
1−α2

MRPKit

) 1−α2
1−α1−α2 di.

Cancelling out the term with N in the last two expressions yields

kit =

(
e
zit

1
1−α2

MRPKit

) 1−α2
1−α1−α2

∫ ( ezit 1
1−α2

MRPKit

) 1−α2
1−α1−α2 di

K.
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Now substituting kit in terms of K into the expression of yit and rearranging gives

yit =

e
zit

1
1−α1−α2 MRPK

− α1
1−α1−α2

it( ∫ (
e
zit

1
1−α2

MRPKit

) 1−α2
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) α1
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− α1
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it di( ∫ (
e
zit

1
1−α2

MRPKit

) 1−α2
1−α1−α2 di

) α1
1−α2

)α2
Kα1Nα2 .

Finally, aggregating the revenue output yit gives Y =
∫
yitdi = ZKα1Nα2 , where the aggre-

gate productivity is

Z =

(∫
e
zit

1
1−α1−α2MRPK

− α1
1−α1−α2

it di( ∫ (
e
zit

1
1−α2

MRPKit
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1−α1−α2 di

) α1
1−α2

)1−α2

.

Taking the log of the expression above gives

z = (1−α2)

[
ln

(∫
e
zit

1
1−α1−α2MRPK

− α1
1−α1−α2

it di

)
− α1

1− α2

ln

(∫
e
zit

1
1−α1−α2MRPK

− 1−α2
1−α1−α2

it di

)]
.

Expanding the two terms in the brackets respectively,

ln

(∫
e
zit

1
1−α1−α2MRPK

− α1
1−α1−α2

it di

)
=
z̄ − α1mrpk

1− α1 − α2

+
σ2
z + α2

1σ
2
mrpk − 2α1σmrpk,z
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,

ln

(∫
e
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1
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it di

)
=
z̄ − (1− α2)mrpk

1− α1 − α2

+
σ2
z + (1− α2)2σ2

mrpk − 2(1− α2)σmrpk,z

2(1− α1 − α2)2
.

Finally, combining them into the expression of z reveals the relationship between the pro-

ductivity loss (z − z∗) and dispersion in MRPK (σ2
mrpk):

z = (1− α2)
[
z̄ +

σ2
z − α1σ

2
mrpk

2(1− α1 − α2)

]
= z∗ − α1(1− α2)

2(1− α1 − α2)
σ2
mrpk.
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Figure A.11: Policy Function Given Low and High Beliefs in Model

Note: This figure plots the policy function of ki,t+1 for age-one firms. The top two panels fix the state

variable zit at a relatively high level and plot the firm choice of ki,t+1 against kit with low belief (left)

and high belief (right); the bottom panels plot ki,t+1 on the space of (kit, zit) with low belief (left) and

high belief (right). Blank space in the top- and bottom-left two panels represent missing ki,t+1 values

when the firm chooses to exit the market.
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