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1 Introduction

Economics is the study of how people choose to allocate scarce resources to maximize their objec-

tives. Attention is a scarce resource that is useful for people to process information. Even though

many economic data are publicly available, people are boundedly rational and only pay limited

attention to some of them. Sims (1998, 2003) formalizes this idea as a problem of rational inatten-

tion (RI). He proposes a framework in which the decision maker solves an optimization problem

subject to an information-flow constraint. Since Sims’s seminal contributions, this literatures has

grown rapidly as surveyed by Sims (2011) and Maćkowiak, Matějka, and Wiederholt (2018).

Despite the fact that Sims (1998) first introduces the idea of RI in a continuous-time setup,

little progress has been made in this direction. Most of the research on RI has focused on either

static or discrete-time models. Only a handful of papers discussed later study control problems

with RI in continuous time and are limited to univariate models only. How to formulate and solve

multivariate control problems with RI in continuous time is an open question. I attempt to resolve

this question in the present paper, which makes three contributions to the literature. First, I

propose a multivariate linear-quadratic-Gaussian (LQG) control framework with RI in continuous

time. The LQG control framework has a long tradition in mathematics, engineering, and economics,

and has wide applications especially in macroeconomics. The continuous-time setup is technically

more convenient to derive analytical solutions. I formulate the LQG control problem under RI as

a problem of choosing both the control and information structure. The decision maker observes a

noisy signal about the unobserved controlled states. The signal vector is a linear transformation of

the states plus a Brownian motion noise. The signal dimension and the linear transformation are

endogenously chosen subject to the information-flow constraint.

The second contribution of my paper is to provide three sets of novel characterization results.

First, I derive a generalized reverse water-filling solution for the case in which the state transition

matrix is diagonal with equal diagonal elements. Cover and Thomas (2006) present the classic

reverse water-filling solution for the case of independent Gaussian shocks and unweighted mean-

square errors in a static setting. Miao, Wu, and Young (2019) generalize this solution to a dynamic

discrete-time setting with correlated Gaussian shocks and weighted mean-square errors. In this

paper I generalize this solution to a continuous-time setting. Second, I characterize the signal

dimension based on the reverse water-filling solution. I show that the signal dimension cannot

exceed the rank of the weighting matrix derived from the control problem. This means that the

signal dimension cannot exceed the minimum of the state dimension and the control dimension. As

the distortion increases or the information-flow rate decreases, the signal dimension decreases if the

positive eigenvalues of the weighted innovation covariance matrix are not identical. Third, I study

a pure tracking problem in which the optimal control under full information is a linear combination
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of exogenous states. I show that the optimal signal is always one dimensional if the states follow

correlated Ornstein-Uhlenbeck processes with the same persistence parameter. Moreover the signal

can be normalized as the sum of the optimal control under full information and a Brownian motion

noise, similar to the discrete-time model studied by Miao, Wu, and Young (2019).

The last contribution of my paper is to propose an efficient numerical method to solve the

multivariate RI model in continuous time using semidefinite programming (Vandenberghe and

Boyd (1998)). I propose a three-step solution procedure. The first step is to use the separation

principle to solve the optimal control problem under partial information taken the information

structure as given. The second step is to transform the problem of solving the optimal information

structure into a pure tracking problem under RI, which is also called the distortion rate problem in

the engineering literature. The last step is to transform this problem into an inverse rate distortion

problem, which admits a semidefinite programming representation. This representation can be

numerically solved using the publicly available semidefinite programming solver such as SDPT3

(Toh, Todd, and Tutuncu (1999) and Tutuncu, Toh, and Todd (2003)).1 This solver can handle

optimization problems up to 100 dimensions accurately, robustly, and efficiently.

I illustrate my approach using a consumption/saving problem as an example, in which there

are two persistent income shocks and one transitory income shocks. Although there are three state

variables in this model, I follow Luo (2008) to reduce it to the one with a single state variable –

total wealth. I then derive an analytical solution. I use my solution procedure with three state

variables to derive the numerical solution and compare with the analytical solution. I find they

are almost the same subject to small numerical errors. I also find that the optimal signal is one

dimensional and can be normalized as total wealth plus a Brownian motion noise.

I now discuss the related literature. As mentioned earlier, most of the literature on RI studies

either static or discrete-time models.2 Because of the difficulty of multivariate control models with

RI, most papers analyze the univariate case or make strong assumptions on the signal structure.

For example, Peng (2005), Peng and Xiong (2006), Maćkowiak and Wiederholt (2009), and Van

Niewerburgh and Veldkamp (2010), and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016)

impose the signal independence assumption or some restriction on the signal form. An undesirable

implication of the signal independence assumption is that initially independent states remain ex

post independent. Some ad hoc restrictions on the signal form may be inconsistent with optimality

ex post. Sims (2003, 2011) proposes a two-step solution procedure in discrete time, but he does

not discuss how to solve RI problems in continuous time. As discussed by Miao, Wu, and Young

(2019), his procedure is flawed and inefficient in discrete time.

1This solver can be implemented in CVX (Grant and Boyd (2008)), a Matlab package that simplifies the contruction
of the problem. This package also supports other semidefinite programming solvers and solves general disciplined
convex programs.

2Matějka and McKay (2015) and Caplin and Leahy (2018) study static RI models with discrete choices.
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My paper is related to that by Miao, Wu, and Young (2019) who study multivariate RI problems

in discrete time by removing the signal independence assumption or other strong assumptions on

the signal structure. While Miao, Wu, and Young (2019) study both finite and infinite-horizon

cases, here I only focus on the infinite-horizon stationary case. Although the solution procedure

is similar, the continuous-time setup studied in this paper poses new technical challenges. First,

one cannot simply formulate the signal form as the state plus noise in level in continuous time

as noted by Sims (1998) and Moscarini (2004). This is because the implied information rate is

infinity. One solution is to assume that the decision maker samples the process at discrete intervals

(Moscarini (2004)). Instead I follow the standard literature on filtering in continuous time (Liptser

and Shiryaev (2001)) and assume that the signal vector satisfies a stochastic differential equation.

Second, the mutual information in continuous time takes a very different form from that in discrete

time. In continuous time the asymptotic mutual information per unit of time is equal to one half of

the mean-square error in estimating the unobserved state vector. In discrete time the asymptotic

mutual information per unit of time is equal to the reduction in the conditional entropy per period.

Thus the analysis of the rate distortion problem and the derivations of the generalized reverse

water-filling solutions are different. Third, the semidefinite programming representations and the

derivations in continuous time and in discrete time are very different. Thus numerical algorithms

are also different.

Moscarini (2004), Kasa (2006), Luo (2018), and Hébert and Woodford (2018) also study RI

problems in continuous time. Moscarini (2004) analyzes a pure tracking problem given discrete

sampling. Kasa (2006) and Luo (2018) study univariate control problems. They also compare

the implications of RI with those of robustness proposed by Hansen and Sargent (2007). Hébert

and Woodford (2018) study a continuous-time RI model as the limit of a discrete-time sequential

evidence accumulation problem. Unlike in my model, the actions in their model are discrete instead

of continuous. Moreover they also study general information cost functions other than the mutual

information.

2 Model

In this section I present the model setup, the standard solution under full information, and the first

step of my solution procedure for the model with RI.

2.1 Setup

Consider an infinite-horizon stationary LQG model with RI in continuous time. Let the nx dimen-

sional state vector xt follow the linear dynamics

dxt = Axtdt+Butdt+GdWxt, (1)
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where ut is an nu dimensional control vector and (Wxt) is an nx dimensional standard Brownian

motion. The matrices A, B, and G are conformable constant matrices. Assume that the innovation

covariance matrix GG′ is positive definite, denoted by GG′ � 0.3 The state vector xt may contain

both exogenous states and endogenous states such as capital. The matrix A is called a state

transition matrix.

Suppose that the decision maker does not observe the state xt perfectly, but observes an ny

dimensional noisy signal yt about xt satisfying

dyt = Cxtdt+ dWyt, y0 = 0, (2)

where C is a conformable constant matrix and (Wyt) is an ny dimensional standard Brownian motion

independent of (Wxt). Assume that x0 is a Gaussian random variable with mean m0 and covariance

matrix Σ0 and is independent of (Wxt) and (Wyt) . Throughout the paper I focus on the stationary

case in which x0 is drawn from the long-run conditional stationary distribution. The decision

maker’s information set at date t is given by the σ-algebra Fyt generated by yt ≡ {ys : 0 ≤ s ≤ t} .
The control process (ut) is adapted to the filtration {Fyt }.

Suppose that the decision maker is boundedly rational and has limited information-processing

capacity. He faces the following information-flow constraint

lim
T→∞

sup
1

T
I
(
xT ; yT

)
≤ κ, (3)

where κ > 0 denotes the information-flow rate or channel capacity and I
(
xT ; yT

)
denotes the (Shan-

non) mutual information between the processes xT = {xt : 0 ≤ t ≤ T} and yT = {yt : 0 ≤ t ≤ T} .
The mutual information I

(
xT ; yT

)
measures total uncertainty reduction from time 0 to time T

after observing the signal yT . The expression on the left-hand side of inequality in (3) measures

the average uncertainty reduction per unit of time over an infinite horizon.

The decision maker can process information by choosing the information structure represented

by the linear transformation C. The choice of C also means that the signal dimension ny is endoge-

nously chosen. One may assume that C has full row rank, meaning that each component of the

signal vector is not redundant. In principle the decision maker can choose both C and the noise

variance as shown in Miao, Wu, and Young (2019) in the discrete time case. For example one may

assume that the signal vector satisfies

dyt = Cxtdt+ ΞdWyt, y0 = 0, (4)

where Ξ is a conformable constant matrix. If Ξ is invertible, this signal vector gives the same

information as that in (2) when both C and Ξ can be endogenously chosen. I will illustrate this

point in Sections 3 and 4. Thus I focus on (2) only.

3We use the conventional matrix inequality notations: H � (�) H̃ means that H− H̃ is positive definite (semidef-

inite) and H ≺ (�) H̃ means H − H̃ is negative definite (semidefinite).
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The decision maker first chooses the information structure C and then selects a control {ut : t ≥ 0}
adapted to {Fyt } to maximize a quadratic function subject to the constraints described above. I

formulate his decision problem as follows:

Problem 1 (stationary LQG problem under RI with fixed capacity)

max
{ut},C

−E
[∫ ∞

0
βe−βt

(
x′tQxt + u′tRut + 2x′tSut

)
dt

]
subject to (1), (2), and (3), where the expectation is taken with respect to the stationary distribution.

One may use the Lagrange multiplier to eliminate the information-flow constraint (3) and study

the following relaxed problem:

Problem 2 (stationary LQG problem under RI with fixed information cost)

max
{ut},C

−E
[∫ ∞

0
βe−βt

(
x′tQxt + u′tRut + 2x′tSut

)
dt

]
− λ lim

T→∞
sup

1

T
I
(
xT ; yT

)
subject to (1) and (2), where the expectation is taken with respect to the stationary distribution.

Here λ > 0 is interpreted as the shadow cost of information.

In the engineering literature one often studies the long-run average cost criterion instead of the

discounted objective:

lim
T→∞

sup
1

T

∫ T

0

(
x′tQxt + u′tRut + 2x′tSut

)
dt.

One can analyze this problem as the limiting case of the infinite-horizon discounted cost problem

as the discount rate β vanishes. I will not study this problem in this paper. Instead I will focus on

Problem 1 only. Problem 2 can be similarly analyzed and will be omitted.

2.2 Full Information Solution

Before analyzing Problem 1, I first present the solution in the full information case, in which the

decision maker observes xt perfectly. The solution can be found in the textbook by Anderson and

Moore (1989). Suppose that R � 0 and [
Q S
S′ R

]
� 0.

Then the value function given any initial value x0 = x takes the form

V FI (x) = −βx′Px− tr
(
GG′P

)
, (5)

where tr (·) denotes the trace operator and P � 0 satisfies the algebraic Riccati equation

βP = Q− (PB + S)R−1
(
B′P + S′

)
+
(
A′P + PA

)
. (6)
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Taking the expectation with respect to the initial distribution of x0 gives

V FI ≡ E
[
V FI (x0)

]
= −βE

[
x′0Px0

]
− tr

(
GG′P

)
. (7)

The optimal control is given by

ut = −Fxt, (8)

where

F = R−1
(
B′P + S′

)
.

Following Anderson and Moore (1989), assume that the pair (A− βI/2, B) is stabilizable and

the pair (A− βI/2, L) is detectable for LL′ = Q, where I is a conformable identity matrix. Then

there exists a positive semidefinite solution P to (6) and this solution is the limit of the differential

Riccati equation derived from a finite-horizon problem. To ensure the stability of the Kalman-Bucy

filter discussed in the next subsection, I also assume that the pair (A,G) is controllable. Notice

that these conditions are sufficient, but not necessary. Other sufficient conditions are also available

in the literature.

2.3 Control under Partial Information

I now turn to the decision problem under RI. I use a three-step procedure similar to that of Miao,

Wu, and Young (2019), which is also related to the method of Sims (2003). In the first step

I take the information structure as given and solve the optimal control problem under partial

information. In this case the separation principle holds. To apply this principle, I first derive the

long-run stationary Kalman-Bucy filter

dmt = Amtdt+Butdt+K (dyt − Cmtdt) , (9)

0 = AΣ + ΣA′ −KK ′ +GG′, (10)

where I define mt ≡ E [xt|Fyt ], Σ ≡ E
[
(xt −mt) (xt −mt)

′] , and the Kalman gain K = ΣC ′. If the

pair (A,G) is controllable and the pair (A,C) is detectable, then the algebraic Riccati equation

(10) admits a unique positive definite solution Σ (Anderson and Moore (1989))

Following Liptser and Shiryaev (2001), I rewrite the objective function as

−E
[∫ ∞

0
βe−βt

(
x′tQxt + u′tRut + 2x′tSut

)
dt

]
= −tr (QΣ)− E

[∫ ∞
0

βe−βt
(
m′tQmt + u′tRut + 2m′tSut

)
dt

]
.

I then consider the auxiliary problem

J (m) = max
{ut}
−E

[∫ ∞
0

βe−βt
(
m′tQmt + u′tRut + 2m′tSut

)
dt

]
(11)
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subject to

dmt = Amtdt+Butdt+KdW yt, m0 = m,

where W yt is the innovation Brownian motion relative to the filtration {Fyt } and satisfies

dW yt = dyt − Cmtdt.

The problem in (11) can be viewed as a standard LQG control problem under full information

{Fyt } . It follows from (5) that the optimal control is given by ut = −Fmt and the value function

is given by

J (m) = −βm′Pm− tr
(
KK ′P

)
. (12)

Thus the optimal value in Problem 1, denoted by V (m0) , satisfies

V (m0) = −βm′0Pm0 − tr
(
KK ′P

)
− tr (QΣ) . (13)

Proposition 1 Suppose that the assumptions in Section 2.1 are satisfied. Let Σ0 = Σ and C be

given. Then the optimal value under partial information V (m0) satisfies

V FI − V (m0) = E
[
(xt −mt) Ω (xt −mt)

′] ,
where

Ω ≡ (PB + S)R−1
(
B′P + S′

)
� 0. (14)

The intuition behind this result is as follows. Since the information-flow constraint cannot help

in the optimization, I know that V FI > V (m0). The difference is equal to the weighted mean-

square error with the weight given by Ω. In the next section I describe how I solve the optimal

information structure in Problem 1 under RI.

3 Optimal Information Structure

In this section I present the remaining two steps of my solution procedure and provide some

characterization results for some special cases.

3.1 Rate Distortion Function

Sims (2003) proposes to solve the optimal information structure by minimizing V FI − V (m0) . In

other words, the optimal information structure is to bring expected utility from the current date

onward as close as possible to the expected utility value under full information. This leads to the

second step of his solution method, which is also the same as my second step.

8



Problem 3 (Distortion rate problem)

D (κ) ≡ inf
C∈C

E
[
(xt −mt) Ω (xt −mt)

′]
subject to (2), (3), (9), and (10), where C ⊂Rny×nx is the set of matrices C such that (A,C) is a

detectable pair.

According to the information theory in the engineering literature, the objective in the problem

above is the distortion between the source process xt and its estimate mt measured by the weighted

mean-square error. The function D (κ) is called the distortion rate function which shows the

minimal distortion given that the information flow measured by the mutual information is limited

by the capacity κ. Notice that the restriction of the domain of optimization C is to ensure that there

is a unique positive definite solution to (10). Sims (2003, 2011) advocates to solve Problem 3 using

first-order conditions in a discrete time setup. Following the engineering literature on information

theory, I propose to solve a closely related inverse problem, which leads to the last step of my

solution procedure.

Problem 4 (Rate distortion problem)

κ (D) ≡ inf
C∈C

lim
T→∞

sup
1

T
I
(
xT ; yT

)
(15)

subject to (2), (9), (10), and

E
[
(xt −mt) Ω (xt −mt)

′] ≤ D. (16)

Here D > 0 denotes an upper bound of the distortion. The problem above means that the

decision maker chooses the information structure to minimize the information-flow rate given the

distortion is limited by the bound D. The function κ (D) is called the rate distortion function in

information theory. As in Cover and Thomas (2006), one can show that both D (κ) and κ (D)

are convex and decreasing functions and κ (D) is the inverse function of D (κ) . Thus the rate

distortion problem and the distortion rate problem are equivalent. The rate distortion problem is

more convenient to analyze than the distortion rate problem because the information-flow constraint

(3) is more complicated than the distortion constraint (16). Another advantage of studying the rate

distortion problem is that one can always find a solution for any D > 0. But the rate distortion

problem may not have a solution for an arbitrary capacity κ > 0. I will illustrate this point in

Sections 3.2 and 4. Thus I will focus on the rate distortion problem throughout this paper.

I now explicitly compute the mutual information in (15) and the distortion in (16). I first

compute the weighted mean-square error

E
[
(xt −mt) Ω (xt −mt)

′] = tr (ΩΣ) .
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Next it follows from Duncan (1970) and Liptser and Shiryaev (2001) that

I
(
xT ; yT

)
= I

(
xT ;mT

)
=

1

2

∫ T

0
E
[
‖C (xt −mt)‖2

]
dt,

where ‖·‖ denotes the Euclidean norm. Given that Σ ≡ E
[
(xt −mt) (xt −mt)

′] in the stationary

case, I derive

lim
T→∞

sup
1

T
I
(
xT ; yT

)
=

1

2
tr
(
ΣC ′C

)
. (17)

The matrix C ′C is often called a signal-to-noise ratio in the engineering literature. The intuition

for (17) can be best gained from the univariate case. Then the asymptotic mutual information

contained in (yt) about (xt) per unit of time increases with the conditional variance of xt and with

the signal-to-noise ratio. The higher the conditional variance of the state or the signal-to-noise

ratio, the more informative the signal is.

I then transform Problem 4 into a more transparent form.

Lemma 1 The rate distortion problem in Problem 4 is equivalent to the following problem:

κ (D) = inf
Σ�0

tr (A) +
1

2
tr
(
Σ−1GG′

)
(18)

subject to

tr (ΩΣ) ≤ D, (19)

AΣ + ΣA′ +GG′ � 0. (20)

In the problem above I have eliminated the choice variable C, which can be recovered through

equation (10) with K = ΣC ′ once Σ is obtained. Constraint (20) corresponds to the no-forgetting

constraint discussed by Sims (2003) in the discrete-time setup. It comes from equation (10) and

ensures that C can be recovered. Notice that the objective in (18) is an inverse function of Σ, while

the objective in discrete time is a log-determinant function (Sims (2003) and Miao, Wu, and Young

(2019)). Thus one has to use a different method to analyze the problem in Lemma 1.

In the appendix I derive the following semidefinite programming representation:

Proposition 2 Suppose that the assumptions in Section 2.1 are satisfied. Then the rate distortion

problem has the semidefinite programming representation:

κ (D) = min
Π�0,Σ�0

tr (A) +
1

2
tr (Π)

subject to (19), (20), and [
Π G′

G Σ

]
� 0. (21)

This problem admits an optimal solution Π � 0 and Σ � 0.
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Constraint (19) is a linear inequality. Constraints (20) and (21) are linear matrix inequalities.

The problem in the proposition is convex and can be numerically solved efficiently using the pub-

licly available package CVX. Once the conditional covariance matrix Σ is determined, the optimal

information structure C is pinned down by the following result.

Proposition 3 Let Σ � 0 be the solution obtained in Proposition 2. Then any matrix C that

satisfies

C ′C = Σ−1
(
AΣ + ΣA′ +GG′

)
Σ−1 (22)

gives the optimal information structure for the rate distortion problem. One solution is C = MU ′1,

where M is a diagonal matrix with the square roots of all positive eigenvalues of the matrix

Σ−1 (AΣ + ΣA′ +GG′) Σ−1 on the diagonal and U1 is a matrix with all corresponding eigenvec-

tors on the columns.

Propositions 2 and 3 provide an efficient numerical method to solve the optimal information

structure in Problem 1. In particular, given any feasible information rate κ > 0. I use Proposition

2 to find a unique distortion D such that κ (D) = κ and the corresponding conditional covariance

matrix Σ. Proposition 3 delivers the optimal information structure C, which can be numerically

solved using the singular value decomposition and is not unique. Even though C is not unique,

it follows from the Kalman-Bucy filter in (9) and (10) that the impulse response functions for the

fundamental shock Wxt do not change. But the impulse responses to the information-processing

error Wyt will be affected. For example, if C is a solution, then −C is also a solution so that the

impulse responses to the same shock Wyt have an opposite sign for these two solutions. Notice that

the non-uniqueness of C does not affect the conditional covariance matrix Σ of the state xt.

3.2 Generalized Reverse Water-filling Solution

In this subsection I derive some analytical results for some special cases. For convenience I treat Ω

as exogenous and directly impose assumptions on it whenever necessary. Let GG′ = Ψ � 0 and let

Ψ
1
2 denote the square root of the positive definite matrix Ψ. Suppose that the positive semidefinite

matrix Ψ
1
2 ΩΨ

1
2 has an eigendecomposition Ψ

1
2 ΩΨ

1
2 = UΩdU

′, where U is an orthonormal matrix,

Ωd = diag (di)
nx
i=1 , and di ≥ 0 denotes an eigenvalue of Ψ

1
2 ΩΨ

1
2 for i = 1, 2..., nx. I then have the

following result.

Proposition 4 Suppose that Ω � 0,Ψ � 0, and A = −ρI, with ρ > 0. If 0 < D < tr(Ωd)
2ρ ,

then the solution to the rate distortion problem in Lemma 1 is given by Σ = Ψ
1
2U Σ̂U ′Ψ

1
2 , where

Σ̂ = diag
(

Σ̂i

)nx

i=1
with

Σ̂i = min

{
1√
αdi

,
1

2ρ

}
,
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and α > 0 is the Lagrange multiplier such that tr
(

ΩdΣ̂
)

= D. The optimal information structure

C satisfies

C ′C = Ψ−
1
2U Σ̂−1diag

(
max

{
1− 2ρ√

αdi
, 0

})nx

i=1

Σ̂−1U ′Ψ−
1
2 . (23)

The rate distortion function is given by

κ (D) =
1

2
tr
(

Σ̂−1
)
− ρnx.

If D ≥ tr(Ωd)
2ρ , then Σ̂i = 1

2ρ for all i and Σ = Ψ
2ρ .

When A = −ρI with ρ > 0, the state vector xt follows an Ornstein–Uhlenbeck process condi-

tional on a control ut. Its stationary distribution is Gaussian with covariance matrix Ψ
2ρ . Proposition

4 establishes that if the distortion D exceeds a threshold, the decision maker does not process any

information so that the conditional covariance matrix Σ is the same as the prior covariance matrix

Ψ
2ρ . If the distortion D is below the threshold, the decision maker acquires information to reduce

uncertainty. To understand how uncertainty is reduced, I consider two special cases. First, in the

scalar case I explicitly derive the following result:

Corollary 1 Consider the scalar case with nx = 1, Ω = 1, Ψ = σ2, and A = −ρ. If ρ > 0, then

Σ = min

{
D,

σ2

2ρ

}
, κ (D) = max

{
σ2

2D
− ρ, 0

}
.

If ρ < 0, then Σ = D and

κ (D) =
σ2

2D
− ρ > −ρ.

In both cases an optimal information structure is given by

C =
1

Σ

√
σ2 − 2ρΣ.

In the scalar case described in Corollary 1, the conditional variance Σ is bounded above by the

distortion D. The no-forgetting constraint implies that σ2 ≥ 2ρΣ. If ρ > 0 and 0 < D < σ2

2ρ , the

uncertainty is reduced from the prior stationary variance σ2

2ρ to the conditional variance D. But if

ρ < 0 then the no-forgetting constraint does not bind and the conditional variance is equal to D.

Moreover the rate κ (D) must be larger than −ρ > 0.

[Insert Figure 1.]

Figure 1 illustrates the rate distortion functions for the cases of ρ > 0 and ρ < 0. If the capacity

κ > 0 is specified as a primitive as in the information-flow constraint, then Corollary 1 shows that

Σ =
σ2

2 (κ+ ρ)
(24)
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for ρ > 0. The solution above still holds for ρ < 0, but I need κ > −ρ. If one specifies κ ∈ (0,−ρ],

then the distortion rate problem has no solution. The intuition is as follows. The scalar state

process xt is nonstationary for ρ < 0. If the capacity is too low, it is impossible for the decision

maker to acquire sufficient information to make the estimated state process stationary. That is, the

Kalman-Bucy filter (10) cannot hold. Solving the rate distortion problem allows one to calibrate κ

in the sensible region. I will revisit this point in Section 4.

Next I consider the multivariate case with independent shocks and unweighted mean-square

error objective.

Corollary 2 Suppose that Ω = I, Ψ = diag
(
σ2
i

)nx

i=1
� 0, and A = −ρI, with ρ > 0. If 0 < D <∑nx

i=1
σ2
i

2ρ , then Σ = diag (Σi)
nx
i=1 and

Σi = min

{
σi√
α
,
σ2
i

2ρ

}
,

where α > 0 is such that tr (Σ) = D. The rate distortion function is given by

κ (D) =
1

2

nx∑
i=1

max
{
σi
√
α− 2ρ, 0

}
.

The optimal information structure satisfies

C ′C = diag

(
1

Σ2
i

max

{
1− 2ρ√

αdi
, 0

})nx

i=1

. (25)

If D ≥
∑nx

i=1
σ2
i

2ρ , then Σ = Ψ
2ρ .

Corollary 2 corresponds to the reverse water-filling solution in the static case discussed by Cover

and Thomas (2006) and in the dynamic discrete time case studied by Miao, Wu, and Young (2019).

Corollary 2 shows that if the states are independent and the objective is unweighted, then the

states remain independent ex post. The conditional variances of the states are reduced according

to a decreasing order. For the state with prior innovation volatility σi higher than 2ρ/
√
α, the

uncertainty is reduced to Σi = σi/
√
α < σ2

i / (2ρ) . For any state with prior innovation volatility

lower than that level, the state variance remains unchanged ex post. Intuitively the decision maker

pays attention only to states with sufficiently high innovation variances and acquires information

to reduce the uncertainty about those states.

For the general case described in Proposition 4, a similar reverse water-filling solution applies.

The decision maker pays attention to the high eigenvalues of the weighted prior covariance matrix.

The matrix Σ̂ can be interpreted as a scaling factor. The decision maker acquires information to

reduce uncertainty for sufficiently high eigenvalues. Moreover even though the states are ex ante

uncorrelated (Ψ is diagonal), the states can be correlated ex post when Ω is not a diagonal matrix.

The result below characterizes the signal structure for Proposition 4.
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Proposition 5 For the rate distortion problem in Lemma 1, suppose that Ω � 0,Ψ � 0, and

A = −ρI, with ρ > 0. Let m = rank (Ω) and 0 < d1 ≤ d2 ≤ ... ≤ dm. If

0 < D <

∑m
i=1

√
d1di

2ρ
,

then the signal dimension is equal to m. The signal dimension decreases with D when the positive

eigenvalues of Ψ
1
2 ΩΨ

1
2 are not identical.

This proposition shows that the maximal signal dimension is equal to the rank of the matrix

Ω when the state transition matrix satisfies A = −ρI with ρ > 0. This maximum is attained when

the distortion is sufficiently low. Intuitively, to achieve a sufficiently low distortion, the decision

maker has to acquire as much as information as possible subject to the information-flow constraint.

As the distortion increases to a sufficiently high level, the decision acquires less information by

reducing the signal dimension as long as different sources of state uncertainty are not identical.

3.3 Tracking Problem

In this subsection I consider an important special case without endogenous state. The exogenous

state follows the dynamics

dxt = Axtdt+GdWxt. (26)

Suppose that the optimal control under full information is given by u∗t = a′xt, where a is an nx

dimensional column vector. The ith component of a measures the importance of the ith state for

the optimal choice u∗t .

The decision maker solves a pure tracking problem under RI

min
ut,C

E
[
(ut − u∗t )

2
]

subject to (2), (3), and (26). The solution is ut = E [u∗t |F
y
t ] = a′mt. Thus the problem can be

transformed into the rate distortion problem described in Lemma 1 with Ω = aa′. In this case

rank (Ω) = 1.

Proposition 6 Suppose that Ω = a′a (a 6= 0) , Ψ � 0, and A = −ρI, with ρ > 0. Suppose that

0 < D < 1
2ρ

∥∥Ψ1/2a
∥∥2
. Then the optimal conditional covariance matrix is

Σ =
Ψ

2ρ
− ΨΩΨ∥∥Ψ1/2a

∥∥2

(
1

2ρ
− D∥∥Ψ1/2a

∥∥2

)
.

The optimal signal is one dimensional and can be normalized as

dyt = u∗tdt+ ΞdWyt, (27)

14



where

Ξ =
D√∥∥Ψ1/2a
∥∥2 − 2ρD

.

If D ≥ 1
2ρ

∥∥Ψ1/2a
∥∥2
, then Σ = Ψ

2ρ and the decision maker does not process any information.

An important application of this case is the monopoly pricing problem analyzed by Maćkowiak

and Wiederholt (2009) in discrete time. Translated into the continuous-time setup here, each

component of the state vector xt represents a different source of exogenous shocks. The control ut

represents the optimal product price, which is a linear combination of the shocks. Then the optimal

signal is one dimensional and can be normalized as the optimal price under full information plus a

noise as long as all shocks have the same persistence. The shock innovations can be correlated. By

the Kalman-Bucy filter in (9), given the one dimensional signal, the initial responses to the same

size of the innovation shock for different sources of uncertainty are the same if all components of

the vector a are the same. This result is independent of the size of the innovation variance Ψ.

The intuition is that there is an information spillover effect without the signal independence

assumption. Given the one dimensional signal, a shock to a state with high innovation variance is

confused with the shock to a state with low innovation variance, as in the standard signal extraction

problem. Under rational inattention, the decision maker can choose the attention allocation, which

is represented by the linear transformation C in the signal vector. It follows from (27) that the

attention allocation is determined by the importance of the state measured by the vector a in that

C = a. Thus, if all states are equally important, then the decision maker pays equal attention to all

states independent of their innovation variances.4 This result is different from that of Maćkowiak

and Wiederholt (2009) based on the signal independence assumption.

I am unable to derive analytical resuts when different states have different persistence. I verify

numerically that Proposition 6 fails in this case. I find that the signal dimension is still one

dimensional, but the signal cannot be normalized to the form as in (27). In particular, for the case

of two states, I find that the firm pays more attention to the more persistent state independent

of the size of the innovation variance. In particular C1 > C2 when a1 = a2 and ρ1 < ρ2 for

C = (C1, C2), a = (a1, a2)′ , and A = diag (−ρ1,−ρ2) .

4 Application

In this section I study a consumption/saving problem to illustrate my previous results. The discrete-

time counterpart is analyzed by Sims (2003) and Luo (2008). A related continuous-time model

without RI is analyzed by Wang (2004).

4Miao, Wu, and Young (2019) establish the same result in discrete time. They also conduct extensive numerical
experiments for the case in which the different sources of shocks have different persistence. I will not study this issue
here.
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Suppose that the decision maker solves the following problem under full information

max
{ut}
−E

[∫ ∞
0

βe−βt (ct − c̄)2 dt

]
subject to

dwt = rwtdt− ctdt+ z1tdt+ z2tdt+ σwdZt,

dz1t = (z̄1 − ρ1z1t) dt+ σ1zdW1t,

dz2t = (z̄2 − ρ2z2t) dt+ σ2zdW2t,

where Zt,W1t, and W2t are independent standard Brownian motions, wt denotes financial wealth,

and z1t and z2t denote two persistent income components. For simplicity I assume that β = r > 0,

c̄ = z̄1 = z̄2 = 0, ρ1 > 0, ρ2 > 0, σ1z > 0, σ2z > 0, and σw > 0. The optimal consumption rule

under full information is given by ct = rst, where st denotes total wealth defined as

st = wt +
z1t

r + ρ1

+
z2t

r + ρ2

=

[
1,

1

r + ρ1

,
1

r + ρ2

]
xt. (28)

Here xt = (wt, z1t, z2t)
′ denotes the state vector.

Now suppose that the decision maker is bounded rational and faces an information-flow con-

straint. The signal yt satisfies (2) and the information-flow constraint is given by (3). For a numer-

ical illustration, I set parameter values as r = 0.02, ρ1 = 0.1, ρ2 = 0.5, σ2
w = 0.01, σ2

1z = 0.05, and

σ2
2z = 0.01. Figure 2 presents the rate distortion function, which shows that the capacity κ must

be higher than a lower bound close to 0.02. I find that the signal yt is always one dimensional. In

particular, when κ = 0.0904, the conditional covariance matrix and the signal-to-noise ratio are

given by

Σ =

 9.2204 0.2846 0.0146
0.2846 0.1577 −0.0006
0.0146 −0.0006 0.0100

 , C ′C =

 0.0072 0.0603 0.0139
0.0603 0.5025 0.1160
0.0139 0.1160 0.0268

 .
Using the singular value decomposition, I derive a solution for the linear transformation C =

[0.0851, 0.7089, 0.1636]. Even though the two income shocks z1t and z2t are ex ante independent,

they are negatively correlated ex post.

[Insert Figure 2 Here.]

To verify my numerical solution, I follow Luo (2008) to derive a closed-form solution. I use

total wealth st as the single state variable, which follows the dynamics

dst = (rst − ct) dt+ σdBt, (29)
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where Bt is a standard Brownian motion satisfying

σdBt ≡
σ1z

r + ρ1

dW1t +
1

r + ρ2

σ2zdW2t + σwdZt,

with

σ ≡

√(
σ1z

r + ρ1

)2

+

(
σ2z

r + ρ2

)2

+ σ2
w.

Then the optimal consumption rule under full information given (29) is the same as that when the

vector xt is used as the state.5 The decision maker under RI only needs to track the one-dimensional

state st. Let the scalar signal yt satisfy

dyt = hstdt+ dWyt.

The optimal consumption rule under RI is given by ct = rŝt, where ŝt ≡ E [st|Fyt ] . The station-

ary Kalman-Bucy filter is given by

dŝt = (rŝt − ct) dt+ Σh (dyt − hŝtdt) , (30)

0 = 2rΣ− (Σh)2 + σ2, (31)

where Σ = E
[
(st − ŝt)2

]
. It follows from (17) that the information-flow constraint is given by

1

2
Σh2 ≤ κ.

The no-forgetting constraint in (20) becomes 2rΣ + σ2 ≥ 0, which never binds. When the

information-flow constraint binds, I use (31) to solve for the optimal conditional covariance

Σ =
σ2

2 (κ− r)
,

where I impose the assumption that κ > r (also see (24)). I then obtain

h =
2
√
κ (κ− r)
σ

.

The optimal signal can also be equivalently rewritten as

dyt = stdt+ h−1dWyt.

This corresponds to the state plus noise signal in the discrete-time setup of Luo (2008).

When using xt as the state vector, let the linear transformation be C = [C1, C2, C3] in the signal

in (2). For a wide range of parameter values, I verify numerically that

C

C1
=

[
1,

1

r + ρ1

,
1

r + ρ2

]
5One can easily verify this claim using equations (6) and (8). Notice that P = 0 and c = 0 given c = 0 give a

solution. But the implied wealth explodes, violating the no-Ponzi game condition. Thus I rule out this solution.
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and h = C1 subject to small numerical errors. Thus I claim that the numerical solution using the

semidefinite programming approach with a three-dimensional state vector is very close to the true

analytical solution. A similar result is obtained by Miao, Wu, and Young (2019) in a discrete-time

setup. However, I am unable to provide a formal proof.

This example illustrates two pitfalls of the existing analysis in the literature. First, if one

solves the distortion rate problem as in the second step of Sims’s approach, the problem may

not have a solution if the capacity κ is calibrated to be too low. By contrast, solving the rate

distortion problem can guide the researcher to select the domain of κ. Second, if one makes the signal

independence assumption or any other ad hoc assumptions on the signal form, then the solution can

be suboptimal. As Sims (2003, 2011) shows, one can solve for the conditional covariance matrix

for the state independent of the signal structure, just like what I have shown in Lemma 1 and

Proposition 2. But one has to recover the optimal signal structure using Proposition 3. It turns

out that the prior assumption on the signal structure in the literature is often inconsistent with the

optimal signal form ex post.

5 Conclusion

I have formulated a multivariate LQG control framework with rational inattention in continuous

time. I have proposed a three-step solution procedure. The key step is to transform the tracking

problem under RI into a rate distortion problem. I derive a semidefinite programming representa-

tion for this problem, which can be solved numerically using an efficient publicly available package

CVX. I also provide generalized reverse water-filling solutions for some special cases and character-

ize the optimal signal form without strong prior assumptions. My solution approach can be applied

in many other problems in economics and finance.
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Appendix

A Proofs

Proof of Proposition 1: Since

E
[
x′0Px0

]
= tr (Σ0P ) +m′0Pm0,

it follows from (7) and (13) that

V (m0) = −β
{
E
[
x′0Px0

]
− tr (Σ0P )

}
− tr (QΣ)− 1

2
tr
(
KK ′P

)
= V FI +

1

2
tr
(
GG′P

)
+ βtr (Σ0P )− tr (QΣ)− 1

2
tr
(
KK ′P

)
= V FI + βtr (Σ0P )− tr

((
KK ′ −GG′

)
P
)
− tr (QΣ) .

Using the rotation invariance property of the trace operator and equations (6) and (10), I derive

tr (QΣ) + tr
((
KK ′ −GG′

)
P
)
− βtr (ΣP )

= tr (QΣ) + tr
((
AΣ + ΣA′

)
P
)
− βtr (ΣP )

= tr
((
Q+A′P + PA

)
Σ
)
− βtr (ΣP )

= tr (ΩΣ) ,

where I have defined (14). Given Σ0 = Σ and E
[
(xt −mt) Ω (xt −mt)

′] = tr (ΩΣ) , I obtain the

desired result. Q.E.D.

Proof of Lemma 1: Using the formulas derived in the main text, I rewrite Problem 4 as

κ (D) = inf
C∈C

1

2
tr
(
CΣC ′

)
subject to (19) and

0 = AΣ + ΣA′ − ΣC ′CΣ +GG′. (A.1)

By Lemma 1 of Tanaka, Skoglund, and Ugrinovskii (2017), I replace equation (A.1) with the no-

forgetting constraint (20). Using (A.1) to rewrite the objective yields

1

2
tr
(
ΣC ′C

)
=

1

2
tr
(
ΣC ′CΣΣ−1

)
=

1

2
tr
((
AΣ + ΣA′ +GG′

)
Σ−1

)
= tr (A) +

1

2
tr
(
G′Σ−1G

)
.

I have eliminated the choice variable C and obtained the desired result. Q.E.D.
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Proof of Proposition 2: By Lemma 1 the objective function is

tr (A) +
1

2
tr
(
G′Σ−1G

)
= min

Π�0

{
tr (A) +

1

2
tr (Π) : G′Σ−1G � Π

}
= min

Π

{
tr (A) +

1

2
tr (Π) : (21) holds

}
,

where the last equality uses the Schur complement formula. I then obtain the semidefinite pro-

gramming representation in the proposition. The existence of an optimal solution Σ � 0 and Π � 0

follows from Theorem 2 of Tanaka, Skoglund, and Ugrinovskii (2017). Q.E.D.

Proof of Proposition 3: Notice that AΣ + ΣA′ +GG′ is a positive semidefinite matrix by the

no-forgetting constraint (20). Since Σ � 0, I apply the singular value decomposition to derive

C ′C = Σ−1
(
AΣ + ΣA′ +GG′

)
Σ−1

= UV U ′ = [U1, U2]

[
Vp 0
0 0

] [
U ′1
U ′2

]
= U1VpU

′
1 = (U1M) (U1M)′ ,

where U is a unitary matrix and Vp is a diagonal matrix with all positive singular values on the

diagonal. Notice that U1 and U2 are conformable matrices and M = V
1
2
p . I then obtain the desired

result. Q.E.D.

Proof of Proposition 4: Recall that I define GG′ = Ψ and the positive semidefinite matrix

Ψ
1
2 ΩΨ

1
2 has an eigendecomposition Ψ

1
2 ΩΨ

1
2 = UΩdU

′, where U is an orthonormal matrix, Ωd =

diag (di)
nx
i=1 , and di ≥ 0 denotes an eigenvalue of Ψ

1
2 ΩΨ

1
2 for i = 1, 2..., nx. Define

Σ̂ = U ′Ψ−
1
2 ΣΨ−

1
2U.

I then obtain

Σ = Ψ
1
2U Σ̂U ′Ψ

1
2 , Σ−1 = Ψ−

1
2U Σ̂−1U ′Ψ−

1
2 .

Using the rotation invariance property of the trace operator, I derive

tr (ΩΣ) = tr
(

Ψ−
1
2U
(
U ′Ψ

1
2 ΩΨ

1
2U
)
U ′Ψ−

1
2 Σ
)

= tr
(

ΩdU
′Ψ−

1
2 ΣΨ−

1
2U
)

= tr
(

ΩdΣ̂
)
,

and

tr
(
Σ−1GG′

)
= tr

(
Σ−1Ψ

)
= tr

(
Ψ−

1
2U Σ̂−1U ′Ψ−

1
2 Ψ
)

= tr
(

Σ̂−1
)
.

Given A = −ρI, the no-forgetting constraint (20) becomes

Σ � GG′

2ρ
⇔ U ′Ψ−

1
2 ΣΨ−

1
2U � I

2ρ
⇔ Σ̂ � I

2ρ
.
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Thus the rate distortion problem in Lemma 1 becomes

κ (D) = min
Σ̂�0

1

2
tr
(

Σ̂−1
)
− ρnx

subject to

tr
(

ΩdΣ̂
)
≤ D, (A.2)

Σ̂ � I

2ρ
. (A.3)

Ignoring the no-forgetting constraint (A.3) for now and deriving the first-order condition, I

obtain

Σ̂−2 = αΩd,

where α > 0 is the Lagrange multiplier associated with (A.2). Since Ωd is diagonal, it follows that

Σ̂ is also diagonal with the diagonal elements:

Σ̂i =
1√
αdi

, i = 1, ..., nx.

If di = 0, I set Σ̂i =∞. Given (A.3), I obtain Σ̂i = min
{

1√
αdi
, 1

2ρ

}
.

If D ≥ tr(Ωd)
2ρ , the distortion constraint (A.2) does not bind. Each Σ̂i attains the upper bound

Σ̂i = 1/ (2ρ) and thus Σ = Ψ/ (2ρ) . If 0 < D < tr(Ωd)
2ρ , then (A.2) binds and the Lagrange multiplier

α > 0 is such that tr
(

ΩdΣ̂
)

= D.

By (22) the optimal information structure satisfies

ΣC ′CΣ = Ψ− 2ρΣ = Ψ− 2ρΨ
1
2U Σ̂U ′Ψ

1
2

= Ψ
1
2U
(
I − 2ρΣ̂

)
U ′Ψ

1
2

= Ψ
1
2U diag

(
max

{
1− 2ρ√

αdi
, 0

})nx

i=1

U ′Ψ
1
2 .

Simplifying yields the desired result. Q.E.D.

Proof of Corollary 1: For the case of ρ > 0 I apply Proposition 1 directly. In particular Ωd = σ2

and U = 1. When 0 < D < σ2

2ρ , the distortion constraint binds. The Lagrange multiplier α > 0

satisfies σ√
α

= D so that α = σ2

D2 .

For the case of ρ < 0, the no-forgetting constraint (20) becomes

−2ρΣ + σ2 ≥ 0,

which never binds. The distortion constraint always binds and hence Σ = D. The rest of the proof

is trivial. Q.E.D.

21



Proof of Corollary 2: Under the assumption in the corollary, I have U = I and Ωd = Ψ. Thus

di = σ2
i . The result then follows from Proposition 4 and is omitted. Q.E.D.

Proof of Proposition 5: I first solve for the Lagrange multiplier α. I claim that

Σ̂i =
1√
αdi

<
1

2ρ
, i = 1, ...,m.

For i = m+ 1, ..., nx, di = 0 and Σ̂i = 1/ (2ρ) . It follows from tr
(

ΩdΣ̂
)

= D that

√
α =

∑m
i=1

√
di

D
.

Given the assumption on D in the proposition, I find that the above expression for Σ̂i is indeed

the optimal solution. The inside diagonal matrix in (23) has exactly m positive diagonal elements.

Thus the signal dimension is equal to m = rank (Ω) .

Next suppose that the positive eigenvalues are not all identical. For simplicity let 0 < d1 <

d2 ≤ ... ≤ dm. I claim that if D satisfies∑m
i=1

√
d1di

2ρ
≤ D <

∑m
i=1

√
d2di

2ρ
+
d1

2ρ
, (A.4)

then the signal dimension is m− 1. I show that

Σ̂1 =
1√
αd1
≥ 1

2ρ
, Σ̂i =

1√
αdi

<
1

2ρ
, i = 2, ...,m. (A.5)

To verify this result, I use tr
(

ΩdΣ̂
)

= D to compute

1√
α

=
D − d1/ (2ρ)∑m

i=2

√
di

.

This equation and (A.4) imply that the inequalities in (A.5) are indeed satisfied and the expressions

for Σ̂i, i = 1, ...,m, in (A.5) are indeed the solution. For i = m+ 1, ..., nx, di = 0 and Σ̂i = 1/ (2ρ) .

Thus the inside diagonal matrix in (23) has exactly m − 1 positive diagonal elements, implying

that the signal dimension is equal to m− 1. For other more general cases, the proof is similar and

omitted. Q.E.D.

Proof of Proposition 6: Since rank (Ω) = 1, I have rank
(

Ψ
1
2 ΩΨ

1
2

)
= 1. I claim that ma-

trix Ψ
1
2 ΩΨ

1
2 has a unique positive eigenvalue d1 ≡

∥∥Ψ1/2a
∥∥2

and an associated unit eigenvector

Ψ
1
2a/

∥∥Ψ1/2a
∥∥ where ‖·‖ denotes the Euclidean norm. To prove this claim I verify that

Ψ
1
2 ΩΨ

1
2

Ψ
1
2a∥∥Ψ1/2a
∥∥ =

(
Ψ

1
2a
)(

Ψ
1
2a
)′ Ψ

1
2a∥∥Ψ1/2a
∥∥ =

(
Ψ

1
2a
)
a′Ψ

1
2

Ψ
1
2a∥∥Ψ1/2a
∥∥

=
(

Ψ
1
2a
) ∥∥Ψ1/2a

∥∥2∥∥Ψ1/2a
∥∥ =

∥∥∥Ψ1/2a
∥∥∥2 Ψ

1
2a∥∥Ψ1/2a
∥∥ .
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Thus Ωd has only one positive element d1 =
∥∥Ψ1/2a

∥∥2
and other diagonal elements di = 0 for

i = 2, ..., nx. Moreover the optimal signal dimension is at most one.

Suppose that 0 < D < d1
2ρ . It follows from Proposition 4 that

Σ̂1 = min

(
1√
αd1

,
1

2ρ

)
, Σ̂i =

1

2ρ
, i = 2, ..., nx,

where α > 0 is such that the distortion constraint binds D = d1√
αd1

. I can solve explicitly

α =
d1

D2
, Σ̂1 =

D

d1
.

The optimal information structure satisfies

C ′C = Ψ−
1
2U Σ̂−1 diag

{
max

(
1− 2ρ√

αd1
, 0

)nx

i=1

}
Σ̂−1U ′Ψ−

1
2 , (A.6)

where U is a unitary matrix in the eigendecomposition Ψ
1
2 ΩΨ

1
2 = UΩdU

′. Partition U = [U1, U2]

conformably, where U1 = Ψ
1
2a/

∥∥Ψ1/2a
∥∥. There is only one positive element in the inside diagonal

matrix in (A.6), which is

1− 2ρ√
αd1

= 1− 2ρD

d1
> 0.

The optimal information structure C corresponds to the eigenvector associated with the positive

eigenvalue. It follows from (A.6) that

C ′ =
1

D

√
d2

1 − 2ρDd1
a∥∥Ψ1/2a
∥∥ .

I normalize C as C∗ = a′ so that the normalized optimal signal takes the form in (27).

The optimal conditional covariance matrix in the proposition follows from Proposition 4. In

particular

Σ = Ψ
1
2U

[
D
d1

0

0 1
2ρI

]
U ′Ψ

1
2 .

Since U = [U1, U2] with U1 = Ψ
1
2a/

∥∥Ψ1/2a
∥∥, it follows that U1U

′
1 + U2U

′
2 = I. Thus

Σ = Ψ
1
2

[
I

2ρ
− U1U

′
1

(
1

2ρ
− D

d1

)]
Ψ

1
2 .

Simplifying yields the expression in the proposition.

If D ≥ d1
2ρ , one can check that Σ̂i = 1

2ρ for all i so that Σ = Ψ
2ρ and the decision maker does not

process any information. Q.E.D.
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Figure 1: Rate distortion functions for the scalar case with ρ > 0 and ρ < 0.
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Figure 2: Rate distortion function for the consumption/saving model. Parameter values are r =
0.02, ρ1 = 0.1, ρ2 = 0.5, σ2

w = 0.01, σ2
1z = 0.05, and σ2

2z = 0.01.
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