Fisherian Debt-Deflation Zero Lower Bound

Dan Cao
Georgetown University

Wenlan Luo
Tsinghua University

Guangyu Nie SHUFE

February 2019

Abstract

In this paper, we build a nonlinear two-sector DSGE model with capital accumulation, in which the Zero Lower Bound (ZLB) of interest rate and the collateral constraint are occasionally binding. We show the interaction of ZLB and the deleveraging cycle triggered by a binding collateral constraint can be a powerful mechanism in exacerbating the financial crisis as well as generating the prolonged liquidity trap and stagnation after the crisis. In particular, a binding ZLB can be triggered by capital over-accumulation, and when ZLB is binding, output is decreasing in capital stock. We also find an equilibrium does not exist when the capital stock is too high, while the existence of equilibrium can be restored by adding the adjustment cost of capital into the model. In our numerical results, we find the amplification effect of the collateral constraint is modest when the ZLB is not binding, but is quantitatively large when the ZLB is binding. In addition, with collateral constraint and ZLB, the recovery of the economy is slow since it takes longer for the borrowers to restore their net worth, and due to insufficient demand, the duration of the liquidity trap is longer. Lastly, in a society with better access to the credit market, the borrowers use higher leverage ex ante, and the average duration of ZLB is longer once the economy is hit by adverse shocks.

1 Introduction

After the financial crisis in 2008, the economy of the United States entered a staggering liquidity trap lasting for seven years. As the nominal interest rate essentially hits the zero lower bound (ZLB), the liquidity trap poses a real challenge to the monetary policymakers who attempts to boost the employment and price level, and the ZLB accounts for a
significant role in exacerbating the recession and the slow recovery after the crisis (e.g., Gust et al., 2017).

Many scholars, including Eggertsson and Krugman (2012) and Korinek and Simsek (2016), emphasize leverage as a major driving force of the liquidity trap. During the crisis, the households' and firms' ability to borrow are restricted, which lead them to spend less and save more. Thus on the aggregate level, both the output and the price level drop. Since it is impossible for the central bank to drop the nominal interest rate below zero, once the ZLB is hit and in the presence of price rigidity, the real interest rate is higher than the natural interest rate if the ZLB were absent. A higher real interest rate further reduces consumption and investment, and the recession is exacerbated due to the insufficient demand. In addition, a higher real interest rate aggravates the real debt burden of the borrowers, whose net worth and borrowing capacity are further reduced. Since the borrowers in general have higher propensity of spending, the drop in their net worth further reduces the aggregate demand. In this line of argument, the over-indebtedness problem and the liquidity trap problem reinforce each other, make the crisis more severe and form a major challenge for the economic recovery after the crisis. ${ }^{1}$

In this paper, we construct a nonlinear DSGE model with capital accumulation, in which the ZLB and the collateral constraint are occasionally binding. There are two sectors in the economy, the entrepreneurs and the households, who are both of measure one and infinitely lived. The entrepreneurs accumulate capital, produce the intermediate good using capital and labor hired from the households. In the meantime, the entrepreneurs can borrow from the households subject to a collateral constraint. There is also a sector of monopolistically competitive retailers who produce the final good using the intermediate good. For simplicity, following Korinek and Simsek (2016), we assume complete price rigidity in our model, i.e., the price of the final good is fixed. As a result, in the presence of ZLB, both the nominal interest rate and the real interest rate are bounded below by zero. We assume that the monetary policy is to set the real interest rate to match the natural rate unless the ZLB is binding.

Our model generates several innovative results which are consistent with the observations during the crisis and the liquidity trap. To illustrate the key mechanism, we first solve a deterministic two-period model analytically, and find that the ZLB is binding when the capital stock is high. Besides, when the ZLB is binding, output is decreasing in capital stock, which is consistent with the "paradox of toil" proposed by Eggertsson and

[^0]Krugman (2012) when the problem during a liquidity trap is insufficient demand instead of supply. Since the entrepreneurs are willing to hold capital only if the return to capital is weakly larger than the interest rate, a binding ZLB naturally implies an upper bound for capital holding with decreasing marginal return to capital. Actually, a higher capital stock reduces investment when the entrepreneurs can keep the un-depreciated part of capital stock for future production. Since the consumption are also reduced in the presence of ZLB, a higher initial capital has to be accompanied by a reduction in output to clear the market. Actually, we show that there is a threshold of capital stock above which there is no equilibrium. In addition, we show that certain degree of capital adjustment cost is necessary to restore the equilibrium. In particular, if we add irreversibility of investment into the model, i.e., investment cannot be negative, then the equilibrium always exists.

We then extend the two-period model into a infinite-horizon DSGE model with Markov shock to the growth rate of TFP. All the results from the two-period model still hold qualitatively in the infinite-horizon model. In particular, the ZLB tends to bind when the leverage is high, capital stock is high and when the growth rate of TFP is low. We show that the interaction between the ZLB and the collateral constraint is important, and the performance of the economy around the ZLB is highly nonlinear. When the ZLB is not binding, the amplification effect of the collateral constraint is modest. However, when both ZLB and the collateral constraint are binding, the amplification effect is very large. This is helpful in explaining the severity of the financial crisis in 2008. The model also shed light on the stagnation and the prolonged duration of the liquidity trap after the financial crisis. Since the entrepreneurs are financially constrained, it takes long time for them to restore their net worth, and consequently the recovery of the aggregate demand is also slow.

Lastly, we quantitatively show that in a society with better access to credit market, the probability of a binding collateral constraint is lower, but the duration of ZLB is higher. The intuition here is similar to the phenomenon of volatility paradox proposed by Brunnermeier and Sannikov (2014). With looser borrowing constraint, the entrepreneurs tend to borrow more. Once the economy is hit by an adverse shock, the deleveraging cycle is more severe, and it would take longer time for the entrepreneurs to restore the wealth level, and for the economy to recover from the liquidity trap.

The rest of this paper is organized as follows. Section 2 gives a simple two-period model to analytically show how the ZLB arises in a model with capital accumulation. Section 3 add investment irreversibility into the two-period model and shows that in this case, an equilibrium always exists. Section 4 extends the model with investment irreversibility into an infinite-horizon model with shocks to the growth rate of the TFP.

Section 5 calibrates the infinite-horizon model and discusses the numerical results.

2 Simple Two-Period Model

Two-period economy $t=0,1$ with a measure one of identical households and measure one of identical entrepreneurs. We assume no-uncertainty, perfectly sticky prices.

2.1 Economic Environment

Households The households maximize the discounted utility

$$
\begin{equation*}
\log c_{0}^{\prime}-L_{0}^{\prime}+\beta\left(\log c_{1}^{\prime}-L_{1}^{\prime}\right) \tag{1}
\end{equation*}
$$

subject to sequential budget constraint

$$
\begin{equation*}
P_{t} C_{t}^{\prime}+\frac{b_{t}^{\prime}}{R_{t}} \leq b_{t-1}^{\prime}+w_{t} L_{t}^{\prime}+\int_{0}^{1} \Xi_{t}(z) d z \tag{2}
\end{equation*}
$$

for $t=0,1$, where R_{t} is the nominal interest rate, and $\int_{0}^{1} \Xi_{t}(z) d z$ is the aggregate profit from intermediate good retailers.

Final Good Producers and Retailers Following Iacoviello (2005), we assume the retailers, indexed by $z \in[0,1]$, purchase the intermediate good from the entrepreneurs at the wholesale price P_{t}^{e}, differentiate it a no cost and sell the differentiated goods to a representative final good producer at price $p_{t}(z)$. The final good producer combines the differentiated goods using a CES production technology

$$
Y_{t}=\left(\int_{0}^{1}\left(y_{t}(z)\right)^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}
$$

where $\epsilon>1$ is the elasticity of substitution between retailers' goods. It is standard to show that the price of the final good is given by

$$
P_{t}=\left(\int_{0}^{1} p_{t}(z)^{1-\epsilon} d z\right)^{\frac{1}{1-\epsilon}}
$$

and each retailer z face an iso-elastic demand curve

$$
y_{t}(z)=\left(\frac{p_{t}(z)}{P_{t}}\right)^{-\epsilon} Y_{t}
$$

for its intermediate good. Denote the markup of the retailers' sector as $X_{t}=\frac{P_{t}}{P_{t}^{e}}$.
Entrepreneurs The entrepreneurs are identical and maximize the discounted utility

$$
\begin{equation*}
\log c_{0}+\gamma \log c_{1} \tag{3}
\end{equation*}
$$

subject to the sequential budget constraint:

$$
\begin{equation*}
P_{t} c_{t}+P_{t} k_{t}+\frac{b_{t}}{R_{t}} \leq b_{t-1}+P_{t}(1-\delta) k_{t-1}+P_{t}^{e} Y_{t}^{e}-w_{t} L_{t} \tag{4}
\end{equation*}
$$

The entrepreneur produces using the production technology:

$$
\begin{equation*}
Y_{t}^{e}=A_{t} k_{t-1}^{\alpha} L_{t}^{1-\alpha} \tag{5}
\end{equation*}
$$

where

$$
A_{t}=a G_{t}
$$

and

$$
\frac{G_{t}}{G_{t-1}}=1+g
$$

Given the production function (5) and a competitive factor market, the wage w_{t} and total return from capital holding R_{t}^{K} can be expressed as

$$
\begin{aligned}
w_{t} & =P_{t}^{e}(1-\alpha) A_{t}\left(\frac{k_{t-1}}{L_{t}}\right)^{\alpha} \\
R_{t}^{K} & =P_{t}(1-\delta)+P_{t}^{e} \alpha A_{t}\left(\frac{k_{t-1}}{L_{t}}\right)^{\alpha-1}
\end{aligned}
$$

The entrepreneurs are also subject to the following borrowing constraint:

$$
\begin{equation*}
b_{t}+m R_{t+1}^{K} k_{t} \geq 0 \tag{6}
\end{equation*}
$$

where $m \in[0,1]$.
Let ω_{t} denote the normalized financial wealth of the entrepreneurs:

$$
\begin{equation*}
\omega_{t}=\frac{R_{t}^{K} k_{t-1}+b_{t-1}}{R_{t}^{K} k_{t-1}} \tag{7}
\end{equation*}
$$

and ω_{t}^{\prime} denote the normalized financial wealth of the households:

$$
\omega_{t}^{\prime}=\frac{b_{t-1}^{\prime}}{R_{t}^{K} k_{t-1}}
$$

By the bond market clearing condition, $\omega_{t}^{\prime}=1-\omega_{t}$ in any competitive equilibrium.

Price-Stickiness and Monetary Policy If the retailers have no constraint on their prices then they choose price and quantity to maximize profit:

$$
\Xi_{t}(z)=\max _{0 \leq p_{t}(z), \tilde{y}_{t}(z)} \tilde{y}_{t}(z)\left(p_{t}(z)-P_{t}^{e}\right)
$$

subject to

$$
\tilde{y}_{t}(z) \leq y_{t}(z)=\left(\frac{p_{t}(z)}{P_{t}}\right)^{-\epsilon} Y_{t},
$$

which implies

$$
\begin{equation*}
p_{t}(z)=\frac{\epsilon}{\epsilon-1} P_{t}^{e} \tag{8}
\end{equation*}
$$

and

$$
P_{t}=\frac{\epsilon}{\epsilon-1} P_{t}^{e}
$$

When P_{t} is normalized to 1 , we obtain

$$
\begin{aligned}
& P_{t}^{e}=\frac{\epsilon-1}{\epsilon}, \\
& X_{t}=\frac{\epsilon}{\epsilon-1} .
\end{aligned}
$$

But in this simple example, we assume that the retailers' price $p_{t}(z)$ are perfectly sticky

$$
p_{t}(z) \equiv 1,
$$

which implies

$$
P_{t}=1, \forall t .
$$

The retailers only decide on the quantity supplied to the market:

$$
\Xi_{t}(z)=\max _{0 \leq \tilde{y}_{t}(z) \leq y_{t}(z)} \tilde{y}_{t}(z)\left(1-P_{t}^{e}\right) .
$$

So

$$
y=y_{t}(z)
$$

if $P_{t}^{e}<1$.
However, at $t=0$, the central bank chooses R_{0} to replicate the equilibrium under perfect price-stickiness in which

$$
p_{0}(z)=\frac{\epsilon}{\epsilon-1} P_{0}^{e}=1,
$$

unless R_{0} is constrained by the ZLB. When the ZLB binds, P_{0}^{e} endogenously decreases to clear markets and $X_{0}>\frac{\epsilon}{\epsilon-1}$.

At $t=1$, any level of $P_{1}^{e} \leq 1$, corresponds to an equilibrium. In order to simplify the notations, we focus on the flexible price equilibrium:

$$
\begin{aligned}
& P_{1}^{e}=\frac{\epsilon-1}{\epsilon} \\
& X_{1}=\frac{\epsilon}{\epsilon-1} .
\end{aligned}
$$

Equilibrium Definition We use the following standard equilibrium definition.
Definition 1. Sequence of prices $\left\{P_{0}^{e}, P_{1}^{e}\right\}$ and interest rate R_{0}, such that markets clear

$$
\begin{align*}
& c_{t}+c_{t}^{\prime}+\left(k_{t}-(1-\delta) k_{t-1}\right)=Y_{t} \tag{9}\\
& b_{t}+b_{t}^{\prime}=0 \tag{10}\\
& L_{t}=L_{t}^{\prime} \tag{11}\\
& Y_{t}=Y_{t}^{e} \tag{12}
\end{align*}
$$

and the households, entrepreneurs, retailers, final good producers maximize their objectives subject to their constraints.

2.2 Equilibrium Properties

Using the market clearing condition of $Y_{t}=Y_{t}^{e}$, the total profit from the retailers' sector is

$$
\int_{0}^{1} \Xi_{t}(z) d z=\left(1-\frac{1}{X_{t}}\right) Y_{t}
$$

Using (7), the budget constraints (2) and (4) can be written as

$$
\begin{equation*}
c_{t}^{\prime}+\frac{b_{t}^{\prime}}{R_{t}} \leq R_{t}^{K} k_{t-1}\left(1-\omega_{t}\right)+w_{t} L_{t}^{\prime}+\left(1-\frac{1}{X_{t}}\right) Y_{t} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
c_{t}+k_{t}+\frac{b_{t}}{R_{t}} \leq R_{t}^{K} k_{t-1} \omega_{t} \tag{14}
\end{equation*}
$$

and the expressions of w_{t} and R_{t}^{K} can be written as

$$
\begin{align*}
w_{t} & =\frac{1-\alpha}{X_{t}} A_{t}\left(\frac{k_{t-1}}{L_{t}}\right)^{\alpha} \tag{15}\\
R_{t}^{K} & =1-\delta+\frac{\alpha}{X_{t}} A_{t}\left(\frac{k_{t-1}}{L_{t}}\right)^{\alpha-1} \tag{16}
\end{align*}
$$

The feasibility constraint is

$$
\begin{equation*}
c_{t}+c_{t}^{\prime}+k_{t}=(1-\delta) k_{t-1}+Y_{t} . \tag{17}
\end{equation*}
$$

Denote the Lagrangian multiplier on the collateral constraint as $\frac{\mu_{0}}{c_{0}}$. The F.O.C.s of the entrepreneurs are:

$$
\begin{align*}
-\frac{1-m R_{1}^{K} \mu_{0}}{c_{0}}+\gamma \frac{R_{1}^{K}}{c_{1}} & =0 \tag{18}\\
\mu_{0}\left(b_{0}+m R_{1}^{K} k_{0}\right) & =0 \tag{19}\\
-\frac{1-R_{0} \mu_{0}}{c_{0}}+\gamma \frac{R_{0}}{c_{1}} & =0 \tag{20}
\end{align*}
$$

The F.O.C.s for the households are

$$
\begin{align*}
\frac{w_{0}}{c_{0}^{\prime}} & =1 \tag{21}\\
\frac{w_{1}}{c_{1}^{\prime}} & =1 \tag{22}\\
\frac{1}{c_{0}^{\prime}} & =\beta R_{0} \frac{1}{c_{1}^{\prime}} \tag{23}
\end{align*}
$$

Lastly, the ZLB constraint implies

$$
\begin{equation*}
\left(R_{0}-1\right)\left(X_{0}-\frac{\epsilon}{\epsilon-1}\right)=0 \tag{24}
\end{equation*}
$$

2.3 Last Period

In the last period 1, there are no borrowing or lending, and thus we have $b_{1}=0$. The entrepreneurs makes no further investment either, i.e., $k_{1}=0$. We assume the markup takes its steady state value, $X_{1}=\frac{\epsilon}{\epsilon-1}$. In the last period, the entrepreneurs and households
consume all their wealth. From equations (9),(10), and (13), (14) we have

$$
\begin{align*}
c_{1} & =R_{1}^{K} k_{0} \omega_{1} \tag{25}\\
c_{1}^{\prime} & =R_{1}^{K} k_{0}\left(1-\omega_{1}\right)+\left(1-\frac{\alpha}{X_{1}}\right) Y_{1} . \tag{26}
\end{align*}
$$

Given ω_{1} and k_{0}, for a labor supply L_{1}, we can solve w_{1} and R_{1}^{K} from (15) and (16), and c_{1} and c_{1}^{\prime} from (25) and (26). Lastly, from (21), we solve L_{1} by the following equation:

$$
\begin{equation*}
\frac{1-\alpha}{X_{1}} L_{1}^{-\alpha}-\left(1-\frac{\alpha}{X_{1}} \omega_{1}\right) L_{1}^{1-\alpha}=\left(1-\omega_{1}\right)(1-\delta) \frac{1}{A_{1}} k_{0}^{1-\alpha} \tag{27}
\end{equation*}
$$

We see that L_{1} is decreasing in both k_{0} and ω_{1}.

2.4 Model with Natural Borrowing Limit, $m=1$

We first consider the model with $m=1$. In this case, The collateral constraint (6) corresponds to the natural borrowing limit and should not be binding in equilibrium. Otherwise, c_{1} becomes zero from (7) and (25).

In this case, we must have

$$
R_{1}^{K}=R_{0} .
$$

Suppose this relationship does not hold. If $R_{1}^{K}>R_{0}$, the return of investment is higher than the interest rate, and the entrepreneurs can make infinite profit by borrowing from the households and invest in capital. Otherwise, if $R_{1}^{K}<R_{0}$, no entrepreneurs are willing to hold capital, i.e., $k_{0}=0$, which implies zero consumptions in the last period. Both situations cannot arise in the equilibrium. Therefore, we have $R_{1}^{K}=R_{0}$ when the collateral constraint is not binding.

From (20) and (23), we have

$$
R_{0}=\frac{c_{1}}{\gamma c_{0}}=\frac{c_{1}^{\prime}}{\beta c_{0}^{\prime}} .
$$

Combining the results above with (25), the entrepreneurs' budget (14) becomes

$$
c_{0}+\frac{c_{1}}{R_{0}}=b_{-1}+R_{0}^{K} k_{-1} .
$$

and we get the entrepreneurs' consumptions as

$$
\begin{align*}
& c_{0}=\frac{1}{1+\gamma} R_{0}^{K} k_{-1} \omega_{0} \tag{28}\\
& c_{1}=\frac{\gamma R_{0}}{1+\gamma} R_{0}^{K} k_{-1} \omega_{0} \tag{29}
\end{align*}
$$

which suggests that the entrepreneurs consume $\frac{1}{1+\gamma}$ fraction of their lifetime wealth.
We can express all the other variables as functions of R_{0} and X_{0}. From (16), (15) and (21), given k_{0}, in the last period we have

$$
\begin{align*}
\frac{k_{0}}{L_{1}} & =\left(\frac{X_{1}}{\alpha} \frac{R_{0}-1+\delta}{A_{1}}\right)^{\frac{1}{\alpha-1}} \\
c_{1}^{\prime} & =\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}-1+\delta}{A_{1}}\right)^{\frac{\alpha}{\alpha-1}} \tag{30}\\
Y_{1} & =\frac{X_{1}}{\alpha}\left(R_{0}-1+\delta\right) k_{0} \tag{31}
\end{align*}
$$

From (23), (16) and (15), in the first period we have

$$
\begin{align*}
& c_{0}^{\prime}=\frac{1}{\beta R_{0}} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}-1+\delta}{A_{1}}\right)^{\frac{\alpha}{\alpha-1}} \tag{32}\\
& L_{0}=\left(\frac{G}{\beta R_{0}} \frac{X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(\frac{X_{1}}{\alpha} \frac{R_{0}-1+\delta}{A_{1}}\right)^{\frac{1}{1-\alpha}} k_{-1} \tag{33}\\
& R_{0}^{k}=1-\delta+\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(R_{0}-1+\delta\right) .
\end{align*}
$$

Notice that the households' consumptions, c_{0}^{\prime} and c_{1}^{\prime} are purely determined by R_{0}. In other words, given R_{0}, c_{0}^{\prime} and c_{1}^{\prime} are independent of k_{-1}, ω_{0} and X_{0}.

The aggregate supply (AS) curve is

$$
\begin{equation*}
Y_{0}^{S}=\frac{X_{1}}{\alpha G}\left(\frac{G_{1}}{\beta R_{0}} \frac{X_{0}}{X_{1}}\right)^{\frac{\alpha-1}{\alpha}}\left(R_{0}-1+\delta\right) k_{-1} . \tag{34}
\end{equation*}
$$

We see that the AS curve is increasing in R_{0} and k_{-1}, but is not affected by the wealth distribution ω_{0} directly.

From (28) and (20), we can solve c_{0} and c_{1} as:

$$
\begin{align*}
& c_{0}=\frac{1}{1+\gamma} \omega_{0}\left[1-\delta+\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(R_{0}-1+\delta\right)\right] k_{-1}, \tag{35}\\
& c_{1}=\frac{\gamma R_{0}}{1+\gamma} \omega_{0}\left[1-\delta+\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(R_{0}-1+\delta\right)\right] k_{-1} . \tag{36}
\end{align*}
$$

Then from the feasibility (17) in period 1, (36) and (30), we get

$$
\begin{equation*}
k_{0}=\frac{c_{1}+c_{1}^{\prime}}{1-\delta+\frac{X_{1}}{\alpha}\left(R_{0}-1+\delta\right)} \tag{37}
\end{equation*}
$$

By the feasibility condition (17), the aggregate demand (AD) curve is

$$
\begin{equation*}
Y_{0}^{D}=c_{0}+c_{0}^{\prime}+\left[k_{0}-(1-\delta) k_{-1}\right] \tag{38}
\end{equation*}
$$

The variables on the right-hand side are computed using (32), (35) and (37). The term $k_{0}-(1-\delta) k_{-1}$ is investment.

Lastly, by the feasibility condition (17) in period 0 , we have a unique equation to pin down R_{0} :(or X_{0} depending on whether the ZLB is binding or not.)

$$
\begin{align*}
\frac{1}{k_{-1}}= & \frac{(1-\delta)^{2}\left(1-\frac{1}{1+\gamma} \omega_{0}\right)\left(1-\frac{X_{1}}{\alpha}\right)+(1-\delta)\left(\frac{X_{1}}{\alpha}-\frac{1}{1+\gamma} \omega_{0}\left(1+\frac{X_{1}}{\alpha}\right)\right) R_{0}}{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}-1+\delta}{A_{1}}\right)^{\frac{\alpha}{\alpha-1}}\left[1+\frac{1}{\beta R_{0}}(1-\delta)\left(1-\frac{X_{1}}{\alpha}\right)+\frac{X_{1}}{\alpha \beta}\right]} \tag{39}\\
& +\frac{\left[(1-\delta)\left(1-\frac{X_{1}}{\alpha}\right)\left(\frac{X_{0}}{\alpha}-\frac{1}{1+\gamma} \omega_{0}\right)+\left(\frac{X_{0} X_{1}}{\alpha^{2}}-\frac{\frac{X_{1}}{\alpha}+\gamma}{1+\gamma} \omega_{0}\right) R_{0}\right]\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(R_{0}-1+\delta\right)}{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}-1+\delta}{A_{1}}\right)^{\frac{\alpha}{\alpha-1}}\left[1+\frac{1}{\beta R_{0}}(1-\delta)\left(1-\frac{X_{1}}{\alpha}\right)+\frac{\left.X_{1}\right]}{\alpha \beta}\right]} .
\end{align*}
$$

2.4.1 Equilibrium when ZLB is not Binding

Proposition 1. With $m=1, R_{0}$ is decreasing in k_{-1} and decreasing in ω_{0}. Given $\omega_{0}, Z L B$ binds if and only if $k_{-1} \geq \hat{k}_{-1}$ given in Appendix A.

Proof. Appendix A
Proposition 1 shows the ZLB binds when k_{-1} is high enough, or when ω_{0} is low enough. The intuition can be analyzed by plotting the aggregate supply curve (AS) and the aggregate demand curve (AD) in Figure 1.

We see that in Figure 1, the AS curve is positively sloped. The reason is the following. From (35), a higher R_{0} reduces c_{0}^{\prime} in two ways. First, it increases the opportunity cost of consumption and reduces c_{0}^{\prime} through the substitution effect channel. Second, with

Figure 1: AS-AD Curves when $R_{0}>1$
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0$ and $\epsilon=21$. We choose $k_{-1}=1.5$ and $\omega_{0}=0.2$ as the baseline case.
$R_{0}=R_{1}^{k}$, a higher R_{0} implies a lower capital-labor ratio in the last period by (16), and thus lower w_{1} and c_{1}^{\prime} by (15) and (21), which reduces c_{0}^{\prime} through the income effect channel. Lastly, labor cost becomes cheaper by the labor supply equation (21), which boosts the aggregate supply.

The AD curve is negatively sloped. With higher interest rate, the entrepreneurs and households choose to save more into the future and consume less. On the other hand, with bond and capital being perfect substitutes, the entrepreneurs choose to invest less when the cost of borrowing is higher.

Now consider an exogenous increase of the initial capital, k_{-1}. In (34), given R_{0}, the output increases proportionally to k_{-1}, and the AS curve shifts to the right. This result is natural since larger k_{-1} implies greater production capacity. The AD curve, on the contrary, shifts to the left. We have shown that given R_{0}, c_{0}^{\prime} is fixed as in (32). Although c_{0} and k_{0} are increasing in k_{-1} as in (35) and (37), they increase by a smaller amount compared to the increase in $(1-\delta) k_{-1}$ as long as R_{0} is not too large. ${ }^{2}$ Thus the aggregate demand is decreasing in k_{-1}. As a result, R_{0} is lower in equilibrium. This is illustrated in

[^1]the left graph of Figure 1.
For an exogenous increase in the wealth distribution ω_{0}, the AS curve is not affected. For the AD curve, since the entrepreneurs now have more wealth, on the one hand, c_{0} in (35) increases. On the other hand, the entrepreneurs also increase their consumption in period $1, c_{1}$, which requires higher capital holding k_{0} by (37). Since given R_{0}, c_{0}^{\prime} is not affected by ω_{0} as in (32), the AD curve shifts to the right. In equilibrium, both R_{0} and output Y_{0} are higher. This is illustrated in the right graph of Figure 1.

2.4.2 Equilibrium when ZLB is Binding

When ZLB binds, we have $R_{0}=R_{1}^{K}=1$. From (32) and (30), the consumptions of the households, c_{0}^{\prime} and c_{1}^{\prime} are constants:

$$
\begin{align*}
& c_{1}^{\prime}=\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{\alpha}{\alpha-1}} \tag{40}\\
& c_{0}^{\prime}=\frac{1}{\beta} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{\alpha}{\alpha-1}} . \tag{41}
\end{align*}
$$

The other variables can be solved as

$$
\begin{gather*}
c_{0}=\frac{1}{1+\gamma} \omega_{0}\left[1-\delta+\delta \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\right] k_{-1} \tag{42}\\
c_{1}=\frac{\gamma}{1+\gamma} \omega_{0}\left[1-\delta+\delta \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\right] k_{-1} \tag{43}\\
k_{0}=\frac{\frac{\gamma}{1+\gamma} \omega_{0}\left[1-\delta+\delta \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\right] k_{-1}+\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{\alpha}{\alpha-1}}}{1-\delta+\delta \frac{X_{1}}{\alpha}} \tag{44}\\
L_{0}=\left(\frac{G}{\beta} \frac{X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{1}{1-\alpha}} k_{-1} \tag{45}
\end{gather*}
$$

From (34), the AS curve with binding ZLB is

$$
\begin{equation*}
Y_{0}^{S}=\left(\frac{G_{1}}{\beta} \frac{X_{0}}{X_{1}}\right)^{\frac{\alpha-1}{\alpha}} \frac{\delta X_{1}}{\alpha G_{1}} k_{-1} \tag{46}
\end{equation*}
$$

in which the output Y_{0} increases proportionally with k_{-1}, and decreases in X_{0}. When the markup X_{0} is higher, the price of intermediate good produced by the entrepreneurs,
$P_{0}^{e}=\frac{1}{X_{0}}$ gets lower, which discourages production.
The AD curve is still

$$
\begin{equation*}
Y_{0}^{D}=c_{0}+c_{0}^{\prime}+\left[k_{0}-(1-\delta) k_{-1}\right] \tag{47}
\end{equation*}
$$

in which the expressions of c_{0}, c_{0}^{\prime} and k_{0} are given by (41), (43), and (44). In the AD curve, Y_{0} is increasing in ω_{0}, and decreasing with k_{-1} with common parameter values.

By setting $R_{0}=1$ in (39) and after some calculation, we have the following equation to pin down X_{0} :

$$
\begin{align*}
& {\left[(1+\beta) c_{0}^{\prime}-\left(1-\frac{\alpha}{X_{1}}\right) \frac{\delta X_{1}}{\alpha} \Gamma_{0}\right] \frac{1}{k_{-1}} } \tag{48}\\
= & \Gamma_{1}\left(1-\frac{\alpha}{X_{0}}\right) X_{0}^{\frac{\alpha-1}{\alpha}}+\left(1-\frac{\alpha}{X_{1}}\right) \frac{\delta X_{1}}{\alpha} \frac{\left(1-\delta+\Gamma_{1} X_{0}^{\frac{\alpha-1}{\alpha}}\right)}{\frac{1-\delta+\frac{\delta X_{1}}{\alpha}}{\gamma}+1}+\left[1-\delta+\delta \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\right]\left(1-\omega_{0}\right) .
\end{align*}
$$

in which c_{0}^{\prime} is constant and given in (41), and Γ_{0} and Γ_{1} are given in Proposition 1.
Proposition 2. When $m=1$ and the ZLB is binding, as k_{-1} increases, X_{0} increases, and the output Y_{0} decreases.

Proof. From (46), the term on the right-hand side is decreasing in X_{0}. Since the left-hand side is constant, as k_{-1} increases, X_{0} must increase to equate (46). Since the right-hand side is decreasing in ω_{0}, when ω_{0} increases, X_{0} decreases to equate (46). For the output, insert the expression of Γ_{0} and Y_{0} from (46) into (48), we have

$$
\begin{align*}
& (1+\beta) c_{0}^{\prime}-\left(1-\frac{\alpha}{X_{1}}\right) \frac{\delta X_{1}}{\alpha} \Gamma_{0} \tag{49}\\
= & \left(1-\omega_{0} \frac{\alpha}{X_{0}}\right) Y_{0}+\left(1-\frac{\alpha}{X_{1}}\right) \frac{\frac{\delta X_{1}}{\alpha}}{\frac{1-\delta+\frac{\delta X_{1}}{\alpha}}{\gamma}+1}\left[(1-\delta) k_{-1}+Y_{0}\right] \\
& +(1-\delta)\left(1-\omega_{0}\right) .
\end{align*}
$$

Since the left-hand side of (49) is constant, and X_{0} increases in k_{-1}, with larger k_{-1}, Y_{0} must decrease to equate (49). Thus, we have Y_{0} decreases in k_{-1} when the ZLB binds. Since X_{0} decreases in ω_{0}, as ω_{0} increases, Y_{0} must increase to keep (49) hold. Thus Y_{0} is increasing in ω_{0}.

The surprising result in Proposition 2 that output decreases in k_{-1} is consistent with the paradox of toil proposition from Eggertsson and Krugman (2012) when the economy is

Figure 2: AS-AD Curves when ZLB Binds
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0$ and $\epsilon=21$. We choose $k_{-1}=19$ and $\omega_{0}=0.79$ as the baseline case.
in the liquidity trap. ${ }^{3}$ We illustrate the intuition of Proposition 2 by plotting the AS curve in (46) and the AD curve in (47) in Figure 2. Output is plotted on the x-axis, while the price of the intermediate good, $P_{0}^{e}=\frac{1}{X_{0}}$ is plotted on the y-axis.

We see that the AS curve takes the normal shape and is upward sloping. When the price level is higher, the entrepreneurs will produce more. However, the AD curve here is also upward sloping. ${ }^{4}$ When the ZLB is binding, consumptions of the households are constants as in (40) and (41). When X_{0} is higher, P_{0}^{e} is smaller, and the entrepreneurs' total wealth $\omega_{0} R_{0}^{k} k_{-1}$ is smaller. Their consumption and investment are thus reduced. Adding up all the three components, the aggregate demand decreases in P_{0}^{e}.

When k_{-1} increases, we see the AS curve shifts to the right and the AD curve shifts to the left, resulting in lower price level and lower output. On the one hand, while a higher initial capital increases the production capacity of the economy, the aggregate demand is constrained by the ZLB. Thus a higher potential output will simply depress the price level P_{0}^{e} further, leading to lower real output. This is the intuition of the "paradox of toil" discussed in Eggertsson and Krugman (2012). In addition, there is more to it. In

[^2]our dynamic model with investment, a higher initial capital also depresses the aggregate demand directly. When the ZLB binds, the entrepreneurs' investment is constrained because too much investment would depress the return to capital, R_{1}^{k} below the ZLB. Thus the investment in period $0, k_{0}-(1-\delta) k_{-1}$ decreases in k_{-1}, so as the aggregate demand.

When ω_{0} increases, the AS curve is not affected. For the aggregate demand, since the entrepreneurs' total wealth increases with ω_{0}, and their consumption and investment become larger. When ZLB binds, the consumption of the households is constant as in (41). Thus the AD curve will shift to the right, resulting in higher output and price level.

Proposition 3. Given ω_{0}, there is an upper bound of initial capital \bar{k}_{-1}, such that an equilibrium does not exist when $k_{-1}>\bar{k}_{-1}, \bar{k}_{-1}$ is increasing in ω_{0} and the technology growth rate G_{1}.

Proof. By setting $X_{0} \rightarrow \infty$ in (48), we have the expression for \bar{k}_{-1} :

$$
\begin{equation*}
\bar{k}_{-1}=\frac{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}}\left[1+\frac{1}{\beta}(1-\delta)\left(1-\frac{X_{1}}{\alpha}\right)+\frac{X_{1}}{\alpha \beta}\right]}{(1-\delta)^{2}\left(1-\frac{X_{1}}{\alpha}\right)+\frac{X_{1}}{\alpha}-\delta(1-\delta)\left(\frac{X_{1}}{\alpha}-1\right) \frac{1}{1+\gamma} \omega_{0}} \tag{50}
\end{equation*}
$$

By Proposition 2, X_{0} increases with k_{-1}. Since at $k_{-1}=\bar{k}_{-1}, X_{0}$ cannot be increased further, and equilibrium does not exist when $k_{-1}>\bar{k}_{-1}$. We can easily see from (50) that \bar{k}_{-1} is increasing in ω_{0}, and increasing in A_{1} and thus G_{1} when A_{0} is fixed.

We emphasize here that the existence of \bar{k}_{-1} does not result from our setup of the twosector model. When $\omega_{0}=0$, the model is isomorphic to a representative agent model with the household sector only who maximizes (1) by choosing consumption, bond, investment and labor. In that setup, when ZLB binds, their consumption and capital holding become constant from (41) and (44):

$$
\begin{aligned}
& c_{0}^{\prime}=\frac{1}{\beta} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{\alpha}{\alpha-1}} \\
& k_{0}=\frac{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{\alpha}{\alpha-1}}}{1-\delta+\delta \frac{X_{1}}{\alpha}} .
\end{aligned}
$$

In the feasibility condition $c_{0}^{\prime}+k_{0}=(1-\delta) k_{-1}+Y_{0}$, on the left-hand side, the aggregate demand is constant. as k_{-1} increases, Y_{0} must decrease by the same amount to make the equation true. To reduce $Y_{0}, P_{0}^{e}=\frac{1}{X_{0}}$ decrease to discourage production. However, there is a limit. When $k_{-1}=\bar{k}_{-1}=\frac{c_{0}^{\prime}+k_{0}}{1-\delta}, X_{0}$ goes to infinity, Y_{0} drops to zero, and there is
no equilibrium when $k_{-1}>\bar{k}_{-1}$. As A_{1} (or G_{1}) is higher, with higher wealth, the total demand is higher, and \bar{k}_{-1} increases.

When ω_{0} is positive, the demand of the entrepreneurs is increasing in k_{-1}. On the one hand, their consumption c_{0} is increasing in k_{-1} as in (42). On the other hand, their capital holding k_{0} also increase in k_{-1} as in (44), since the entrepreneurs have more wealth and choose to invest more into the future. However, c_{0} and k_{0} increases by smaller amount compared to the non-depreciated part of the initial capital stock, $(1-\delta) k_{-1}$, and the aggregate demand decreases in k_{-1} and at certain value of k_{-1}, output still drops to zero.

2.5 Model with $m<1$

Now we consider the case with $m<1$ in the collateral constraint (6), which is tighter than the natural borrowing limit.

Proposition 4. When $m<1$, given ω_{0}, there is a threshold value of initial capital, $k_{-1}^{C C}$, such that the collateral constraint is binding if and only if $k_{-1}<k_{-1}^{C C} . k_{-1}^{C C}$ decreases with ω_{0}, and its expression is given in Appendix B. When $k_{-1} \geq k_{-1}^{C C}$, the equilibrium is the same as the one with natural borrowing limit as discussed in Propositions 1 to 3. In particular, given ω_{0},
(i) when $k_{-1} \in\left[k_{-1}^{C C}, \hat{k}_{-1}\right], R_{0}$ decreases with k_{-1} and increases with ω_{0};
(ii) when $k_{-1} \in\left[\hat{k}_{-1}, \bar{k}_{-1}\right]$, ZLB binds, and X_{0} increases with k_{-1}, while Y_{0} decreases with k_{-1};
(iii) when $k_{-1}>\bar{k}_{-1}$, there is no equilibrium.

Proof. The proof is given in Appendix B, in which we derive the expression of $k_{-1}^{\mathrm{CC}}\left(\omega_{0}\right)$. It is natural that the equilibrium is the same as the one with natural borrowing limit when $k_{-1} \geq k_{-1}^{C C}$. If the collateral constraint is not binding, it will not affect the equilibrium outcomes.

In the following, we analyze the situation when $k_{-1}<k_{-1}^{C C}$ and the collateral constraint is binding. In this case, we have $R_{1}^{K}>R_{0}$ which encourages the entrepreneurs to borrow to the limit. By (6) and (7), we have

$$
\begin{align*}
b_{0} & =-m R_{1}^{K} k_{0} \tag{51}\\
\omega_{1} & =1-m \tag{52}
\end{align*}
$$

Next, we express all the other variables as functions of R_{1}^{K} and R_{0}. In the last period,
from (27) and others, we have

$$
\begin{align*}
& L_{1}=\frac{\frac{1-\alpha}{X_{1}}}{\frac{m \alpha(1-\delta)}{X_{1}\left(R_{1}^{K}-1+\delta\right)}+1-\frac{\alpha}{X_{1}}(1-m)}, \\
& k_{0}=\frac{\frac{1-\alpha}{X_{1}}\left(\frac{X_{1}}{\alpha} \frac{R_{1}^{K}-1+\delta}{A_{1}}\right)^{\frac{1}{\alpha-1}}}{\frac{m \alpha(1-\delta)}{X_{1}\left(R_{1}^{K}-1+\delta\right)}+1-\frac{\alpha}{X_{1}}(1-m)}, \tag{53}\\
& c_{1}=\frac{(1-m) \frac{1-\alpha}{X_{1}}\left(\frac{X_{1}}{\alpha} \frac{R_{1}^{K}-1+\delta}{A_{1}}\right)^{\frac{1}{\alpha-1}} R_{1}^{K}}{\frac{m \alpha(1-\delta)}{X_{1}\left(R_{1}^{K}-1+\delta\right)}+1-\frac{\alpha}{X_{1}}(1-m)}, \tag{54}\\
& c_{1}^{\prime}=\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{\left.R_{1}^{K}-1+\delta\right)^{\frac{\alpha}{\alpha-1}}}{A_{1}}\right)^{\prime}, \\
& Y_{1}=\frac{\frac{1-\alpha}{\alpha}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{1}{\alpha-1}}\left(R_{1}^{K}-1+\delta\right)^{\frac{\alpha}{\alpha-1}}}{\frac{m \alpha(1-\delta)}{X_{1}\left(R_{1}^{K}-1+\delta\right)}+1-\frac{\alpha}{X_{1}}(1-m)} .
\end{align*}
$$

In the first period, we have

$$
\begin{align*}
c_{0}^{\prime} & =\frac{1}{\beta R_{0}} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{1}^{K}-1+\delta}{A_{1}}\right)^{\frac{\alpha}{\alpha-1}} \tag{55}\\
L_{0} & =\left(\beta R_{0} \frac{X_{1}}{G X_{0}}\right)^{\frac{1}{\alpha}}\left(\frac{X_{1}}{\alpha} \frac{R_{1}^{K}-1+\delta}{A_{1}}\right)^{\frac{1}{1-\alpha}} k_{-1} \\
R_{0}^{K} & =1-\delta+\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{X_{1}}{G X_{0}}\right)^{\frac{1}{\alpha}}\left(R_{1}^{K}-1+\delta\right), \tag{56}\\
Y_{0} & =\frac{X_{1}}{\alpha G}\left(R_{1}^{K}-1+\delta\right)\left(\beta R_{0} \frac{X_{1}}{G X_{0}}\right)^{\frac{1-\alpha}{\alpha}} k_{-1} . \tag{57}
\end{align*}
$$

From (28),

$$
\begin{equation*}
c_{0}=\frac{\omega_{0}}{1+\gamma}\left[1-\delta+\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{X_{1}}{G X_{0}}\right)^{\frac{1}{\alpha}}\left(R_{1}^{K}-1+\delta\right)\right] k_{-1} \tag{58}
\end{equation*}
$$

Given $R_{0}>1$, we have two unknowns: R_{0} and R_{1}^{k}, and the other variables can be expressed as functions of these two. We use the following two equations to derive and R_{0} and R_{1}^{k}.

The first one is derived by the feasibility condition (17) in period 0 :

$$
\begin{align*}
k_{0} & =\left[(1-\delta)\left(1-\frac{\omega_{0}}{1+\gamma}\right)+\left(\frac{X_{0}}{\alpha}-\frac{\omega_{0}}{1+\gamma}\right)\left(\frac{X_{1}}{G X_{0}}\right)^{\frac{1}{\alpha}}\left[\frac{1}{\beta R_{0}}\left(R_{1}^{K}-1+\delta\right)^{\frac{\alpha}{\alpha-1}}\right]^{\frac{\alpha-1}{\alpha}}\right] k_{-1} \\
& -\frac{1-\alpha}{X_{1}} A_{1}^{\frac{1}{1-\alpha}}\left(\frac{X_{1}}{\alpha}\right)^{\frac{\alpha}{\alpha-1}}\left[\frac{1}{\beta R_{0}}\left(R_{1}^{K}-1+\delta\right)^{\frac{\alpha}{\alpha-1}}\right] . \tag{59}
\end{align*}
$$

in which k_{0} is a function of R_{1}^{K} given by (53). Denote (59) as Condition 1. If we increase R_{1}^{K} in (59), R_{0} decreases.

The second equation is derived by the entrepreneurs' consumption and investment choices. Since the collateral constraint is binding, $b_{0}=-\frac{m R_{1}^{K}}{R_{0}} k_{0}$. From (28), the entrepreneurs consume $\frac{1}{1+\gamma}$ fraction of their total wealth, and the remaining part are spent on capital:

$$
\begin{equation*}
\left(1-\frac{m R_{1}^{K}}{R_{0}}\right) k_{0}=\frac{\gamma}{1+\gamma} R_{0}^{k} \omega_{0} k_{-1} \tag{60}
\end{equation*}
$$

in which $1-\frac{m R_{1}^{K}}{R_{0}}$ is the down payment ratio of capital, and k_{0} and R_{0}^{k} are functions of R_{1}^{K} and R_{0} given in (53) and (56). Denote (60) as Condition 2. The relationship between R_{1}^{K} and R_{0} in (60) is positive.

Lemma 1. When the collateral constraint is binding and $R_{0}>1, R_{1}^{k}$ decreases in k_{-1}.
Proof. As k_{-1} increases, both Condition 1 and Condition 2 shift to the left, resulting in a lower R_{1}^{k}. See Figure 3 as an example.

The result of Lemma 1 is useful in determining the different regions regarding the collateral constraint and the ZLB. Since the collateral constraint is binding if and only if $R_{1}^{k}>R_{0}$, and R_{0} is bounded below by one, as k_{-1} increases, either the ZLB binds, or k_{-1} gets larger than $k_{-1}^{C C}, R_{1}^{k}=R_{0}$ and the collateral constraint is not binding.

Notice that as k_{1} increases, R_{0} might decrease or increase, as indicated in Figure 3. On the one hand, with larger k_{-1}, the households have more wealth in the first period and would like to save more into the future, which depresses R_{0}. On the other hand, higher k_{-1} generates higher initial wealth for the entrepreneurs as well. As in (60), their optimal choice is to spend $\frac{\gamma}{1+\gamma}$ of their wealth on buying new capital and borrowing to the limit, which tends to increase R_{0}. Thus whether R_{0} increases or decreases in k_{-1} becomes a quantitative question. In Figure 4, we given an example with binding collateral constraint in which R_{0} increases in k_{-1} in some region.

Figure 3: Comparative Statics when Collateral Constraint Binds and $R_{0}>1$
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0$ and $\epsilon=21$. We choose $\omega_{0}=0.05$.

Proposition 5. Given ω_{0}, there is an upper bound of initial capital \bar{k}_{-1}, such that an equilibrium does not exist when $k_{-1}>\bar{k}_{-1} \cdot \bar{k}_{-1}$ is increasing in ω_{0} and the technology growth rate G_{1}.

Proof. We find that there is a threshold value for the initial wealth distribution, ω_{0}^{*} :

$$
\omega_{0}^{*}=\frac{1}{\frac{1}{1+\gamma}+\frac{\gamma}{1+\gamma} \frac{1}{(1-m)}\left[1+\frac{1}{\beta}\left(m-\delta+\frac{\delta X_{1}}{\alpha}\right)\right]},
$$

such that when $\omega_{0}>\omega_{0}^{*}$, the threshold for binding collateral constraint, k_{-1}^{CC} derived in Proposition (4) is smaller than the expression of \bar{k}_{-1} derived in Proposition (3) with natural borrowing limit. Since the collateral constraint is not binding when $k_{-1}>k_{-1}^{C C}$, the equilibrium outcomes of this economy are identical as those with natural borrowing limit, including the expression of the upper bound of capital, \bar{k}_{-1}. We have shown in Proposition (3) that in this region, \bar{k}_{-1} increases with ω_{0} and G.

When $\omega_{0}<\omega_{0}^{*}, k_{-1}^{\mathrm{CC}}$ is larger than the expression of \bar{k}_{-1} derived in Proposition (3). By Lemma 1, the ZLB is binding when k_{-1} is high enough. In this case, by setting $R_{0}=1$ and $X_{0} \rightarrow \infty$ in (59) and (60), we have 2 unknowns: \bar{k}_{-1} and R_{1}^{K}, which can be solved by the following two equations:

$$
\begin{align*}
(1-\delta)\left(1-\frac{\omega_{0}}{1+\gamma}\right) \bar{k}_{-1} & =k_{0}+\frac{1-\alpha}{\beta X_{1}} A_{1}^{\frac{1}{1-\alpha}}\left(\frac{X_{1}}{\alpha}\right)^{\frac{\alpha}{\alpha-1}}\left(R_{1}^{K}-1+\delta\right)^{\frac{\alpha}{\alpha-1}} \tag{61}\\
\left(1-m R_{1}^{K}\right) k_{0} & =\frac{\gamma}{1+\gamma}(1-\delta) \omega_{0} \bar{k}_{-1} . \tag{62}
\end{align*}
$$

Figure 4: Policy Functions of k_{-1} with Increasing R_{0}
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.1, \delta=0.025, g=0, m=0.6$ and $\epsilon=21$.
in which k_{0} is a function of R_{1}^{K} as in (53). In (62), the left-hand side is decreasing in R_{1}^{K}, and we can find a unique solution of R_{1}^{K} as a function of ω_{0} and \bar{k}_{-1}. Insert the solved R_{1}^{K} into (61), we can pin down \bar{k}_{-1}. We also see that R_{1}^{K} is decreasing in ω_{0} from (62). Using Implicit Function Theorem in (61), we can show that \bar{k}_{-1} increases with ω_{0}. Using the Implicit Function Theorem in (61), we can also show that \bar{k}_{-1} increases with A_{1} (and thus G_{1} if we fix A_{0}).

In Figure 5, we plot \bar{k}_{-1} as a function of ω_{0} under different m. The collateral constraint binds when ω_{0} is small, and we see \bar{k}_{-1} is smaller when m is smaller. The reason for the existence of \bar{k}_{-1} is insufficient demand. When the collateral constraint binds with smaller m, the entrepreneurs' consumption and investment are further constrained. Thus from the feasibility condition (17), \bar{k}_{-1} is smaller. For large ω_{0}, the collateral constraint is not binding, and \bar{k}_{-1} is the same when the values of m are different.

Figure 5: Upper Bound of Capital \bar{k}_{-1}
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0$ and $\epsilon=21$.

The regions for the different cases are plotted in Figure 6 with $m=0.9$. We see that ZLB binds when k_{-1} is high, and does not bind when k_{-1} is low. The Collateral constraint binds when the entrepreneurs' wealth share ω_{0} is low, and when k_{-1} is low.

In Figure 7, we plot the several variables as functions of k_{-1} fixing ω_{0}. When $\omega_{0}=$ 0.19 , the collateral constraint always binds, while when $\omega_{0}=0.38$, the collateral constraint never binds. The shapes of the policy functions look similar under these two values of ω_{0}. The interest rate R_{0} decreases in k_{-1}, and when the ZLB binds, markup X_{0} increases from its steady state value $\frac{\epsilon}{\epsilon-1}$. At their respective upper bound of capital, \bar{k}_{-1}, X_{0} goes to infinity, and output drops to zero. ${ }^{5}$

In Figure 8, we plot the several variables as functions of ω_{0} fixing k_{-1}. We see that the

[^3]

Figure 6: Regions for ZLB and Binding Collateral Constraint
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0, m=0.9$ and $\epsilon=21$.
interest rate and output are increasing in ω_{0}, and the multiplier of the collateral constraint is decreasing in ω_{0}.

3 Model with Irreversible Investment

3.1 Setup

Now we add one more component in the two period model that investment is irreversible. In addition, we assume that in each period, there is a market for old units of capital among the entrepreneurs. Now the entrepreneurs' budget constraint becomes

$$
c_{t}+\frac{b_{t}}{R_{t}}+k_{t}-(1-\delta) \hat{k}_{t}+q_{t} \hat{k}_{t} \leq b_{t-1}+q_{t} k_{t-1}+\frac{1}{X_{t}} \gamma_{t}^{e}-w_{t} L_{t}
$$

Figure 7: Policy Functions of k_{-1}
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0, m=0.8$ and $\epsilon=21$.
in which q_{t} is the price of used capital, and the investment is restricted to be nonnegative:

$$
\begin{equation*}
I_{t}=k_{t}-(1-\delta) \hat{k}_{t} \geq 0 . \tag{63}
\end{equation*}
$$

If we define the return to capital as

$$
R_{t}^{k}=q_{t}+\frac{\alpha}{X_{t}} A_{t}\left(\frac{k_{t-1}}{L_{t}}\right)^{\alpha-1}
$$

and use the definition of ω_{t} in (7), we can rewrite the entrepreneurs' budget as

$$
\begin{equation*}
c_{t}+\frac{b_{t}}{R_{t}}+k_{t}-(1-\delta) \hat{k}_{t}+q_{t} \hat{k}_{t} \leq \omega_{t} R_{t}^{k} k_{t-1} . \tag{64}
\end{equation*}
$$

In equilibrium, we have one more market clearing condition for old units of capital:

$$
\hat{k}_{t}=k_{t-1} .
$$

Figure 8: Policy Functions of k_{-1}
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0, m=0.8$ and $\epsilon=21$.

In addition, the entrepreneurs are still subject to the collateral constraint

$$
\begin{equation*}
b_{t}+m R_{t+1}^{K} k_{t} \geq 0 \tag{65}
\end{equation*}
$$

Denote the Lagrangian multiplier for (63) as $\frac{\theta_{t}}{c_{t}}$, and the multiplier for (65) as $\frac{\mu_{t}}{c_{t}}$. In period 0 , the FOC with respect to k_{0} becomes

$$
\begin{align*}
-\frac{1-\theta_{0}-m R_{1}^{K} \mu_{0}}{c_{0}}+\gamma \frac{R_{1}^{k}}{c_{1}} & =0 \tag{66}\\
\theta_{0}\left[k_{0}-(1-\delta) \hat{k}_{0}\right] & =0 \tag{67}
\end{align*}
$$

The price of used capital, q_{t}, can be derived from the FOC with respect to \hat{k}_{t} :

$$
\begin{equation*}
q_{t}=\left(1-\theta_{t}\right)(1-\delta) \tag{68}
\end{equation*}
$$

When the irreversibiliby constraint is slack, we have $q_{t}=1-\delta$. Otherwise, q_{t} drops to clear the market.

3.2 Last Period

In the last period, there is no return of investment, and due to the irreversibility constraint, $k_{1}=(1-\delta) k_{0}$, and the capital price drops to $q_{1}=0$. We still set the markup $X_{1}=\frac{\epsilon}{\epsilon-1}$. By the market clearing condition (9), we have $c_{1}+c_{1}^{\prime}=Y_{1}$. And using (21), we have

$$
\begin{aligned}
& R_{1}^{k}=\frac{\alpha}{X_{1}} A_{1}\left(\frac{k_{0}}{L_{1}}\right)^{\alpha-1} \\
& L_{1}=\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}} \omega_{1}} \\
& Y_{1}=A_{1}\left[\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}} \omega_{1}}\right]^{1-\alpha} k_{0}^{\alpha}
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{1}=\omega_{1} \frac{\alpha A_{1}}{X_{1}}\left[\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}} \omega_{1}}\right]^{1-\alpha} k_{0}^{\alpha} \\
& c_{1}^{\prime}=A_{1}\left(\frac{1-\alpha}{X_{1}}\right)^{1-\alpha}\left[\left(1-\omega_{1} \frac{\alpha}{X_{1}}\right) k_{0}\right]^{\alpha} .
\end{aligned}
$$

3.3 Equilibrium with $m=1$

Similar to Subsection 2.4, we focus on the case with natural borrowing limit first. The collateral constraint (65) does not bind in equilibrium, and $\mu_{0}=0$.

Denote $\lambda=\frac{1-\delta}{q_{0}}$. By (68), $\lambda \geq 1$. If the irreversibility condition (63) is not binding, $q_{0}=1-\delta$ from (68) and $\lambda=1$. Otherwise, $\lambda>1$. The gross return for holding capital k_{0} is λR_{1}^{k}. By non-arbitrage condition, we have

$$
R_{0}=\lambda R_{1}^{k}
$$

Given k_{0}, R_{0} and λ, in the last period, we have

$$
\begin{align*}
L_{1} & =\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{1}{1-\alpha}} k_{0} \\
Y_{1} & =\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda} k_{0} \tag{69}\\
c_{1}^{\prime} & =\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{\alpha}{\alpha-1}}, \\
c_{1} & =\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda} k_{0}-\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{\alpha}{\alpha-1}} .
\end{align*}
$$

In the first period, we have

$$
\begin{align*}
& c_{0}=\frac{1}{\gamma \lambda} \frac{X_{1}}{\alpha} k_{0}-\frac{1}{\gamma R_{0}} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{\alpha}{\alpha-1}} \tag{70}\\
& c_{0}^{\prime}=\frac{1}{\beta R_{0}} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{\alpha}{\alpha-1}}, \\
& L_{0}=\left(\frac{G}{\beta R_{0}} \frac{X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{1}{1-\alpha}} k_{-1} \\
& R_{0}^{k}=q_{0}+\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}} \frac{R_{0}}{\lambda} \\
& Y_{0}=\frac{X_{1}}{\alpha G}\left(\frac{G}{\beta R_{0}} \frac{X_{0}}{X_{1}}\right)^{\frac{\alpha-1}{\alpha}} \frac{R_{0}}{\lambda} k_{-1} \tag{71}
\end{align*}
$$

Lemma 2. When $m=1, R_{0}$ decreases in k_{-1} and increases in ω_{0}. The ratio $\frac{k_{0}}{k_{-1}}$ also decreases in k_{-1}.

Proof. See Appendix C.

By Lemma 2, we see that given ω_{0}, both the ZLB and the irreversibility constraint tend to bind when k_{-1} is high. The question is, as k_{-1} increases, which constraint binds first. The following proposition summarizes the results in this subsection.

Proposition 6. With the the investment irreversibility constraint and $m=1$, an equilibrium
always exists. Denote ω_{0}^{*} as

$$
\begin{equation*}
\omega_{0}^{*}=\frac{(1+\gamma) \frac{X_{1}}{\alpha}\left[1-(1-\delta)\left(\frac{G}{\beta}\right)^{\frac{1}{\alpha}}\right]}{\left[1+\beta(1-\delta)\left(\frac{G}{\beta}\right)^{\frac{1}{\alpha}}\right]\left(\frac{1}{\gamma}-\frac{1}{\beta}\right)} \tag{72}
\end{equation*}
$$

Given ω_{0} :
(1) if $\omega_{0} \geq \omega_{0}^{*}$, the $Z L B$ never binds in equilibrium. We give a threshold value of initial capital, $k_{-1}^{*}\left(\omega_{0}\right)$ in equation (86) in Appendix D. When $k_{-1}<k_{-1}^{*}$, the irreversibility constraint does not bind and $q_{0}=1-\delta$. When $k_{-1}>k_{-1}^{*}$, capital price q_{0} decreases in k_{-1}, but R_{0} is fixed.
(2) if $\omega_{0}<\omega_{0}^{*}$, given ω_{0}, we identify a threshold value for binding $Z L B, \hat{k}_{-1}\left(\omega_{0}\right)$ in (87), and a threshold value for binding irreversibility $k_{-1}^{* *}\left(\omega_{0}\right)$ in (88) in Appendix D. When $k_{-1}<\hat{k}_{-1}$, neither of the ZLB and irreversibility constraint binds. When $k_{-1} \in\left[\hat{k}_{-1}, k_{-1}^{* *}\right]$, the $Z L B$ binds, and X_{0} increases with k_{-1}. The capital price $q_{0}=1-\delta$ in this region. When $k_{-1}>k_{-1}^{* *}$, both the ZLB and the irreversibility constraint bind. X_{0} remains constant with k_{-1}, and q_{0} decreases in k_{-1}.

Proof. See the proof in Appendix D.

It is a bit surprising to see that R_{0} remains constant when the irreversibility constraint binds. The intuition can be seen by comparing output Y_{0} and Y_{1} in equations (71) and (69). As k_{-1} increases, k_{0} increases proportionally, and the ratio of outputs in both periods stay constant. Since R_{0} measures the relative scarcity of resources in both periods, it remains constant.

See an example of the policy functions in Figure 9. The ZLB starts to bind at $k_{-1}=0.08$, and the irreversibility constraint starts to bind at $k_{-1}=0.103$.

3.4 Equilibrium with $m<1$

Proposition 7. When $m<1$, with the the investment irreversibility constraint, an equilibrium always exists. In particular, given ω_{0}, as k_{-1} increases, the ratio $\frac{k_{0}}{k_{-1}}$ decreases. When the irreversibility constraint is binding and the collateral constraint is not binding, the equilibrium properties of the economy is the same as the economy with natural borrowing limit as in Proposition 6; when both the collateral constraint and irreversibility constraint bind, as k_{-1} increases, q_{0} decreases, but μ_{0}, R_{0} and X_{0} remain constant.

Proof. See the proof in Appendix E.

Figure 9: Policy Functions of k_{-1} with $m=1$
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, G=0.9, m=1$ and $\epsilon=21$. ω_{0} is set to 0.11 .

See an example of the policy functions in Figure 10, in which the ZLB starts to bind at $k_{-1}=0.105$, and the irreversibility constraint starts to bind at $k_{-1}=0.107$.

Figure 10: Policy Functions of k_{-1} with Collateral Constraint
Note: This figure is generated by setting $\beta=0.99, \gamma=0.98, \alpha=0.35, \delta=0.025, g=0, m=0.8$ and $\epsilon=21 . \omega_{0}$ is set to 0.11.

4 Infinite-Horizon Model

In this section, we extend the two period model with investment irreversibility in Section 3 into an infinite-horizon model with Markov shocks to the growth rate of the TFP.

The households maximize a lifetime utility function given by

$$
\begin{equation*}
\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t}\left\{\ln c_{t}^{\prime}-\frac{1}{\eta}\left(L_{t}^{\prime}\right)^{\eta}\right\} \tag{73}
\end{equation*}
$$

The budget constraint of the households is

$$
\begin{equation*}
c_{t}^{\prime}+\frac{b_{t}^{\prime}}{R_{t}} \leq b_{t-1}^{\prime}+w_{t} L_{t}^{\prime}+\int_{0}^{1} \Xi_{t}(z) d z \tag{74}
\end{equation*}
$$

The entrepreneurs use a constant-returns-to-scale technology that uses capital and labor as inputs. They produce consumption good Y_{t} according to

$$
\begin{equation*}
Y_{t}=K_{t-1}^{\alpha}\left(A_{t} L_{t}\right)^{1-\alpha} \tag{75}
\end{equation*}
$$

where A_{t} is the aggregate productivity which depends on the aggregate state s_{t}. We assume that there are two sources of uncertainty in the labor productivity A_{t}, which follows a stochastic process with both level shocks, a_{t}, and growth shocks G_{t}

$$
\begin{equation*}
A\left(s^{t}\right)=a\left(s_{t}\right) G\left(s^{t}\right) \tag{76}
\end{equation*}
$$

and $G\left(s^{t}\right)$ evolves according to the process

$$
\begin{equation*}
\frac{G\left(s^{t+1}\right)}{G\left(s^{t}\right)}=1+g\left(s_{t+1}\right), \tag{77}
\end{equation*}
$$

where $a\left(s_{t}\right)$ are level shocks and $g\left(s_{t+1}\right)$ are growth shocks.
The entrepreneurs maximize

$$
\begin{equation*}
\mathbb{E}_{0} \sum_{t=0}^{\infty} \gamma^{t} \frac{\left(c_{t}\right)^{1-\sigma_{1}}-1}{1-\sigma_{1}} \tag{78}
\end{equation*}
$$

subject to the budget constraint

$$
\begin{equation*}
c_{t}+\frac{b_{t}}{R_{t}}+k_{t}-(1-\delta) \hat{k}_{t}+q_{t} \hat{k}_{t} \leq b_{t-1}+q_{t} k_{t-1}+\frac{1}{X_{t}} Y_{t}^{e}-w_{t} L_{t} . \tag{79}
\end{equation*}
$$

The remaining part of the infinite-horizon model is the same as the two-period model in Section 3. In order to solve a stationary system of the model, we normalize the variables by the growth shock G_{t}.

Table 1: Baseline Parameter Values

Parameters	Value	
β	0.99	discount factor of household
γ	0.98	discount factor of entrepreneur
α	0.35	land share in production
η	1	labor supply elasticity
δ	0.025	depreciation rate
ϵ	21	steady state markup is 5\%
σ_{1}	1	CRRA parameter of entrepreneur

5 Calibration and Numerical Results

5.1 Parameters

Parameter values are given in Table 1. Most of the variables are from Cao and Nie (2017).
At present, we assume there is no shock to a_{t}, and set $a_{t} \equiv \bar{a}=1$. The growth process g_{t} is from Elenev et al. (2016). Their annual growth process is

$$
g_{t}=\left(1-\rho_{g}\right) \bar{g}+\rho_{g} g_{t-1}+\epsilon_{g, t}, \epsilon_{g, t} \sim \operatorname{iid} \mathcal{N}\left(0, \sigma_{g}^{2}\right)
$$

with $\bar{g}^{a}=0.02, \sigma_{g}^{a}=2.85 \%$ and $\rho_{g}^{a}=0.22$. Converting to quarterly frequency, we have $\bar{g}=0.005, \rho_{g}=0.6849$ and $\sigma_{g}=2.13 \% .{ }^{6}$ We use Tauchen's method to discretize the growth process into a 5 -state Markov process.

5.2 Numerical Results

In Table 2, show the average duration of ZLB, as well as the probabilities of binding ZLB and binding collateral constraint by state under different values of m. A higher m means the entrepreneurs' collateral constraint is more slack, and thus they have access to more credit in general. The results are generated by simulations based on 24 samples and 10000 periods for each sample, with the the first 5000 periods dropped. Several observations from the table: 1. In the stationary distribution, the ZLB is mostly binding when the growth rate is low. 2. With higher m, the probability of binding collateral constraint is is lower, but the probability of binding ZLB is higher. 3. The mean duration of the ZLB is decreasing in m. The intuition is, with better access to the credit market, the entrepreneurs tend to use higher leverage, and thus the ZLB period triggered by the adverse shock and the deleveraging process tends to be longer. This is similar to the phenomenon of

$$
{ }^{6} \bar{g}=\bar{g}^{a} / 4, \rho_{g}=\left(\rho_{g}^{a}\right)^{\frac{1}{4}} \text {, and } \sigma_{g}^{2}=\left(\sigma_{g}^{a}\right)^{2} /\left(1+\rho_{g}^{2}+\rho_{g}^{4}+\rho_{g}^{6}\right) .
$$

volatility paradox as suggested in Brunnermeier and Sannikov (2014).
We also plot interest rate and the multiplier of the collateral constraint as functions of capital k_{t-1} and wealth distribution ω_{t}. We plot the policy function in state 1 where $g_{t}=g_{L L}$. We see that the ZLB is binding when k_{t-1} is high, or when ω_{t} is low. On the other hand, the collateral constraint tends to bind when ω_{t} is low.

In the following graphs, we plot the ergodic distributions of capital, wealth share as well as the interest rate.

Table 2: ZLB Duration and Probability of Binding Constraints

$\mathbf{m = 0 . 9 0}$					
mean(ZLB duration)	1.9094				
State	$g=g_{L L}$	$g=g_{L}$	$g=\bar{g}$	$g=g_{H}$	$g=g_{H H}$
prob ZLB by state	0.69793	0.013694	0	0	0
prob cc by state	0.20874	0.020459	0.011387	0.00691	0.00776
prob ZLB \& cc	0.20226	0	0	0	0
$\mathbf{m = 0 . 8 0}$					
mean(ZLB duration)	1.8603				
State	$g=g_{L L}$	$g=g_{L}$	$g=\bar{g}$	$g=g_{H}$	$g=g_{H H}$
prob ZLB by state	0.64511	0.003234	0	0	0
prob cc by state	0.65698	0.40617	0.27844	0.2404	0.25551
prob ZLB \& cc	0.46345	0	0	0	0
$\mathbf{m}=\mathbf{0 . 7 0}$					
mean(ZLB duration)	1.8574				
State	$g=g_{L L}$	$g=g_{L}$	$g=\bar{g}$	$g=g_{H}$	$g=g_{H H}$
prob ZLB by state	0.34906	0.000105	0	0	0
prob cc by state	0.91707	0.81368	0.69628	0.68584	0.70155
prob ZLB \& cc	0.31573	0	0	0	0
$\mathbf{m = 0 . 6 0}$					
mean(ZLB duration)	1.8732				
State	$g=g_{L L}$	$g=g_{L}$	$g=\bar{g}$	$g=g_{H}$	$g=g_{H H}$
prob ZLB by state	0.093646	$1.91 \mathrm{E}-05$	0	0	0
prob cc by state	0.98594	0.96441	0.92685	0.9288	0.92436
prob ZLB \& cc	0.089977	0	0	0	0
$\mathbf{m = 0 . 5 0}$					
mean(ZLB duration)	1.6842				0
State	$g=g_{L L}$	$g=g_{L}$	$g=\bar{g}$	$g=g_{H}$	$g=g_{H H}$
prob ZLB by state	0.006475	0	0	0	0
prob cc by state	0.99934	0.99629	0.9916	0.97411	0.90676
prob ZLB \& cc	0.006272	0	0	0	0

References

Brunnermeier, M. and Y. Sannikov (2014). A macroeconomic model with a financial sector. American Economic Reviews 104(2), 379-421.

Cao, D. and G. Nie (2017). Amplification and asymmetric effects without collateral constraints. American Economic Journal: Macroeconomics.

Eggertsson, G. B. (2010). The paradox of toil.
Eggertsson, G. B. and P. Krugman (2012). Debt, deleveraging, and the liquidity trap: A fisher-minsky-koo approach. The Quarterly Journal of Economics 127(3), 1469-1513.

Elenev, V., T. Landvoigt, and S. V. Nieuwerburgh (2016, 5). A macroeconomic model with financially constrained producers and intermediaries.

Fisher, I. (1933). The debt-deflation theory of great depressions. Econometrica, 337-357.
Gust, C., E. Herbst, D. López-Salido, and M. E. Smith (2017). The empirical implications of the interest-rate lower bound. American Economic Review 107(7), 1971-2006.

Iacoviello, M. (2005). House prices, borrowing constraints, and monetary policy in the business cycle. American Economic Reviews 95(3), 739-64.

Korinek, A. and A. Simsek (2016). Liquidity trap and excessive leverage. American Economic Review 106(3), 699-738.

Appendix

A Proofs for Subsection 2.4

Proof for Proposition 1. The expression for \hat{k}_{-1} is given by

$$
\begin{equation*}
\hat{k}_{-1}=\frac{\frac{1+\beta}{\beta} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{A_{1} \alpha}\right)^{\frac{\alpha}{\alpha-1}}-\left(1-\frac{\alpha}{X_{1}}\right) \frac{\delta X_{1}}{\alpha} \Gamma_{0}}{\Gamma_{1}\left(1-\frac{\alpha}{X_{1}}\right) X_{1}^{\frac{\alpha-1}{\alpha}}+\left(1-\frac{\alpha}{X_{1}}\right) \frac{\delta X_{1}}{\alpha} \frac{\left(1-\delta+\Gamma_{1} X_{1}^{\frac{\alpha-1}{\alpha}}\right)}{\frac{1-\delta+\frac{\delta X_{1}}{\alpha}}{\gamma}+1}+\left[1-\delta+\delta \beta^{\frac{1-\alpha}{\alpha}} G^{-\frac{1}{\alpha}}\right]\left(1-\omega_{0}\right)}, \tag{80}
\end{equation*}
$$

If the ZLB is not binding, i.e., $R_{0}>1$, by the monetary policy rule (24), $X_{0}=\frac{\epsilon}{\epsilon-1}$. A careful examination of equation (39) shows that R_{0} is decreasing in k_{-1}. To see how R_{0} responds to ω_{0}, we can rewrite (39) as a function in the form of $F\left(R_{0}, \omega_{0}\right)=0$. It is easy to check that F is increasing in R_{0} and decreasing in ω_{0}. Using the implicit function theorem, we have $\partial R_{0} / \partial \omega_{0}>0$. To derive the expression of \hat{k}_{-1}, we insert $R_{0}=1$ and $X_{0}=X_{1}$ into (39), and we can get (80).

B Proof of Proposition 4

Since $k_{-1}^{C C}$ is the threshold for the collateral constraint to be binding, at $k_{-1}=k_{-1}^{C C}$, we should have $R_{0}=R_{1}^{k}, \mu_{0}=0$ and $\omega_{0}=1-m$. Insert these expressions into equations (59) and (60), we have the following two equations:

$$
\begin{align*}
k_{0} & =\frac{\gamma}{1+\gamma} \frac{R_{0}^{k} \omega_{0}}{1-m} k_{-1}^{C C} \tag{81}\\
k_{0} & =\left[(1-\delta)\left(1-\frac{\omega_{0}}{1+\gamma}\right)+\left(\frac{X_{0}}{\alpha}-\frac{\omega_{0}}{1+\gamma}\right)\left(\frac{X_{1}}{G X_{0}}\right)^{\frac{1}{\alpha}}\left(\beta R_{0}\right)^{\frac{1-\alpha}{\alpha}}\left(R_{0}-1+\delta\right)\right] k_{-1}^{C C} \tag{82}\\
& -\frac{1-\alpha}{X_{1}} A_{1}^{\frac{1}{1-\alpha}}\left(\frac{X_{1}}{\alpha}\right)^{\frac{\alpha}{\alpha-1}}\left[\frac{1}{\beta R_{0}}\left(R_{0}-1+\delta\right)^{\frac{\alpha}{\alpha-1}}\right] .
\end{align*}
$$

in which k_{0} and R_{0}^{k} are functions of R_{0} given in (53) and (56).

We find the ZLB binds if and only if $\omega_{0} \leq \omega_{0}^{*}$:

$$
\omega_{0}^{*}=\frac{\left[\frac{X_{1}}{\alpha}-\frac{\left(\frac{X_{1}}{\alpha}-1\right)(1-\delta)}{\left(1-\delta+\delta G^{-\frac{1}{\alpha}} \beta^{\frac{1-\alpha}{\alpha}}\right)}\right](1-m) k_{0}}{\frac{(1-m) k_{0}}{1+\gamma}+\frac{\gamma}{1+\gamma}\left(c_{0}^{\prime}+k_{0}\right)} .
$$

When $\omega_{0} \leq \omega_{0}^{*}$, both c_{0}^{\prime} and k_{0} in (81) and (82) are constant, and we can solve for k_{-1}^{CC} as a function of ω_{0} by the following equation:

$$
\begin{equation*}
\frac{X_{1}}{G}\left[\frac{\frac{(1-m) Y_{1}}{\frac{1}{1+\gamma} \omega_{0} k_{-1}^{C C}}-(1-\delta)}{\delta \beta^{\frac{1-\alpha}{\alpha}}}\right]^{-\alpha}=\frac{\alpha\left[\gamma_{0}+\gamma_{1}-(1-\delta)\left(1-\frac{\omega_{0}}{1+\gamma}\right) k_{-1}^{C C}\right]}{\frac{(1-m) \gamma_{1}}{\frac{\gamma}{1+\gamma} \omega_{0}}-(1-\delta) k_{-1}^{C C}}+\frac{\alpha \omega_{0}}{1+\gamma^{\prime}} \tag{83}
\end{equation*}
$$

in which $Y_{0}=\frac{1}{\beta} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{\delta X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}}$, and $Y_{1}=\frac{\frac{1-\alpha}{X_{1}}\left(\frac{\delta X_{1}}{\alpha A_{1}}\right)^{\frac{1}{\alpha-1}}}{\frac{m \alpha(1-\delta)}{\delta X_{1}}+1-\frac{\alpha}{X_{1}}(1-m)}$.
When $\omega_{0}>\omega_{0}^{*}$, the ZLB is not binding, and we can solve for the two unknowns, $k_{-1}^{C C}$ and R_{0} by (81) and (82) with $X_{0}=\frac{\epsilon}{\epsilon-1}$.

C Proof of Lemma 2

Since $c_{0}=\frac{1}{1+\gamma} \omega_{0} R_{0}^{k} k_{-1}$, by (70) we have

$$
\begin{equation*}
\frac{1}{1+\gamma} \omega_{0} R_{0}^{k} k_{-1}=\frac{1}{\gamma R_{0}}\left[\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda} k_{0}-\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{\alpha}{\alpha-1}}\right] . \tag{84}
\end{equation*}
$$

By the feasibility condition, we have

$$
\begin{align*}
& \frac{1}{\gamma \lambda} \frac{X_{1}}{\alpha} k_{0}-\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{1}{R_{0}} \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha} \frac{R_{0}}{\lambda A_{1}}\right)^{\frac{\alpha}{\alpha-1}}+k_{0} \tag{85}\\
= & (1-\delta) k_{-1}+\frac{X_{1}}{\alpha G}\left(\frac{G}{\beta R_{0}} \frac{X_{0}}{X_{1}}\right)^{\frac{\alpha-1}{\alpha}} \frac{R_{0}}{\lambda} k_{-1} .
\end{align*}
$$

Assuming that both the ZLB and the irreversibility condition are not binding, we get the following equation to pin down R_{0} :

$$
\begin{aligned}
& {\left[\frac{1}{\gamma}-\Pi_{0}\left(\frac{1}{\gamma}-\frac{1}{\beta}\right)\right] \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}} R_{0}^{\frac{1}{\alpha-1}} } \\
= & {\left[(1-\delta)\left(\Pi_{0}-\frac{1}{1+\gamma} \omega_{0}\right)+\left(\Pi_{0} \frac{X_{0}}{\alpha}-\frac{1}{1+\gamma} \omega_{0}\right) \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}} R_{0}^{\frac{1}{\alpha}}\right] k_{-1} . }
\end{aligned}
$$

in which $\Pi_{0}=\frac{\frac{1}{\gamma} \frac{x_{1}}{\alpha}}{1+\frac{1}{\gamma} \frac{X_{1}}{\alpha}}$.
It is easy to see that R_{0} decreases in k_{-1} and increases in ω_{0}.

$$
k_{0}=\frac{\left[(1-\delta)+\frac{X_{0}}{\alpha} \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}}{X_{1}}\right)^{-\frac{1}{\alpha}} R_{0}^{\frac{1}{\alpha}}\right] k_{-1}+\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}} R_{0}^{\frac{1}{\alpha-1}}}{1+\frac{1}{\gamma} \frac{X_{1}}{\alpha}}
$$

We can show that the ratio $\frac{k_{0}}{k_{-1}}$ decreases in k_{-1}.

D Proof of Proposition 6

In a model without the ZLB, given ω_{0}, we need to solve for the threshold value of initial capital where the irreversibility condition starts to bind. Define the threshold value as $k_{-1}^{*}\left(\omega_{0}\right)$. To solve $k_{-1}^{*}\left(\omega_{0}\right)$, insert $k_{0}=(1-\delta) k_{-1}^{*}$ and $\lambda=1$ into (84) and (85), we get

$$
\begin{equation*}
k_{-1}^{*}\left(\omega_{0}\right)=\frac{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}}\left(\frac{G}{\beta}\right)^{\frac{1}{\alpha-1}}\left[\frac{(1-\delta)\left[\frac{X_{1}}{\alpha}+\beta\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\omega_{0}}{1+\gamma}\right]}{\frac{X_{0}}{\alpha}-\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\omega_{0}}{1+\gamma}}\right]}{\frac{X_{1}}{\alpha}(1-\delta)-\frac{1}{1+\gamma}\left[(1-\delta)+\frac{1}{\beta} \frac{(1-\delta)\left[\frac{X_{1}}{\alpha}+\beta\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\omega_{0}}{1+\gamma}\right]}{\frac{X_{0}}{\alpha}-\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\omega_{0}}{1+\gamma}}\right] \omega_{0}} \tag{86}
\end{equation*}
$$

and the interest rate at $k_{-1}^{*}\left(\omega_{0}\right)$ is

$$
R_{0}^{*}\left(\omega_{0}\right)=\frac{G}{\beta}\left[\frac{(1-\delta)\left[\frac{X_{1}}{\alpha}+\beta\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\omega_{0}}{1+\gamma}\right]}{\frac{X_{0}}{\alpha}-\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\omega_{0}}{1+\gamma}}\right]^{\alpha}
$$

which is increasing in ω_{0}.
Now in the model with ZLB, the question is whether $R_{0}^{*}\left(\omega_{0}\right)$ is larger or smaller than
one. By setting $R_{0}^{*}\left(\omega_{0}\right)=1$, we get the corresponding threshold value of ω_{0} as

$$
\omega_{0}^{*}=\frac{(1+\gamma) \frac{X_{1}}{\alpha}\left[1-(1-\delta)\left(\frac{G}{\beta}\right)^{\frac{1}{\alpha}}\right]}{\left[1+\beta(1-\delta)\left(\frac{G}{\beta}\right)^{\frac{1}{\alpha}}\right]\left(\frac{1}{\gamma}-\frac{1}{\beta}\right)}
$$

If $\omega_{0} \geq \omega_{0}^{*}$, given ω_{0}, when $k_{-1}>k_{-1}^{*}\left(\omega_{0}\right)$, the irreversibility constraint binds. We can insert $k_{0}=(1-\delta) k_{-1}$ into equations (84) and (85) to pin down the two unknowns: R_{0} and λ. Surprisingly, the interest rate remains unchanged in this region, i.e.,

$$
R_{0}=R_{0}^{*}\left(\omega_{0}\right),
$$

and

$$
\lambda=\left[\frac{\frac{1}{\gamma}(1-\delta)-\frac{1}{G}\left(\frac{G}{\beta}\right)^{\frac{\alpha-1}{\alpha}} R_{0}^{\frac{1}{\alpha}}}{\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{1-\alpha}{X_{1}}}\right]^{1-\alpha} \frac{X_{1} R_{0}}{\alpha A_{1}} k_{-1}^{1-\alpha},
$$

which is increasing in k_{-1}, and $q_{0}=\frac{1-\delta}{\lambda}$ is decreasing in k_{-1}. The ZLB never binds in this case.

If $\omega_{0}<\omega_{0}^{*}$, given ω_{0} and increase k_{-1}, ZLB will bind first. Insert $R_{0}=1, X_{0}=X_{1}$ and $\lambda=1$ into (84) and (85), we get the cutoff of initial capital for a binding ZLB as

$$
\begin{equation*}
\hat{k}_{-1}\left(\omega_{0}\right)=\frac{\left(\frac{\alpha}{X_{1}}+\frac{1}{\beta}\right) \frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}}}{1-\delta+\frac{X_{1}}{\alpha} \beta^{\frac{1-\alpha}{\alpha}} G^{-\frac{1}{\alpha}}-\left(\frac{\alpha}{X_{1}}+\frac{1}{\gamma}\right) \frac{\gamma}{1+\gamma} \omega_{0}\left(1-\delta+\beta^{\frac{1-\alpha}{\alpha}} G^{-\frac{1}{\alpha}}\right)} \tag{87}
\end{equation*}
$$

When $k_{-1} \geq \hat{k}_{-1}, X_{0}$ starts to adjust. Inserting $\lambda=1$ and $R_{0}=1$ into (84) and (85), we can solve the two unknowns: X_{0} and k_{0}. Using Implicit Function Theorem, we can show that when ZLB binds and as k_{-1} increases, X_{0} increases, and $\frac{k_{0}}{k_{-1}}$ decreases. In this case, denote the threshold of k_{-1} when the irreversibility condition starts to bind as $k_{-1}^{* *}\left(\omega_{0}\right)$. We get

$$
\begin{equation*}
k_{-1}^{* *}\left(\omega_{0}\right)=\frac{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}}}{\frac{X_{1}}{\alpha}(1-\delta)-\frac{\gamma}{1+\gamma} \omega_{0}\left((1-\delta)+\beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}^{* *}\left(\omega_{0}\right)}{X_{1}}\right)^{-\frac{1}{\alpha}}\right)} \tag{88}
\end{equation*}
$$

in which $X_{0}^{* *}\left(\omega_{0}\right)$ can be solved by the following equation:

$$
\begin{equation*}
(1-\delta) \frac{X_{1}}{\alpha \beta}=\frac{1}{\alpha} \beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(X_{0}^{* *}\right)^{\frac{\alpha-1}{\alpha}}-\left(\frac{1}{\gamma}-\frac{1}{\beta}\right) \frac{\gamma}{1+\gamma} \omega_{0}\left((1-\delta)+\beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G}{X_{1}}\right)^{-\frac{1}{\alpha}}\left(X_{0}^{* *}\right)^{-\frac{1}{\alpha}}\right) . \tag{89}
\end{equation*}
$$

If we impose $X_{0}^{* *}=X_{1}$ in (89), the RHS is larger than the LHS. Otherwise, setting $X_{0}^{* *}=$ ∞, the RHS is smaller than the LHS. This suggests that a finite solution of $X_{0}^{* *}$ always exists.

Given ω_{0}, when $k_{-1}>k_{-1}^{* *}\left(\omega_{0}\right)$, we find that X_{0} becomes an constant, i.e.,

$$
X_{0}=X_{0}^{* *}\left(\omega_{0}\right)
$$

and

$$
\lambda=\left[\frac{\frac{X_{1}}{\alpha}(1-\delta)-\frac{\gamma}{1+\gamma} \omega_{0}\left[(1-\delta)+\beta^{\frac{1-\alpha}{\alpha}}\left(\frac{G X_{0}^{* *}}{X_{1}}\right)^{-\frac{1}{\alpha}}\right]}{\frac{1-\alpha}{X_{1}} A_{1}\left(\frac{X_{1}}{\alpha A_{1}}\right)^{\frac{\alpha}{\alpha-1}}}\right]^{1-\alpha} k_{-1}^{1-\alpha}
$$

suggesting that q_{0} is decreasing in k_{-1}.

E Proof of Proposition 7

We prove this proposition by solving the equilibrium explicitly. Given the state variables $\left\{k_{-1}, \omega_{0}\right\}$, we solve the equilibrium by dropping the collateral constraint (65) first following the equations in Subsection 3.3. Then we go back to (65) to check whether the collateral constraint is satisfied.

If the collateral constraint is violated, then with $\left\{k_{-1}, \omega_{0}\right\}$, we solve the equilibrium assuming that the collateral constraint is binding. In the last period, we have

$$
b_{0}=-m R_{1}^{K} k_{0}
$$

and the wealth share is

$$
\omega_{1}=1-m
$$

The other variables can be expressed as functions of k_{0} as follows:

$$
\begin{aligned}
& c_{1}=(1-m) \frac{\alpha A_{1}}{X_{1}}\left[\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}}(1-m)}\right]^{1-\alpha} k_{0}^{\alpha} \\
& c_{1}^{\prime}=A_{1}\left(\frac{X_{1}}{1-\alpha}\right)^{\alpha-1}\left[\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}\right]^{\alpha} .
\end{aligned}
$$

$$
\begin{align*}
& R_{1}^{k}=\frac{\alpha}{X_{1}} A_{1}\left[\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}}(1-m)}\right]^{1-\alpha} k_{0}^{\alpha-1}, \\
& L_{1}=\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}}(1-m)} \tag{90}\\
& Y_{1}=A_{1}\left[\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}}(1-m)}\right]^{1-\alpha} k_{0}^{\alpha} .
\end{align*}
$$

In the first period, given R_{0}, X_{0} and λ, we have

$$
\begin{gather*}
c_{0}^{\prime}=\frac{1}{\beta R_{0}} A_{1}\left(\frac{X_{1}}{1-\alpha}\right)^{\alpha-1}\left[\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}\right]^{\alpha}, \\
L_{0}=\left(\beta R_{0} \frac{X_{1}}{G X_{0}}\right)^{\frac{1}{\alpha}} \frac{\frac{1-\alpha}{X_{1}} k_{-1}}{\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}}, \\
R_{0}^{k}=\frac{1-\delta}{\lambda}+\frac{\alpha}{X_{0}} A_{0}\left(\frac{1}{\beta R_{0}} \frac{G X_{0}}{X_{1}}\right)^{\frac{\alpha-1}{\alpha}}\left[\frac{X_{1}}{1-\alpha}\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}\right]^{\alpha-1}, \tag{91}\\
Y_{0}=A_{0}^{1-\alpha}\left(\beta R_{0} \frac{X_{1}}{G X_{0}}\right)^{\frac{1-\alpha}{\alpha}}\left[\frac{\frac{1-\alpha}{X_{1}}}{\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}} k_{-1},\right. \\
c_{0}=\frac{1}{1+\gamma} \omega_{0} R_{0}^{k} k_{-1} .
\end{gather*}
$$

We use the following two equations to solve the equilibrium. The first one is derived by the feasibility condition:

$$
\begin{align*}
& \frac{1}{1+\gamma} \omega_{0} R_{0}^{k} k_{-1}+\frac{1}{\beta R_{0}} A_{1}\left(\frac{X_{1}}{1-\alpha}\right)^{\alpha-1}\left[\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}\right]^{\alpha}+k_{0} \tag{92}\\
= & (1-\delta) k_{-1}+A_{0}\left(\beta R_{0} \frac{X_{1}}{G X_{0}}\right)^{\frac{1-\alpha}{\alpha}}\left[\frac{\frac{1-\alpha}{X_{1}}}{\left(1-\frac{\alpha}{X_{1}}(1-m)\right) k_{0}}\right]^{1-\alpha} k_{-1}
\end{align*}
$$

and the second one is derive by the FOC of the entrepreneurs, (20) and (66):

$$
\begin{equation*}
\left(\frac{1}{\lambda}-\frac{m \frac{\alpha}{X_{1}} A_{1}\left[\frac{\frac{1-\alpha}{X_{1}}}{1-\frac{\alpha}{X_{1}}(1-m)}\right]^{1-\alpha} k_{0}^{\alpha-1}}{R_{0}}\right) k_{0}=\frac{\gamma}{1+\gamma} \omega_{0} R_{0}^{k} k_{-1} \tag{93}
\end{equation*}
$$

in which R_{0}^{k} is given by (91).
When both the ZLB and the irreversibility investment constraint bind, we have the following equation to pin down X_{0} :

$$
\begin{align*}
& \frac{\frac{1}{1+\gamma} \omega_{0}}{1-\frac{\gamma}{1+\gamma} \omega_{0}}\left[\frac{\gamma}{1+\gamma} \omega_{0} \frac{\alpha}{X_{0}}\left(\frac{G X_{0}}{\beta X_{1}}\right)^{\frac{\alpha-1}{\alpha}} L_{1}(1-\delta)^{\alpha-1}+m \frac{\alpha}{X_{1}} G L_{1}(1-\delta)^{\alpha}\right] \\
= & \left(1-\frac{1}{1+\gamma} \omega_{0}(1-\delta)^{\alpha-1} \frac{\alpha}{X_{0}}\right)\left(\frac{G X_{0}}{\beta X_{1}}\right)^{\frac{\alpha-1}{\alpha}} L_{1}-\frac{G}{\beta} \frac{(1-\alpha)}{X_{1}}(1-\delta)^{\alpha} . \tag{94}
\end{align*}
$$

in which L_{1} is constant as in (90). Notice that the value of X_{0} is independent of k_{1}, suggesting that when both ZLB and the irreversibility constraint bind, only the capital price q_{0} adjust but not the markup X_{0}. An equilibrium always exists in this case.

[^0]: ${ }^{1}$ In his seminal paper on debt-deflation, Fisher (1933) wrote: "I have, at present, a strong conviction that these two economic maladies, the debt disease and the price-level disease (or dollar disease), are, in the great booms and depressions, more important causes than all others put together."

[^1]: ${ }^{2}$ With our calibrated parameters and $G_{1}=1$ and $\omega_{0}=1$, the AD curve is negatively sloped when $R_{0}<1.3$.

[^2]: ${ }^{3}$ A quote from Eggertsson (2010): "the paradox reveals some fundamental weaknesses in New Keynesian theory. While the standard New Keynesian model studied here is very specific in many respects, I conjecture that the same paradox occurs in a broad class of models where nominal spending determines aggregate output. If one wants to interpret the paradox from this perspective it poses a relatively broad challenge to this class of models."
 ${ }^{4}$ The AD curve is steeper than the AS curve which is consistent with Eggertsson and Krugman (2012).

[^3]: ${ }^{5}$ One observation in Figure 7 is that output is decreasing in k_{t-1} in some region even when the ZLB is not binding, which is counter-intuitive. Since $Y_{0}=A_{0} k_{-1}^{\alpha} L_{0}^{1-\alpha}$, as k_{-1} increases, L_{0} must decrease faster to reduce Y_{0}. In our setup, since the Frisch elasticity of labor supply is $0, L_{0}$ is determined by the wealth effect, and in this case, L_{0} decreases in c_{0}^{\prime}. When the households have lower wealth (i.e., smaller c_{0}^{\prime}), they supply more labor to smooth consumption. As k_{-1} increases, interest rate R_{0} drops, which increases c_{0}^{\prime} and decreases L_{0} by (32) and (33). If L_{0} decreases very fast in k_{-1}, Y_{0} may also decreases in k_{-1} as a result. Whether this result arises or not depending on the parameter choices, and is not robust. However, as ZLB binds, Y_{0} drops in k_{-1} as proved in Proposition 2 is quite robust, and is consistent with the "paradox of toil" discussed in the literature.

