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Abstract

Using the timing of China’s highway network construction and political leadership cy-

cles, we document systematic political distortions in the road infrastructure network:

the birthplaces of the top officials who were in power during the network’s implementa-

tion are closer to the actual network, compared to the counterfactual optimal network

in a quantitative spatial general equilibrium model. We then use the model to quantify

the aggregate costs of distortions in the highway network. Overall, compared to the

actual highway network, aggregate income is 1.45 percent higher with the heuristic op-

timal network and political distortions account for a substantial part of this welfare loss.
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1 Introduction

Are national infrastructure investments allocated efficiently? If not, is the distortion due to

political factors and what are the aggregate costs of these distortions? With transportation

investments accounting for a large fraction of public investments, identifying the determi-

nants of its distortions and quantifying their effects are important questions for policymakers,

governments, and international funding organizations. But these questions are also notori-

ously difficult to answer, one reason being that it is challenging to determine the efficient

benchmark against which to compare actual transport network designs. Another difficulty is

to quantify the aggregate welfare costs of distortions in the presence of general equilibrium

and network effects.

We tackle these problems using a combination of spatial equilibrium modeling and de-

tailed biographical data on politicians. We focus on China, which has undertaken consid-

erable large-scale infrastructure projects, and where top politicians play a key role in the

country’s centralized economic planning. We use the construction of the National Trunk

Highway System (NTHS), a $120 billion project that was launched by the national govern-

ment in 1992 with the official objective of connecting all provincial capitals and all cities

with a population of at least 500,000 (Faber, 2014). This project led to a vast network of

35,000 km of modern highways that was largely completed by 2007.

We ask three questions: i) was this network designed optimally? ii) are the deviations

between the actual and optimal networks associated with political factors? iii) what are

the aggregate welfare costs of these political distortions? Since the network had a clearly

specified objective, we know which cities had to be connected. However, the paths of the

highways may make a detour to better serve or connect a city that is neither economically

nor geographically well suited to be part of the network. Such a deviation could occur if

there is a political bias in favor of that city, for example because it is well connected to the

political elite.

Such political bias in our context could be akin to regional political favoritism. There is a

large literature documenting how political connections can affect public good provision such

as road construction. A common form of regional favoritism is that politicians allocate more

resources to their home region or their own ethnicity. For example, Hodler and Raschky

(2014) find that the birthplaces of political leaders experience systematically higher light

intensity than other locations, using a large global panel data set with more than 38,000

subnational regions. Burgess et al. (2015) find that Kenyan districts receive significantly more

road expenditures during years when the president is from their own ethnicity. There could

be several reasons why the home regions of top politicians may be favored (see for example
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the extensive review by Golden and Min, 2013). The existing literature also suggests that

politicians’ connections to powerful leaders and factions of the Chinese Communist Party

(CCP) matter for their promotion (see for example Shih et al., 2012). While we do not

uncover specific channels of political favoritism in infrastructure investments, we provide

novel evidence on political distortions in a major infrastructure project in the context of a

large, fast-growing, and centrally-planned economy like China.

Our analysis hinges on two key ingredients. First, we measure the extent to which

the NTHS is distorted by comparing it to the optimal network approximation in a spatial

equilibrium model. We use a heuristic approximation algorithm similar to Alder (2017)

in order to search for the welfare-maximizing network, taking into account the benefits of

roads (gains from trade resulting from lower trade costs) and topographical road construction

costs. Finding the optimal transport network in the standard spatial equilibrium model used

here is challenging because it is not a convex optimization problem and it is infeasible to

compare all possible network designs.1 The heuristic algorithms typically used in the network

design literature do not account for general equilibrium effects such as trade diversion, but

Alder (2017) proposes a way to combine the heuristic algorithms with a standard spatial

equilibrium model. We find that, while the approximation of the optimal network overall has

a relatively similar structure to the actual NTHS, there are many deviations that imply that

some locations have better access with one network than with the other. The approximation

of the optimal network would imply 1.45% higher aggregate GDP per year, net of road

construction costs.

Second, we rely on detailed biographical data on Chinese politicians, including their place

of birth and their government positions. This data is obtained from China Vitae (2016),

which contains biographical data as far back as 1940 on nearly 5,000 Chinese politicians. We

focus on the top-ranking politicians in the hierarchy of the Chinese Communist Party (CCP).

Specifically, we focus on politicians who held the position of Politburo member, provincial

CPC secretary, or provincial governor.2 We match their birthplaces with the counties from

the Census maps, which allows us to geo-code the birthplaces.3 We can then compute

the distance of each county to the actual and optimal highway network; and the difference

1Recent work by Felbermayr and Tarasov (2015); Allen and Arkolakis (2016); Fajgelbaum and Schaal
(2017) also consider the problem of transport network designs in spatial equilibrium models and we discuss
the different approaches below.

2Consistent with the structure of the CPC, we treat the mayors and the secretaries of the CPC in the
main municipalities of Beijing, Chongqing, Shanghai, and Tianjin as province-level officials.

3We used multiple Chinese speaking research assistants to manually verify and match the birthplaces of
nearly 400 politicians who held a top-level position in our data set. We are able to match around 75 percent of
these birthplaces to a county. When politicians are born in a very large city, typically a prefecture-level city,
the county-level match is difficult. The results are also similar when we use an automated name-matching
algorithm.
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between the two distances captures the extent to which the actual network is distorted.4

Our test of whether the NTHS is biased due to political distortions is implemented in

a reduced-form regression of the difference between a county’s distance to the optimal and

actual network on an index for whether this county is the birthplace of a politician who was

in office during the planning and implementation phase of the network. We find that there

is a statistically significant relationship between the difference of a county’s deviation away

from the optimal network and the index for place of birth. This suggests that part of the

deviation between the two networks can be explained by political factors.

An obvious concern is that there are unobserved characteristics of counties that might

matter for how the network was built and that these characteristics are correlated with our

explanatory variable for politicians’ birthplaces. An example could be the location of uni-

versities, which i) may make it more likely that a native of that county has a successful

political career; ii) could imply that the county has a high economic potential such that

benevolent planners would want to connect it to the new highway network. However, this

concern is mitigated by the time variation that we can exploit based on the period when a

politician is in power. We restrict our measure of political access (i.e. place of birth of a top

politician) to politicians who were in office during the planning and implementation phase of

the NTHS. When we include as a placebo an index for the place of birth of politicians who

came to power after the completion of the NTHS, we find that it is not significantly corre-

lated with the proximity to the network. The insignificant placebo effect, together with the

significant effect of the birthplace of incumbent politicians during planning and construction,

suggest that the main effect is not driven by unobserved time-invariant heterogeneity across

politicians or birthplaces.

The reduced-form evidence shows that the birthplaces of Chinese officials alters the allo-

cation of transport infrastructure investments. Since the birthplaces of politicians does not

explain the entire deviation between the actual and optimal network, we cannot attribute

the entire difference of 1.45% in aggregate GDP to the political friction. However, we can use

the spatial equilibrium model and the heuristic network design algorithm to construct coun-

terfactual networks with and without the political friction, and then compute the implied

aggregate welfare.

In order to construct this counterfactual network, we identify birth counties that are

distorted in their network access. We then use the heuristic optimal network design algo-

rithm to construct a ‘politically-distorted ’counterfactual network: a network that is optimal

4This approach is naturally prone to model misspecification: the actual network might be optimal or less
distorted under in the true model. Nonetheless, our findings suggest that, through the lens of a workhorse
model, there are deviations from the optimal benchmark and that these deviations are systematically related
to political factors. We call these deviations political distortions.
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under the additional constraint that these ‘birthplaces’ are connected. To capture the ag-

gregate cost of the political distortions, we compare the aggregate welfare of this politically-

constrained ‘optimal’ network to the welfare in the ‘optimal’ network where these birthplaces

do not have to (but could) be connected.5 Our results suggest that about one-seventh of the

income difference between the actual and optimal network is due to the political distortion.

Finally, we show that the effects of political distortions may be much larger due to

amplifications channels absent in the workhorse model. Using light data, we show that

birthplaces with politically-driven proximity to the network experience less light growth.

Related Literature Our paper contributes to several strands in the literature, including

spatial equilibrium analysis of transport infrastructure, network design, and distributive

politics such as regional favoritism. We contribute to the literature on quantitative optimal

infrastructure networks by documenting the systematic presence of political distortions. We

also contribute to the literature on the political economy of public good provision in the

context of a large-scale infrastructure project in one of the world’s largest centrally-planned

system. The growth of quantitative models of trade in the spirit of Eaton and Kortum

(2002) has motivated increased attention to the nature of transportation costs intra- and

inter-nationally. Various papers embed a realistic structure of transportation networks in

these models in order to estimate the welfare effects of infrastructure networks.6

Yet, the design of optimal infrastructure networks has remained a difficult combinatorial

problem and as a result very few papers tackle the optimality of the transportation network.

Alder (2017) introduces a heuristic recursive search algorithm that reduces the dimension-

ality of the problem by iteratively forming the optimal network using general equilibrium

and network effects in a workhorse spatial trade model à la Donaldson and Hornbeck (2016).

This paper uses this framework to construct the benchmark optimal network that meets the

official target of the NTHS. Fajgelbaum and Schaal (2017) recently show the analytical and

computational tractability of an alternative optimal network formulation nesting a large class

of spatial and trade models. Fajgelbaum and Schaal (2017) circumvent the dimensionality

issue by introducing congestion frictions and a continuous choice in the level of infrastruc-

ture of a specified set of connection or edges. Felbermayr and Tarasov (2015) propose and

characterize another formulation that circumvents the dimensionality of the optimal network

problem by considering a continuous space, a set of locations on a line.

This paper is also related to the political economy literature on ‘regional favoritism’ and

5Note that the heuristic network design algorithm finds local optima. It is not guaranteed that it converges
to the global optimum, but simulations in Alder (2017) show random starting points yield similar net incomes.

6See for example Allen and Arkolakis (2014, 2016) for an application to the U.S. highway network and
Redding and Rossi-Hansberg (2017) for an overview of quantitative spatial equilibrium approaches.
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‘distributive politics’. Hodler and Raschky (2014) provide evidence of increased nighttime

light intensity in the birth regions of incumbent political leaders, especially in countries with

weak political institutions. Golden and Min (2013) provide a detailed review of the literature

on distributive politics. Of its 150 surveyed papers, only one is on China: Su and Yang (2000)

create an index of provincial representation in the political center and estimate its positive

effects on the share of state construction investment between 1978 and 1994. Our paper

offers novel evidence on infrastructure distortions using detailed data on the timing of a

large-scale infrastructure project, an optimal network benchmark, and biographical data on

Chinese politicians. Jia et al. (2015) similarly used biographical data and local economic data

to document how both patronage motives and meritocratic factors shape the promotion of

Chinese provincial leaders. Shih et al. (2012) also suggest patronage motives and connections

are prevalent in the promotion of top Chinese political leaders.

Burgess et al. (2015) use a political economy model to rationalize ethnic favoritism and

empirically document ethnic favoritism in the observed road spending in Kenya. They find

that, compared to a benchmark network that connects locations based on a measure of

market potential, the actual network favors the regions that share the ethnicity of the in-

cumbent president in Kenya.7 Kahn et al. (2018) study how social connections between

politicians affect the decision where industrial parks are located in China. They show that

a principle-agent problem arises between the central government and provincial politicians

because the latter tend to favor locations to which they have a social connection and this

leads to a misallocation of parks. We differ from these approaches by approximating the

economically optimal infrastructure network based on a spatial general equilibrium model,

which also allows us to quantify the aggregate cost of the distortion.

Jedwab and Storeygard (2017) study economic and political factors in infrastructure

investment across 43 sub-Saharan African countries. Jaworski and Kitchens (2016) analyze

highways in the US and compare the effects of the built network with historical highway plans

that were subsequently altered because of political factors. Frye (2016) estimates the effects

of the US highway system on employment. He uses an algorithm from network theory that

ranks links by how many shortest paths go through them, which captures how important

each link is. He then uses this as an instrument for the timing of highway construction.

Glaeser and Ponzetto (2017) study in a theoretical model how voters’ information about

project costs affects political decisions on investments. Voigtländer and Voth (2014) show

how highway construction was used by Hitler to gain political support in Germany. We focus

7The authors calculate market potential as the sum of the populations of a location pair divided by their
Euclidian distance. Such a measure of market potential is conceptually related to market access in our
model, but the measure of market potential does not capture endogenous general equilibrium and network
effects.
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on the design of the transport network to construct a benchmark and use data on political

connections together with a spatial general equilibrium model to quantify the aggregate

distortion.

Finally, our paper is related to the literature on the effects of infrastructure on growth

in China. In particular, Faber (2014) documents the growth reducing effects of the advent

of the NTHS on non-targeted peripheral counties in China using the minimum spanning

tree as an instrument. We document a systematic distortion away from the minimum span-

ning tree that is correlated with incumbent politician birthplaces. We also find evidence

of reduced growth in these incumbent politician birthplaces.8 Baum-Snow et al. (2017) use

comprehensive data on transport infrastructure and city growth in China. They find that

highways and railroads led to a decentralization of population and industrial output of Chi-

nese cities. Roberts et al. (2012) quantify the effect of Chinese highway network using a

New Economic Geography Model across Chinese prefectures. Tombe and Zhu (2017) use a

general equilibrium model across Chinese provinces with partial labor mobility and find that

reductions in both trade and migration costs contribute to aggregate growth in China. In

this paper, we use document political distortions across counties in the implementation of

the stated objective of the NTHS and the associated welfare costs in a general equilibrium

spatial network similar to the workhorse model of Donaldson and Hornbeck (2016).

2 Data

The aim of this paper is to identify and quantify political distortions in China’s NTHS

national highway network. This requires detailed geographically coded data on political

influence that we then link to the highway network. Furthermore, in order to measure the

distortion and quantify its welfare effects, we need to have a model that predicts what the

optimal network would have looked like in the absence of the distortion. We therefore use a

general equilibrium trade model and design the welfare-maximizing highway network based

a heuristic approximation algorithm. This network design problem also requires data on

income, topographical information, and a measure of road construction costs. We discuss

the different data sources below, but we first highlight key aspects of the NTHS.

8Lu and Wang (2016) use detailed firm-level data and new data on the completion dates of NTHS
segments to document that incumbent firms in peripheral regions become less productive once connected to
the highway system.
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2.1 Road Network and Trade Costs

China’s National Trunk Highway System The plans for China’s NTHS were approved

in 1992 and its stated objective was to connect all cities with a population of at least

500,000 and all provincial capitals with modern highways (Faber, 2014). The network was

mostly completed by 2007 and consists of about 35,000 km of four-lane highways. The

total construction costs were approximately $120 billion. The NTHS was later expanded to

include smaller cities, but we focus on the first phase based on the 500,000 threshold. The

targeted cities and the resulting network are shown in Figure 1.9 In addition to the NTHS,

we also use maps of the preexisting highway network in 1990 that is available from the MIT

Geo Web.10

Figure 1: China’s National Trunk Highway System

The black lines show the NTHS that connects the targeted cities (shown in red). The background shows
the slope of the terrain of mainland China as a proxy for road construction costs.

Driving Speed and Shortest Path We assume an average driving speed of 120 km/h on

the NTHS. The pre-existing national highway network was of lower quality and allowed for

9We focus here on the NTHS as discussed in Faber (2014). The modern Chinese highway network is
sometimes also referred to as the National Expressway Network (see Alder, 2017).

10The highway data is available at https://geodata.mit.edu/. The maps of the 2010 national highway
network are from ACASIAN (2014).11 We use the map from 2010 and select the part of the network that
correspond to the NTHS.
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a driving speed between 80 and 100 km/h.12 In the following, we will assume that whenever

there is a direct NTHS link between two cities, then the driving speed is 120 km/h. Whenever

there is no direct NTHS link, then we assume that one needs to travel on a road of lower

quality, where the driving speed is 80 km/h, or make a detour to reach the NTHS. This

speed assumption is at the lower end of the speed on other national highways, but above the

approximately 70 km/h reported for provincial roads. Furthermore, we allow travel on land

without roads at a speed 15 km/h. We use a shortest-path algorithm to find the cheapest

way to travel from any origin to any destination through the road network. We assume

that the shortest path between two cities is chosen based on the travel time. Therefore, the

NTHS will not only affect the travel times between the directly connected cities, but it will

also affect the travels time between any two cities that use the NTHS as part of the shortest

path between them.

Topography and Road Construction Costs In order to determine the path of counter-

factual roads and to proxy the road construction costs, we use the shortest paths predicted

by the slope of the terrain based on data from Jarvis et al. (2008).13

Travel Time and Trade Costs In the general equilibrium trade model, the highway

network translates into trade costs and determines bilateral trade flows and the distribution

of income across locations. We use a Dijkstra’s shortest-path algorithm (Dijkstra, 1959) on

a graph in order to find the shortest driving time through the network among all targeted

cities.14 The driving time is then mapped into an iceberg trade cost based on

τij = 1 + ωtχij, (1)

where τij is the iceberg trade cost between an origin i and a destination j, tij is the driving

time through the road, and ω and χ are scalars. We choose χ = 0.8, which implies that there

are some economies of scale in transport and is consistent with the existing literature (see

Roberts et al., 2012). The parameter ω governs how the units of time translate to iceberg

trade costs and we choose this parameter such that the median iceberg trade cost is 1.25 as

in Alder (2017).

12The speed assumptions are taken from Faber (2014).
13In this case we need to find the shortest path through a surface and we use the fast marching algorithm

provided by Kroon and used in Allen and Arkolakis (2014).
14Dijkstra’s algorithm (Dijkstra, 1959) has been widely applied in the economics literature (see for example

Dell, 2015; Donaldson and Hornbeck, 2016). Dijkstra’s algorithm is used here to travel through a weighted
graph where the weights correspond to the travel times on each link. This is similar to a shortest-path fast
marching algorithm through a continuous terrain or a speed map.
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The shortest-path algorithm and the assumptions above yield anN×N matrix of bilateral

iceberg trade costs among all N targeted cities. We assume that driving speed is the same in

both directions, such that the matrix is symmetric. The targeted cities of the actual network

are the 62 cities that fulfill one of the two criteria of being either a provincial capital city or

having a population of at least 500,000 in the 1990 census. We will later also include cities

that are predicted to be connected because they are birthplaces of high-ranking politicians.

Furthermore, for the quantification of the distortion, we will also include a number of cities

that could be connected in the counterfactual instead of the political cities.

2.2 China’s Political System and Politicians’ Birthplaces

“The Party commands, controls and integrates all other political organizations

and institutions in China. The Party-state, or “partocracy,” accurately captures

China’s political reality.”(Xia, 2002)

Chinese Communist Party The Chinese Communist Party of China (CCP), the largest

polity in the world, has a virtual monopoly of power in China. Its structure nests multiple

levels of government with a powerful central authority. The CCP structure extends across

local townships mapped into nearly two and a half thousand counties, which aggregate

to around three hundred municipalities or prefectures that are combined into thirty-one

provinces.

The political, economic, and military power is increasingly concentrated across these

layers with the highest decision-making body being the Politburo. The Politburo typically

consists of twenty to twenty-five members. A smaller inner circle of these Politburo members

form the all-powerful Politburo Standing Committee (PSC). The PSC typically consists of

five to nine party officials including the General Secretary (the head of the Communist Party),

the Premier (the head of the Chinese government), and the chairman of the National People’s

Congress. Below the Politburo, a national Central Committee of around 200 members sits

at the top of the CCP hierarchy. At the provincial level, top leaders include the provincial

governor and the provincial party secretary.15

Politicians’ Birthplaces Using the centralized nature of national policy-making in China,

we use data on the birthplace of powerful political leaders to investigate political distortions

in the design of a major national infrastructure network, the NTHS. We use the online

database China Vitae (2016), which contains extensive biographical details of CCP officials

15See Shih et al. (2012) for an excellent discussion of the post-Mao CCP leadership structure and the
mechanisms of advancement and promotion.
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based on Chinese government sources. China Vitae was launched in 2001 and is now operated

and maintained by the Carnegie Endowment for International Peace. It contains biographical

data on more than 5,000 leaders going as far back as the 8th CCP Congress of 1945–1956.16

For instance, the former Premier’s entry lists his year of birth, his place of birth, and his

40+ career spells at various institutions and locations since joining the CCP.17

Local Political Access Measure We extract these biographical data to construct a

measure of local political access for each county by aggregating the tenure of local natives

in the upper echelon of leadership in a given time period, if any. Using the timing of

the planning, approval, and construction of the NTHS18, we construct the local political

access measure for different periods. Table 1 describes the underlying county-level data on

the number of politicians in the PSC, or in provincial CCP secretariate, or in provincial

governorship who were born in that county.19

Table 1: Upper Echelon Native Politicians across Counties

1992 1997 2002 2007 2012

mean .021 .023 .029 .034 .033
sd .151 .153 .171 .190 .191
p95 0 0 0 0 0
p99 1 1 1 1 1
min 0 0 0 0 0
max 2 2 2 2 2
sum 49 53 67 77 76

N 2,289 2,289 2,289 2,289 2,289

In our baseline estimation, in a given period t = t1 . . . t2, location i’s political access is

defined as the period average of the number of its natives that are either PSC members or

16Jia et al. (2015) also uses this data to study the determinants of the promotion of provincial leaders.
17In the post-Mao era, changes in leadership roles occur every five years through a carefully orchestrated

process, which culminates in a CCP Congress where committee members are selected.
18Duncan (2007) documents the implementation of the NTHS and provides details on the planning and

construction years. The Government’s 9th Five-Year Plan, the 1996-2000 NYFP, called for construct a
National Trunk Highway System (NTHS) of expressways linking all cities with a population of more than
500,000 inhabitants and all provincial capitals. Duncan (2007) reports that highway spending quadrupled
from 1995 to 1998, partly as a stimulus package in response to the Asian Financial Crisis. Duncan (2007)
also documents that 70 percent of the NTHS funding was borrowed against future local or provincial toll
revenues, 15 percent from the central government, and the remainder from provincial and local governments.
Despite the local funding of the NTHS, implicit financial guarantees from the central government and central
network planning justify our focus on the upper level national leaders and provincial leaders in this paper.

19We consider the universe of unique ‘counties’ GB codes from ACASIAN (2014). Some birthplaces were
not included as we could not confidently map these China Vitae place names to unique ADM3 GB codes.
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provincial governors, if any:20

Political Accessit1,t2 =
1

t2 − t1 + 1

t2∑
t=t1

#politicians born in i and ‘in power’ at t (2)

We construct the political access measure for the following time periods: (a) the 1995–2001

period, which is spanned by the 14th and the 15th CCP Central Committee and captures

the planning and early implementation period, (b) the 2005–2006 period within the 16th

CCP Central Committees that captures the end of the NTHS implementation in 2007, and

(c) the 2013–2017 period within the 18th CCP Central Committee that captures the period

following the NTHS completion.21 Descriptive statistics for this measure are shown in Table

2.22

Table 2: County-Level Political Access

early NTHS buildup late NTHS buildup post NTHS buildup
(14th-15th CCP) (16th CCP) (18th CCP)

mean .023 .029 .030
sd .129 .173 .175
p95 0 0 0
p99 .857 1 1
sum 51.9 66.5 69.4
min 0 0 0
max 1.43 2 3

N 2,289 2,289 2,289

Administrative Boundaries We use the administrative boundaries of counties from the

2010 census as provided by ACASIAN (2014) and from China Data Online.

2.3 Income

In order to search for the optimal highway network, we rely on a spatial equilibrium model

among the targeted cities. The model takes into account both the trade costs among cities

20We also considered network-based measures of local political access using the network structure arising
from ‘indirect’ connections with powerful politicians through overlapping tenures as ‘co-workers’. In partic-
ular, we used a measure of ‘first degree’ local political access defined using the natives who worked in the
previous three years at the same relatively small institution with a currently powerful politician.

21The first two periods start three years after the beginning of the corresponding CCP congress in order
to align indirect ‘first degree’ political access measures to be within the same CCP congress time window.

22See also Tables A2, A3, and A4 for the transition matrices in the number of native and incumbent top
leaders.
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(captured by the travel times through the road network) and their incomes. We use night-

time light data from NOAA (2016) as a measure of income because it is available at a spatial

resolution of about 1 km, which allows us to measure a city’s economic size independent on

how administrative boundaries are drawn. Data on lights at night have been used in various

contexts and have been shown to correlate strongly with GDP (Henderson et al., 2012). We

create buffers of 30 km around each targeted city in the network and then calculate the sum

of light within each buffer. The buffers of the targeted cities are shown in Figure 2.

Since the benefits of road construction are measured in terms of light, but we are ulti-

mately interested in the effects on GDP (which we compare with the road construction costs

to compute the net gain), we need to translate the light effects to GDP. Using a large panel

of countries, Henderson et al. (2012) find a linear relationship between the logarithm of real

GDP and the logarithm of light. They estimate an elasticity of around 0.3 and we use this

value in order to predict GDP based on lights.

Figure 2: Night light image and targeted cities

The maps shows the light density in 1992 and the 30 km buffers around the targeted cities in mainland
China.

13



3 Spatial Equilibrium Model

We use a spatial equilibrium framework in order to design the optimal highway network and

then use this as a benchmark against which we can compare the actual network. Further-

more, the equilibrium framework will allow us to quantify the welfare effects of the political

distortion. The framework is based on Donaldson and Hornbeck (2016) who use a general

equilibrium model of trade among American counties in order to quantify the effect of the

expansion of the railway network in the 19th century. Donaldson and Hornbeck (2016) rely

on the Eaton and Kortum (2002) model of trade and show that the effect of transport in-

frastructure can be captured through a measure of market access. As in Alder (2017), we

solve the model for real income as measured by light.23 We assume that population is im-

mobile, because there are restrictions to labor mobility in China due to the Hukou system.24

We discuss here only the key aspects of the model and refer the reader to Donaldson and

Hornbeck (2016) and Alder (2017) for details.

The economy consists of N locations indexed by i and j, denoting the origin and des-

tination of a trade, respectively. Each location produces with a constant returns to scale

Cobb-Douglas production function using capital (K), labor (H), and land (L), where capital

is the only mobile production factor. The different locations have comparative advantages

in the production of different varieties and the productivity follows a Fréchet distribution

as in Eaton and Kortum (2002). Trade among locations is subject to an iceberg trade cost.

Consumers have CES preferences over varieties and their indirect utility is given by their

real income,

V (Pi, Yi) =
Yi
Pi
, (3)

where Pi is the standard CES price index.

Prices and Market Access The price index can be written as

(Pj)
−θ = κ1

∑
i

Ai (q
α
i w

γ
i )−θ τ−θij ≡ CMAj. (4)

θ is the parameter that governs the productivity distribution. qi is the price of land, wi is

the wage, and α and γ are the corresponding factor shares in the production function. τij

23Donaldson and Hornbeck (2016) quantify the effect of the railroads through the price of the fixed factor,
land.

24The cases with full labor mobility (as in Donaldson and Hornbeck (2016)) and no labor mobility (as
in this paper) are two extreme cases, with reality somewhere in between. See for example Tombe and Zhu
(2017) for a quantitative analysis of labor mobility and trade costs in China and Redding (2016) for a more
general analysis.
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is the iceberg trade cost. κ contains constants such as the interest rate (which is equalized

across locations because of perfect capital mobility). As in Donaldson and Hornbeck (2016)

and Redding and Venables (2004), we refer to (4) as ‘consumer market access’.

Gravity Eaton and Kortum (2002) show that the trade flow from i to j can be written as

Xij = κ1Ai (q
α
i w

γ
i )−θ τ−θij CMA−1

j Yj. (5)

This is a gravity equation as in many other microfoundations of trade.25 We can aggregate

over destinations and assume balanced trade to obtain a location’s income as

Yi =
∑
j

Xij = κ1Ai (q
α
i w

γ
i )−θ

∑
j

τ−θij CMA−1
j Yj. (6)

The sum is equal to ‘firm market access’. Donaldson and Hornbeck (2016) show that when

trade costs are symmetric, then this must equal consumer market access (up to a constant

ρ) and they call this simply ‘market access’ (MA). Hence, income can be written as

Yi = κ1Ai (q
α
i w

γ
i )−θMAi, (7)

where

MAi = ρ
∑
j

τ−θij MA−1
j Yj. (8)

Real Income In the data, we observe real income as measured by night lights. We there-

fore write (6) in terms of real income by exploiting the relationship between the price index

and market access in (4). Furthermore, we can substitute for the factor prices using the

factor shares and income from the Cobb-Douglas production function to obtain real income,

Y r
i =

(
κ2Ai

) 1
1+θ(α+γ)

(
α

Li

) −θα
1+θ(α+γ)

(
γ

Hi

) −θγ
1+θ(α+γ) (

MAi
) 1+θ(1+α+γ)

(1+θ(α+γ))θ , (9)

where κ2 contains κ1 and ρ. Similarly, market access can be written as

MAi = ρ
1+θ
θ

∑
j

τ−θij MA
−(1+θ)

θ
j Y r

j . (10)

Equation (9) shows that income of a location depends on its productivity (A), immobile

25See for example Head and Mayer (2014) for a discussion of different microfoundations of the gravity
equation.
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production factors (L and H), and market access (MA). Equation (10) shows that the effect

of transport infrastructure (which affects the shortest paths and thus changes the trade

costs τ) affect income through the market access measure. Equations (9) and (10) jointly

determine the equilibrium. Furthermore, we assume that capital is perfectly mobile both

across domestic locations and internationally.26

Market Access and Income Taking the logarithm of equation (9) shows that income

can be written as a log linear function of market access with a constant elasticity.

lnY r
i =

(
1

1 + θ(α + γ)

)
ln
(
κ2Ai

)
+

(
−θα

1 + θ(α + γ)

)
ln

(
α

Li

)
+

(
−θγ

1 + θ(α + γ)

)
ln

(
γ

Hi

)
+

(
1 + θ(1 + α + γ)

(1 + θ(α + γ))θ

)
ln
(
MAi

)
. (11)

We will denote the elasticity of income with respect to market access as β = 1+θ(1+α+γ)
(1+θ(α+γ))θ

.

This elasticity can be estimated using panel fixed effects that exploits the time variation in

market access and income and controls for the fixed characteristics (productivity, land, and

labor). For a given β equations (9) and (10) can predict incomes for counterfactual transport

infrastructure.27

4 Reduced Form Evidence of Political Bias

Our main goal is to estimate the effect of political access on the NTHS design and the

resulting welfare costs. We first discuss the intuition behind our approach and then present

in detail our empirical strategy and results.

4.1 Intuition on Political Bias and Network Distortions

To illustrate our empirical strategy, we first discuss a simple example where a city is either

connected by the network or not, i.e. we abstract from the distance to the network. Suppose

we know the optimal network structure ‘NTHSopt’ for achieving the stated goal of connecting

26The rental rate of capital is equal to the world interest rate and the price of capital, r = r̄ × PK , where
PK is the price index of the location(s) where capital goods are traded with the rest of the world.

27Note that κ2 contains the nominal interest rate and thus the price of capital, which can depend on trade
costs and thus on the network. We will assume that capital is traded with the rest of the world at the
national price index and this yields one additional equation besides (9) and (10) that has to be solved in
equilibrium.
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the cities targeted by the NTHS policy. Such an optimal network would encode all the

economic, technical, and financial factors influencing whether or not a location is connected to

the NTHS. By contrasting the optimal network with the actual network that was constructed,

‘NTHSact’, one could tease out the effect of political access on the NTHS implementation.

Let us, for simplicity, define a discrete measure of the deviation in the actual network

relative to the optimal network:

∆NTHSopt,act(i) ≡ [NTHSopt(i)− NTHSact(i)] ∈ {−1, 0,+1}, (12)

where NTHSnet(i) ∈ {0, 1} represents whether location i is a vertex of the network NTHSnet

or not.

We conjecture that, relative to non-birthplaces, the birthplaces of top politicians are

more likely to be connected to the actual NTHS and distorted away from the optimal NTHS

benchmark. This idea is illustrated in Table 3, showing higher rates of distorted connections

(∆ = −1) and compliant connections (∆ = 0) among birthplaces (POB(i) = 1).28

Table 3: A Simple Representation of Connections and Distortions

``````````````̀∆NTHSopt,act(i)
POB(i)

0 1

+1 0.35 0.20
0 0.50 0.60
–1 0.15 0.20

sum 1.00 1.00

Building on this intuition, our reduced-form evidence estimates the political bias in the

NTHS implementation using the following regression:

∆NTHSiopt-act = α0 + α1Political Accessi1995–2001 + α2X
i + εi, (13)

where ∆NTHSiopt-act ≡ log d(i,NTHSopt) − log d(i,NTHSact) is the (log) distance from lo-

cation i to the optimal network relative to the actual. The controls X(i) include: various

pre-1992 geographic and economic indicators, province-level fixed effects, and the distance

from i to the optimal benchmark (log d(i,NTHSopt)) and to the targeted cities.

Finally, we use the post-NTHS measure – Political Accessi2008–2012 – as a placebo to check

if the effects were simply driven by an intrinsic attribute of the birthplaces of top Chinese

28A false positive here is a location that should not have received the direct link to the NTHS according
to the optimal network, but it nonetheless did in the actual.
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politicians, i.e. by unobserved time-invariant heterogeneity.29 Before turning to our results,

we present our optimal NTHS benchmark.

4.2 A Heuristic Optimal Transport Network Design

In order to measure how politicians might distort the network, we construct a benchmark

that reflects what the network could look like in the absence of political distortions. To that

aim, we approximate the optimal network in the spatial equilibrium framework of Section 3

using a heuristic network design algorithm. The model predicts how a change in the transport

network (and thus a change in the trade costs) affects income across cities. Because it is

a general equilibrium framework, it allows us to quantify the aggregate effect on national

income and thus the overall benefit of any link in the network. The cost of a link is based

on the road construction and maintenance costs and we predict these costs based on the

slope of the terrain. Combining the income gains predicted by the model and the road

construction costs, we obtain an equation for net income for each network. However, finding

the network that maximizes net income is extremely challenging in this framework, because

it is a non-convex optimization problem. Intuitively, highway links can be complements in

some cases and substitutes in other cases and there is generally no guarantee that the search

converges to the global optimum. Furthermore, the combinatorial problem of designing the

optimal network among as many as 100 nodes as in our case is so large that it is infeasible

to evaluate all possible networks. We therefore rely on a heuristic algorithm similar to Alder

(2017) that can be applied to the general equilibrium gravity model used here. Intuitively,

the algorithm starts from the full network where all cities are connected to all other cities

with a direct modern (NTHS) highway. We then evaluate each link in terms of its effect on

income net of road construction costs and remove the least beneficial links. We then check

whether there are any empty links that could be added to the network to increase welfare

(this could include links that were removed in a previous iteration). Then we remove again

the least beneficial links and the algorithm iterates in this fashion and removes and adds

links until no further improvements are possible.30 We discuss these steps in detail below.

29One could, for example, expect that cities that tend to be larger or have a university are more likely
to produce top politician, but that it also makes sense economically to connect them. The planner, who
observes this and maximizes national welfare, might then connect these cities. If we do not observe these
characteristics, then we might wrongly attribute the deviation to a political distortion.

30Fajgelbaum and Schaal (2017) also consider the problem of designing the optimal transport network, but
not in the gravity framework used here. Felbermayr and Tarasov (2015) focus on the optimal distribution
of transport infrastructure on a line. Burgess et al. (2015) design networks by sequentially connecting nodes
with the highest market potential.
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General Equilibrium Income The model in Section 3 predicts a simple relationship

between income and market access. Furthermore, we have seen that the effect of transport

infrastructure on income is captured by this measure of market access. Donaldson and

Hornbeck (2016) show that the framework can be used to predict the effect of counterfactual

transport networks. Combining the fixed terms like land, labor, and total factor productivity,

we can simplify equation (11) to the following relationship:

Y r
i = Bi (P )

−(1−α−γ)θ
1+θ(α+γ) (MAi)

β (14)

where market access, MAi, is again given by (10) and P is the price of capital (which is

constant across locations but can vary over time and networks). The elasticity of income

with respect to market access, β, can be estimated using panel data with variation in trade

costs. We do not estimate β for our baseline results and instead use the estimate from Alder

(2017) from an Indian highway network. However, we also estimate this elasticity in the

appendix using GDP data and the results are similar. Alder (2017) finds an elasticity of

light with respect to market access of 0.65. The elasticity of GDP with respect to light is

approximately 0.3 (Henderson et al., 2012), which yields an elasticity of GDP with respect

to market access of about 0.2.

Recall that the equilibrium market access measures are the solution to (10). For a given

network, we determine the iceberg trade costs among all nodes based on a shortest path

algorithm as described in Section 2.1. Since we observe both income and travel times with

the actual network, we can compute the general equilibrium market access measures and

then solve for Bi (productivities and fixed factors) from Equation (14). Holding Bi fixed,

one can then compute general equilibrium income for counterfactual networks (i.e. for the

implied iceberg trade costs that are derived as the solution to the shortest path problem) by

jointly solving Equations (14) and (10). By solving this system of equations, it is therefore

possible to compute the gain in income from adding or removing a link from the network.

In order to obtain the net effect, one also needs to calculate the road construction cost of

each link, which we consider next.

Road Construction Costs and Path through the Terrain The framework described

above allows us to predict the effect of a link on aggregate income, but we also need to

take into account the cost of forming links. We assume that the cost associated with the

construction of a highway network depends on the terrain, in particular on the slope. We

again rely on a shortest path algorithm that finds the cheapest way to build a road through a
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cost-surface determined by slope.31 Figure 3 shows part of the Chinese terrain where darker

pixels represent steeper slope. The green line is the path that is chosen through this cost

surface in order to minimize the road construction costs based on Dijkstra’s algorithm.

Figure 3: Road construction costs and least-cost path

The maps shows the optimal path through a road construction cost surface based on the slope of the terrain.
Darker pixels represent steeper slope.

Using (14) and (10), we predict the change in income that results from adding a link to a

given network. Subtracting from this the road construction costs that accumulate along the

least-cost path of this link (as illustrated in Figure 3), yields the net benefit of each link. This

requires translating the road construction costs (which are in units of the cost surface) to

an annual pecuniary cost of constructing this link that we can compare to the income gains.

This is a potentially important parameter for the trade-off between the benefits and costs

of road construction. Fortunately, there is a straightforward way to calibrate this parameter

in a way that best suits our context. In particular, we know that the total construction

of the actual NTHS network cost $120 billion (Faber, 2014). Using the road construction

cost surface based on the slope of the terrain, we can replicate the NTHS and determine the

construction cost of the NTHS in units of the cost surface. The ratio between the costs in

USD and the cost surface then yields the factor that we use to obtain the USD cost of any

network.

Since our model is static, the effects on income should be interpreted as an annual

effect. To annualize the construction costs, we assume an interest rate of 5% and an annual

maintenance cost of 12%.32

31Faber (2014) also approximates the road construction costs based on features of the terrain such as slope
and land cover and he discusses the mapping of these features into a cost index. We use the same approach,
but focus on slope as a determinant of road construction costs.

32Allen and Arkolakis (2014) also assume a capital cost of 5%. They study the U.S. interstate highway
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Objective Function We search for the network that maximizes aggregate income net of

road construction costs. Given a starting network, we evaluate the net gain from the addition

(or removal) of an individual link l of the network as follows:

∆Wl = ∆Y r
l − (r +m)λCl, (15)

where ∆Y r
l is the difference in aggregate real income implied by the solution to Equations

(14) and (10) for the network with and without link l, r is the annual interest rate, m is

the annual maintenance cost, λ is the factor to translate the construction costs based on the

terrain, Cl, to monetary costs.

Heuristic Algorithm The objective function above intuitively captures the benefits and

costs of an individual link. It is similar to the objective used in Gastner and Newman (2006)

who consider the problem of constructing the optimal network among facilities by balancing

the construction costs and total travel time. The key difference is that in our case the benefit

is computed from the effect of the reduced travel time on income in a general equilibrium

framework, while they use the total travel time.33 We then use a simple iterative procedure

that starts from the fully connected network and evaluates for each link how much its removal

would change aggregate net income based on equation (15). The 5% least beneficial links

are then removed from the network.34

In the second stage, the algorithm evaluates all links that could be added to the network

and adds those that yield a positive net gain. The algorithm then goes back to the first

stage and removes the least beneficial links. It iterates in this fashion until no further gains

are possible while connecting all targeted cities in the network.

network and they report maintenance costs of about 12% of the road construction costs. We use the same
capital and maintenance costs, but we recognize that there could be differences in the Chinese context. See
Table A1 in the appendix for a summary of all model parameters.

33We capture the benefit of a link based on the general equilibrium market access measures that capture
indirect network effects of adding or removing a link. In contrast, the objective function in Gastner and
Newman (2006) depends on the total travel time (along the shortest path) through the network and it does
not reflect the aggregate economic benefit of a link in general equilibrium. Consequently, their objective
function does not take into account spillover effects such as trade diversion. Furthermore, their cost of the
network are not based on the terrain. They use simulated annealing in order to search for the optimal
network and Gastner (2005) compares different algorithms to search for the optimal network, including the
iterative approach that we use in this paper. It is important to note that these are heuristic algorithms that
do not guarantee that the solution is the globally optimal network. However, Alder (2017) shows that the
resulting network is robust to starting from the empty or from random networks.

34We remove 5% of the links at once in order to save computing time and avoid redundancies. Alder
(2017) discusses the robustness of this approach in more detail.
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Network Designs and Comparison to Actual Network The NTHS had the objective

of connecting all cities with a population of at least 500,000 and all provincial capitals in

a common network. The heuristic algorithm described above approximates the optimal

(income-maximizing) network among these nodes. We impose the constraint that all nodes

are connected in the network in order to replicate the official strategy. This constraint implies

that the marginal costs and benefits may not be equalized in the solution. The resulting

network is shown in Figure 4.

In Figure 5, we plot the optimal network (orange line) together with the actual NTHS

(black line). We observe that the two networks have a relatively similar structure overall, but

there are still substantial deviations in many of the individual links. The difference in net

aggregate income between the actual NTHS and the approximation of the optimal network

is 1.45% of GDP.35 In our empirical analysis, we will test whether these deviations can be

explained by the birthplaces of politicians.

Figure 4: Approximation of optimal Chinese highway network in mainland China

The maps shows the approximation of the optimal highway network in China based on the heuristic algo-
rithm with the constraint that all targeted cities are connected. The background shows the slope of the
terrain of mainland China. The nodes show the location of all cities with a population of at least 500,000
and all provincial capitals.

35While this is a substantial amount given the size of the Chinese economy, the difference is substantially
smaller than for example the comparison between the Indian Golden Quadrilateral and the corresponding
income-maximizing network (see Alder, 2017).
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Figure 5: Comparison of actual and optimal highway network in mainland China

The maps shows the approximation of the optimal highway network in China (orange line) together with
the actual NTHS (black line). The background shows the slope of the terrain of mainland China. The
nodes show the location of all cities with a population of at least 500,000 and all provincial capitals.

An alternative constraint for the design of the network is to impose the same cost as the

actual network, but not requiring that all nodes are connected. Using the same heuristic

algorithm described above and starting from the full network, we sequentially remove and

add links until the total construction costs are equal to the reported actual cost of the

NTHS. The result is shown in Figure 6. We observe that the algorithm in this case does not

connect the more remote locations that are more expensive to connect, such as Lhasa in the

Southwest of China, the administrative capital of Tibet.

Minimum Spanning Tree as Alternative Network Design As an alternative network

design, we also consider the least-cost network. This is also called the minimum spanning

tree and it is applied to China by Faber (2014) as an instrument for the actual NTHS.

This network design does not take into account the benefit of road construction and instead

minimizes the construction cost under the constraint that all nodes are connected. The

minimum spanning tree can be computed with Kruskal’s algorithm (Kruskal, 1956) and the

result is shown in Figure 7.
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Figure 6: Heuristic optimal Chinese highway network with same cost as actual NTHS but
not forcing to connect all targets

The maps shows the approximation of the optimal highway network in China based on the heuristic al-
gorithm with the constraint that the road construction costs approximately equal the actual cost of the
NTHS. The background shows the slope of the terrain of mainland China. The nodes show the location of
all cities with a population of at least 500,000 and all provincial capitals.
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Figure 7: Least-cost network (minimum spanning tree)

The map shows the least-cost network, i.e. the minimum spanning tree that is computed with the Kruskal
(1956) algorithm. The background shows the slope of the terrain of mainland China. The nodes show the
location of all cities with a population of at least 500,000 and all provincial capitals.
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4.3 Results

Having constructed optimal network benchmarks, we now estimate the political bias in the

NTHS design using equation 13:

∆NTHSiopt-act = α0 + α1Political Accessi1995–2001 + α2X
i + εi.

Our baseline results are shown in Table 4. We estimated the political infrastructure bias

specified in equation 13 using three different network benchmarks: (i) the budget-constrained

heuristic optimal network labeled ‘BCT’ (see specifications 1–2), (ii) the unconstrained

heuristic optimal network labeled ‘OPT’ (see specifications 3–4), and (iii) the commonly-

used minimum spanning tree network labeled ‘MST’ (see specifications 5–6). Our controls

include: province fixed effects, county area size, 1992 county political direct and indirect

access measures, the distance to the benchmark network, the distance to railroad network,

the distance to the nearest port, the distance to the trunk road network, and the 1992 light

intensity.

Table 4: Effect of birthplaces on the deviation from an optimal network ∆NTHSiopt-act

MST BCT OPT
∆NTHSimst-act ∆NTHSibct-act ∆NTHSiopt-act

(1) (2) (3) (4) (5) (6)

Political Accessi1995–2001 0.319∗∗ 0.308∗∗ 0.322∗∗ 0.315∗∗ 0.315∗∗ 0.309∗∗

(0.141) (0.144) (0.143) (0.147) (0.141) (0.146)

Political Accessi2013–2017 (placebo) 0.079 0.048 0.043
(0.112) (0.111) (0.109)

Dist MST 0.672∗∗∗ 0.672∗∗∗

(0.038) (0.038)

Dist Optim (NTHS budget) 0.839∗∗∗ 0.839∗∗∗

(0.046) (0.046)

Dist Optim 0.815∗∗∗ 0.815∗∗∗

(0.056) (0.056)

Dist Targets -0.026 -0.027 -0.214∗∗ -0.215∗∗ -0.199∗∗ -0.199∗∗

(0.067) (0.067) (0.084) (0.084) (0.084) (0.084)
Observations 2175 2175 2175 2175 2175 2175
Adjusted R2 0.357 0.357 0.485 0.485 0.472 0.472

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The dependent variable in columns 1 and 2 is the difference between each county’s distance to the optimal network (with the same
cost as the actual network) and the actual network. The dependent variable in columns 3 and 4 is the difference between each
county’s distance to the (unconstrained) optimal network and the actual network. The dependent variable in columns 5 and 6 is
the difference between each county’s distance to the minimum spanning tree (MST) and the actual network. The main explanatory
variable is an index for politicians’ place of birth. All regressions control for initial light density, county area, distance to ports,
distance to railroads, distance to trunk roads, and province fixed effects. Standard errors are clustered at the province level.
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Across all specifications, we find that locations with more powerful natives at the time

of the NTHS implementation also had a distorted proximity to the actual NTHS, compared

to the optimal network prescription. In contrast, using the placebo political access variable

Political Accessi2008–2012, we find that the birthplaces of politicians in power following the

implementation of the NTHS are not more likely to be closer to the actual NTHS relative

to the optimal design.

These estimates of the political bias in the transportation network infrastructure naturally

motivate the question of the aggregate effects of such distortions. We turn to the model to

guide this quantitative investigation, informed by the reduced-form evidence.

5 Aggregate Welfare Effects of Political Bias

5.1 Quantitative Aggregate Effects

Building on the empirical evidence, we use the general equilibrium model to quantity the

aggregate welfare effects of the sub-optimal distortions arising from political frictions. The

difference in net aggregate income between the actual NTHS and the (unconstrained) optimal

network is 1.45% of GDP. However, this difference cannot fully be attributed to the political

distortion, since the birthplaces explain only part of the deviation between the actual and

optimal network. We therefore construct counterfactual networks with and without the

political connections in order to quantify how much of the total distortion can be explained

by the birthplaces.

Actual vs. Optimal NTHS To estimate the quantitative effects of political infrastruc-

ture distortions, we characterize the spatial equilibrium across N potential nodes that are

connected either optimally or sub-optimally due to political frictions.

Because of the computational complexity of the optimal network problem, we restrict the

number of potential nodes to N = 102 cities chosen to include: (i) the 62 target cities that

are targeted by the NTHS mandate, (ii) 20 birthplaces that are the most distorted relative

to the optimal benchmark (∆NTHSibct-act > 0), and (iii) 20 ‘counterfactual’ non-birthplace

cities that are distorted away from the optimal benchmark (∆NTHSibct-act < 0).36

The 20 birthplaces that are the most distorted are shown in Figure 8 along with the

actual and the optimal NTHS paths. Some of these birthplaces are visibly much closer to

the actual NTHS than the optimal network design.

36We defined ∆NTHSi
bct-act ≡ log d(i,NTHSbct) − log d(i,NTHSact) and selected the largest and densest

cities based on luminosity.
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Using these N cities, we then construct two networks and compare the corresponding

welfare values. The first network is a ‘politically distorted network’ constructed as the

optimal network connecting the 62 target cities as well as the 20 birthplaces. The second

network is the ‘undistorted optimal network’ constructed as the optimal network connecting

the 62 target cities. In the ‘politically distorted network’, the counterfactual cities may be

connected if it is optimal to do so, but the birthplaces are by construction connected to the

network. In the ‘undistorted optimal network’, both counterfactual cities and birthplaces

may nor may not be connected depending on the optimal path joining target cities and the

net economic gain.

Figure 8: Actual vs. optimal NTHS and distorted birthplaces

The orange lines show the approximation of the optimal network among the 62 officially targeted cities
(red dots). The black lines show the actual network. The green dots show the cities that are predicted to
be connected based on politicians’ birthplaces. The background shows the slope of the terrain of mainland
China.

Results We estimate that the welfare gains from eliminating the political frictions from

the ‘politically distorted network’ towards the ‘undistorted optimal network’, and contrast

these welfare gains with the overall welfare gains of moving from the ‘actual’ network to the

‘undistorted optimal network’.

Our main result is that annual income is 0.2 percent lower in the ‘politically distorted

network’ economy compared to the ‘undistorted optimal network’. These are non-trivial
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welfare effects given the size of the China’s economy. These welfare effects also represent

a conservative lower bound on the effects of political bias. In contrast, the “actual’ NTHS

network features an annual income that is 1.45 percent less than the ‘undistorted network’.

One could construct alternative ‘politically distorted networks’ that explain a larger fraction

of the welfare difference between the actual NTHS and the optimal NTHS. Altogether,

these results suggest that political frictions to infrastructure networks generate non-trivial

aggregate welfare effects in China.

Table 5: Effect of Politically-Driven NTHS Access on Light Growth

∆ log lighti2002-2007

with instruments for
∆NTHSimst-act ∆NTHSibct-act ∆NTHSiopt-act

(1) (2) (3) (4) (5) (6)
Dist MST 0.656∗∗∗ 2.357∗∗∗

(0.180) (0.403)

∆̂NTHS
i

mst-act -3.367∗∗∗

(0.626)

Dist Optim (NTHS budget) 0.647∗∗∗ 3.052∗∗∗

(0.134) (0.566)

∆̂NTHS
i

bct-act -3.383∗∗∗

(0.712)

Dist Optim 0.755∗∗∗ 2.966∗∗∗

(0.133) (0.533)

∆̂NTHS
i

opt-act -3.171∗∗∗

(0.672)

Political Accessi1995–2001 0.664 0.623 0.633
(1.311) (1.303) (1.309)

Observations 1650 1650 1650 1650 1650 1650
Adjusted R2 0.171 . 0.174 . 0.176 .
Kleibergen-Paap Wald F – 15.30 – 9.34 – 9.88

Standard errors in parentheses

Note: Sample restricted using distance to target cities.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.2 Local Reduced Form Evidence

We further illustrate the welfare costs of political frictions in infrastructure networks using

local reduced form evidence. To do so, we estimate a light growth regression in the spirit
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of Faber (2014) to trace out the growth effects of politically-driven NTHS access using the

following 2SLS equation:

∆ log lighti2002-2007 = θ0 + θ1∆̂NTHS
i

opt-act + θ2Z
i + ηi, (16)

where the first-stage is based on the political bias (see equation 13 and Table 4),

∆̂NTHS
i

opt-act = α̂0 + α̂1Political Accessi1995–2001 + α̂2X
i.

The reduced form evidence of local growth effects is summarized in Table 5. We find that

politically-driven proximity to the NTHS is associated with slower light growth.37 This result

suggests that political frictions to infrastructure networks may reduce overall growth, even

beyond the standard channels at work in the simple workhorse model: observed distortions

to internal trade costs are only the tip of the iceberg of the effects of political frictions to

the infrastructure network.38

6 Robustness

In this section we discuss the robustness of the network design to international market access,

different parameters for the elasticity of light with respect to market access, and dropping

the constraint to connect all 62 cities.

6.1 International Ports

The baseline analysis assumes a closed economy and the optimal network therefore does not

take into account the connections to the rest of the world. We address this by identifying

the eight largest Chinese ports and allow them to have additional weight by increasing their

income in proportion to their exports.39 We use a simple approximation of the trade volumes

going through target cities in our sample and then recompute the optimal network.

We obtain the data on the largest ports from Table 4.2. in UNCTAD (2017). The data

includes the container port volumes in twenty-foot equivalent units of the 40 largest ports

across the world. According to UNCTAD (2017), these ports account for 60% of world trade.

Eleven out of the 40 largest port are Chinese and eight of them correspond to our target

cities. We assume that these ports account for 60% of China’s trade, which allows us to

37The F-statistics are slightly marginal, especially when using the deviations from the optimal networks.
38Lu and Wang (2016) offer evidence on reduced incumbent firm productivity in the wake of NTHS access.
39This approach is based on Donaldson and Hornbeck (2016).
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approximate each port’s trade in USD by using the total USD amount of global and Chinese

trade in 2016.40 We then add the trade volume of each port to its GDP and recompute the

optimal network. The resulting network, shown in Figure 9, is similar to the baseline version.

There are very few additional links and the overall structure is the same. One reason for why

the addition of international markets in the form of additional demand in port cities does

not affect the overall structure, is that the network already connects these port cities well in

the baseline.41 Incorporating international trade through port cities does not significantly

change the welfare gain from the optimal network, which is 1.45% compared to the actual

network.

Figure 9: Optimal network with port cities

The map shows the optimal network when port cities’ incomes are increased in proportion to their exports.
The green dots show the location of the eight major ports. The red nodes show the location of all cities
with a population of at least 500,000 and all provincial capitals. The background shows the slope of the
terrain of mainland China.

40Ideally we would use trade flows through the major ports in 1992, but we do not currently have this
data.

41Note that the decision whether or not a link is upgraded to a modern NTHS is binary. There is
no additional capacity that is built because there is no congestion. This reduces the incentives to build
additional links to target cities when their income increases due to the ports. However, there are a few
exceptions in the network where links are added because demand increases overall.
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6.2 Estimation of Elasticity

In order to solve for income with counterfactual transport networks, we need to make as-

sumptions on the parameters in the model. A key parameter is the elasticity of income

(light) with respect to market access, which we take from Alder (2017).42 However, it is

also possible to estimate this elasticity using the Chinese data. We use the light data in

order to construct a panel of income at the county level. Furthermore, we need the maps

of the transport network over time. We use the 1990 road maps from the MIT Geo Web

(see Section 2.1) and combine them with the maps of the NTHS. We compute the iceberg

trade costs pre- and post NTHS construction and solve for market access. This allows us

to estimate the elasticity β in equation (14) in long differences from 1992 to 2013. As in

Alder (2017), we instrument market access with a version that holds income constant and

only varies over time due to the reduction in trade costs. Furthermore, we control for the

distance to ports, to the nearest rail, to the coast, and for province fixed effects.

The point estimates of the elasticity (not reported here) are similar to the baseline value

and range from 0.459 to 0.724. The resulting structure of the optimal network is not affected

substantially by this relatively small variation in the elasticity. Figure 10 shows the resulting

network with the largest point estimate 0.724. The difference to the baseline network struc-

ture is small, but there are a few additional connections as we would expect.43 Overall, this

suggests that the network design is not sensitive to reasonable variation in the elasticity. The

welfare gains of 1.53% from the heuristic optimal network are somewhat larger compared to

the baseline of 1.45%. If we use an elasticity of β = 0.459, then the welfare gains are 1.24%.

6.3 Dropping Target Cities as Constraint

In our baseline, we impose that the network design algorithm connects all targeted cities

because this was specified by the policy. We view this as the relevant comparison to the

actual network because it implements the specified policy. However, it also implies that

the heuristic optimal network design is constrained. To investigate the relevance of this

constraint, we recompute the optimal network with the same algorithm, but we do not

impose that all 62 nodes are connected. To first compare the results to the baseline, we

instead impose the constraint that the total cost of the network is the same as the actual

cost of the NTHS. The result is shown in Figure 11. We observe that the overall structure of

42Note that the elasticity in the model is a collection of parameters that are not identified separately.
However, it is necessary to also assume values for the trade elasticity θ, which we set to 8, and the combined
land and labor share, which we set to 0.7.

43If instead we used an elasticity of β = 0.459 (the lowest point estimate when estimating the effect of
market access on income in China), then we again get a similar network that only differs from the baseline
by a small number of links that would be dropped.
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Figure 10: Heuristic optimal network with β = 0.724

The maps shows the approximation of the optimal highway network in China based on the heuristic algorithm with the constraint that all
targeted cities are connected. The background shows the slope of the terrain of mainland China. The nodes show the location of all cities with
a population of at least 500,000 and all provincial capitals.
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Figure 11: Approximation of optimal Chinese highway network: same cost as actual network
but not forcing to connect all targets

The maps shows the approximation of the optimal highway network in China based on the heuristic algorithm without the constraint that all
targeted cities are connected. The background shows the slope of the terrain of mainland China. The nodes show the location of all cities with
a population of at least 500,000 and all provincial capitals.

the network is again similar, but a small number of remote nodes are not connected anymore.

Since we remove one constraint and add another one, it is not a priori clear in which direction

the welfare effect changes. We find that the welfare gains from the heuristic optimal network

in this version is 1.41% and thus slightly smaller than in the baseline case where we did not

constrain the network to have the same cost as the actual. When we drop both constraints,

i.e. we neither impose that all 62 nodes are connected nor that the cost is the same as in the

actual, then we find that the welfare gains would be 1.53%. As expected, the welfare gains

are largest in this unconstrained case.

7 Conclusion

In the 1990s, China embarked on a major overhaul of its transportation network. The

National Transportation Highway System (NTHS) modernized the transportation infras-

tructure by connecting China’s largest cities through a network of 35,000 km. We study

potential distortions in such large-scale infrastructure networks in the context of centrally-
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planned system like China.

Using detailed data on politicians that we match with administrative units and heuristic

network optimization techniques, we document that the birthplaces of incumbent political

leaders during the highway’s implementation are systematically closer to the actual network,

compared to the counterfactual optimal network. We quantify the welfare effects of the

deviations of the actual network and assess the potential contribution of political distortions

to the infrastructure network. Counterfactual networks distorted to favor incumbent leader

birthplaces generates non-trivial welfare losses. We also show that, in the data, political

distortions are associated with reduced growth using nighttime satellite data.

These findings suggest that political frictions in public infrastructure networks and their

misallocative effects merit further empirical and theoretical study.
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A Appendix

B Additional Tables

Table A1: Parameters

Parameter Value Role

β 0.2 Elasticity of income with respect to market ac-
cess

θ 8 Trade elasticity

α – (enters through β) Land share in the production function

γ – (enters through β) Labor share in the production function

ρ 1 Scalar for FMA = ρCMA

ω Calibrated to match
median iceberg trade
cost of 1.25

Scaling of travel time

χ 0.8 Concavity of trade cost in travel time

λ Calibrated to match ra-
tio of USD cost of
NTHS to costs based on
topography

Scalar to map road construction cost based on
topography to USD costs

r 0.05 Annual cost of capital

m 0.12 Annual maintenance costs
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Table A2: Upper Echelon Native Politicians across Counties

PPPPPPPPP1997
2002

0 1 2

0 2253 15 1
1 9 10 0
2 0 0 1

This table shows a two-way frequency table, across counties, of the number of native politicians in the upper echelon of the
party in 1997 and in 2002. Most counties have no natives at the top and there is a fair amount of turnover from one congress
to the next.

Table A3: Upper Echelon Native Politicians across Counties

PPPPPPPPP2002
2007

0 1 2

0 2239 23 0
1 11 14 0
2 1 0 1

This table shows a two-way frequency table, across counties, of the number of native politicians in the upper echelon of the
party in 2002 and in 2007. Most counties have no natives at the top and there is a fair amount of turnover from one congress
to the next.

Table A4: Upper Echelon Native Politicians across Counties

PPPPPPPPP1997
2007

0 1 2

0 2236 32 1
1 14 5 0
2 1 0 0

This table shows a two-way frequency table, across counties, of the number of native politicians in the upper echelon of the
party in 1997 and in 2007. Most counties have no natives at the top and there is even more turnover after two political
cycles.
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