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Abstract

I study how the two major types of business investment, equipment investment and

structures investment, are differently linked to stock returns. I empirically show that

equipment investment has a significantly stronger predictive power for stock returns

than structures investment, both in-sample and out-of-sample, using US aggregate-, US

asset-, US industry-, and UK aggregate-level data. To explain this empirical finding, I

build a general equilibrium production model in which it takes a shorter time-to-build

for equipment investment than for structures investment to transform into productive

capital. In the model, equipment investment reacts to productivity shocks in a more

timely manner, and thus it reflects more of the information contained in stock prices.

In addition, the model provides theoretical support for previous empirical findings of

return predictability uncovered from planned investment.

Keywords: Equipment Investment, Structures Investment, Time-To-Build, Stock Re-

turn Predictability, Production-Based Asset Pricing

JEL : G12, E44

∗I am deeply indebted to my dissertation committee, Hengjie Ai, Frederico Belo, Bob Goldstein, Erzo
Luttmer, and Colin Ward, for their continuous encouragement and invaluable advice. I thank Harjoat
Bhamra (discussant), Maria Cecilia Bustamante, Ilan Cooper, Yao Deng, Adlai Fisher (discussant), Daniel
Green, Murray Frank, Jun Li, Erik Loualiche, Stig Møller (discussant), Juliana Salomao, Richard Thakor,
Jincheng Tong, Stijn Van Nieuwerburgh, Tracy Wang, and Lu Zhang for helpful conversations and comments.
I also thank seminar and conference participants at University of Minnesota, University of Texas Dallas,
Tulane University, AQR Capital Management, Singapore Management University, National University of
Singapore, City University of Hong Kong, University of Melbourne, BI Norwegian Business School, Northern
Finance Association (NFA) 2017 meetings in Halifax, French Finance Association (AFFI) 2018 meetings in
Paris, and North American Summer Meeting of Econometric Society (NASMES) 2018 in Davis, Corporate
Policies and Asset Prices (COAP) Conference 2018 in London for comments. All errors are my own.
†City University of Hong Kong, Department of Economics and Finance. Email: dingluo@cityu.edu.hk.

1

mailto:dingluo@cityu.edu.hk


1 Introduction

Firms’ investment decisions are forward-looking and respond to changes in discount rates.

For example, firms tend to invest more when discount rates are low.1 Consistent with this,

Cochrane (1991) finds that aggregate investment negatively predicts future stock market

returns. However, capital inputs are heterogeneous: A manufacturing plant is substantially

different from a machine in investment lag (e.g., delivery lag, planning lag, or construction

lag), depreciation rate, production use, and so on. Thus, different types of capital investment

could respond differently to changes in discount rates and show different patterns of time-

series return predictability.

In this paper, I ask whether the two major types of business investment, equipment (e.g.,

machines) and structures (e.g., factories), show different predictions for future stock market

returns. I find that the answer is yes: Equipment investment predicts market returns well

both in-sample and out-of-sample, while structures investment shows insignificant prediction.

To investigate the reasons behind, I build a general equilibrium production model to quantify

how each heterogeneity between equipment and structures contributes to the difference in

return predictability. I find that the heterogeneity in investment lag is the driver. It is

widely believed that structures investment requires a longer time to complete than equipment

investment: It takes about two years to plan and build a manufacturing plant, and only one

to two quarters to deliver industrial equipment. Due to the short investment lag, equipment

investment is sensitive to changes in fundamental economic conditions and discount rates.

Structures investment with the long investment lag, however, displays delayed responses to

those changes, leading to low return predictability.

I use the investment data from the US Bureau of Economic Analysis (BEA) to document

the novel empirical evidence on heterogeneous return predictability between equipment and

structures. I first show that at the aggregate level the investment rate of nonresidential

equipment predicts future stock market returns significantly better than the investment rate

of nonresidential structures, both in-sample and out-of-sample. The 20-quarter prediction

1For surveys in investment, see Jorgenson (1971), Abel (1990b), Chirinko (1993), Caballero (1999), Bond
and Van Reenen (2007), etc.
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R2, for equipment versus structures, is 39% versus 8% in-sample and 35% versus negative out-

of-sample. Also the prediction coefficient is significantly negative for equipment, and negative

but insignificant for structures. I provide further evidence on the stronger predictive power of

equipment by using disaggregated US asset- and industry-level data, and UK aggregate-level

data.

In addition to the heterogeneous associations with stock returns, I also find that equip-

ment investment and structures investment show different patterns of business cycle fluctu-

ations. Equipment investment comoves with total factor productivity (TFP), but structures

investment lags TFP for four quarters.2 This suggests that equipment investment responds

to TFP changes more quickly than structures. Fluctuations in TFP are a key underlying

economic force for movements in discount rates. In good economic times, TFP is high and

aggregate risk is low, and vice versa.3 Thus, the quicker response of equipment investment

to TFP changes could lead to equipment’s quicker response to discount rate changes and

higher predictability for future stock market returns.

Based on this intuition, I build a general equilibrium production model with TFP shock

as the driving force of the economic fluctuations to explain my empirical findings. I use

a time-to-build (TTB) specification (Kydland and Prescott (1982)) from macro literature

to capture investment lags. The key model assumption is that structures investment has

a longer TTB than equipment investment (5 quarters for structures versus 1 quarter for

equipment), with most resources required in later stages of investment projects or so-called

time-to-plan (TTP; see Christiano and Todd (1996)). In the model, in addition to the hetero-

geneity in TTB, equipment is different from structures in several other respects. Equipment

depreciates faster,4 has a higher factor share in aggregate production,5 and has a potentially

2Structures investment also lags GDP more quarters than equipment investment does.
3In a strand of production-based asset pricing literature, the stochastic discount factor is assumed to be

exogenous and depend on TFP. See Zhang (2005).
4The slower depreciation of structures is positively related to its longer TTB, as stated in Prescott

(2016), as follows: “Stocks of capital lagged output, with the lag increasing with the durability of the
capital. Inventory stock was almost contemporaneous, producer durables stocks lagged a few quarters, and
structures lagged a couple of years”.

5See Valentinyi and Herrendorf (2008).
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different adjustment cost.6,7 The model can generate the comovement between equipment

investment and TFP and the lagging behavior of structures investment to TFP, as in the

data. Importantly, the model also produces the stronger power of equipment investment

than structures investment for predicting future stock market returns, consistent with this

paper’s main empirical finding. By considering how alternative models perform when each

heterogeneity is removed separately, I show that only heterogeneous TTB, among all of the

heterogeneities, is necessary for these model predictions.

The model works as follows. When a positive TFP shock hits the economy, equipment

investment and the stock price increase immediately, and the expected stock return falls.

But due to TTB along with TTP, structures investment has small increases initially and big

rises in later periods. The delayed response of structures investment results in its lagging

behavior to TFP. It also causes its weaker performance for return prediction, because to-

day’s structures investment has not fully absorbed the good news already reflected in stock

markets.

The model produces satisfactory macro quantities and asset prices. Consumption is less

volatile than output, while investment fluctuates much more than output. The equity risk

premium is high and volatile (4.28% mean and 15.01% volatility for unlevered returns). To

achieve this good fit, I have followed Chen (2017) and introduced external habit preference

(Campbell and Cochrane (1999)) and high capital adjustment costs into the model. Since

external habit preference gives rise to large fluctuations in discount rates, a positive TFP

shock in the model acts, essentially, as a negative discount rate shock. When a positive TFP

shock hits the economy, the stock price and stock return rise on impact, but the dividend falls.

The future stock price has to fall to accommodate the fall in the dividend. To demonstrate

this mechanism more formally, I follow Campbell and Shiller (1988) and decompose the

6Israelsen (2010) uses GMM estimation and finds a higher adjustment cost curvature for equipment than
structures. The opposite is assumed in the calibration in Jermann (2010).

7There are other differences between equipment and structures that I do not model. Equipment invest-
ment has higher tax benefits (House and Shapiro (2008)); the relative price of equipment investment to
consumption has been declining, while the relative price of structures investment to consumption has been
increasing (Greenwood, Hercowitz, and Krusell (1997); Jones (2016)); equipment capital complements skilled
labor, which structures capital substitutes for (Krusell, Ohanian, Ŕıos-Rull, and Violante (2000)); equipment
investment contributes to economic growth more (De Long and Summers (1991)); equipment can be either
purchased from abroad or produced domestically, while structures cannot be purchased from abroad (House,
Mocanu, and Shapiro (2017)).
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dividend-price ratio into discount rates (long-run stock returns) and cash flows (long-run

dividend growth). By using vector autoregression (VAR) analysis, I find that discount rates

instead of cash flows drive almost all of the variation in the dividend-price ratio in the model

as in the data.

The model assumption of longer TTB in structures than equipment is consistent with

the empirical evidence. First, this assumption produces the right lead-lag relations between

investment and TFP, as in the data. The 5-quarter TTB for structures gives rise to the 4-

quarter lag of structures investment to TFP, while the 1-quarter TTB for equipment causes

equipment investment to comove with TFP. Second, this assumption is consistent with the

direct evidence from economic surveys. Using the Census Bureau’s Survey of Manufacturers’

Shipments, Inventories, and Orders, Jones and Tuzel (2013a) show that the delivery lag

(approximated by the ratio of unfilled orders to shipments) is about 2-6 months for durable

equipment.8 Based on the Census Bureau’s Survey of Construction Spending, also known

as the Value of Construction Put in Place Survey, Montgomery (1995) finds that the value-

weighted construction length of time for nonresidential structures projects is 16.7 months

over the period 1961-1991. I update this statistic and find that the construction length is

13.6 months over the sample 2001-2015.9

1.1 Related Literature

The key contribution of this paper is that it shows how and why different types of investment

are linked to market returns differently in the time series. Cochrane (1991) studies the

relation between aggregate nonresidential investment and market returns. I look further

into the components of aggregate nonresidential investment, i.e., equipment investment and

8In detail, the delivery lags are 1.99, 2.44, 3.28, 2.93, and 6.22 months, respectively, for primary metal,
fabricated metal, industrial machinery, electronic equipment, and transportation equipment.

9For further evidence of TTB, Mayer (1960) finds that the average time for nonresidential structures is
7 quarters between the decision to undertake the project and the completion of construction. Jorgenson
and Stephenson (1967) find the investment lag to be 6 to 12 quarters for manufacturing industries. Koeva
(2000) uses Lexis-Nexis news data and finds that the plant construction time of Compustat firms is around
2 years in most industries. Lettau and Ludvigson (2002) find indirect evidence for investment lags from
the prediction patterns of risk premium proxies for investment growth across horizons. For further evidence
of longer TTB for structures than equipment, Abel and Blanchard (1988) find that it takes on average 1
year to build an industrial structure, while it takes about 6 months to receive equipment. Boca, Galeotti,
Himmelberg, and Rota (2008) use a panel of Italian firms to estimate a structural heterogeneous TTB model
and find that TTB for equipment is 4 quarters, while TTB for structures is 2 to 3 years.
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structure investment.10

One contribution of this paper is that it provides theoretical support for previous em-

pirical findings of return predictability uncovered from planned investment, as in Lamont

(2000) and Jones and Tuzel (2013b).11 In my model, although the structures investment ex-

penditure does not predict returns, the structures investment decision or planned structures

investment does predict. Consistent with Lamont (2000), both the growth of planned struc-

tures investment and the planned structures investment rate negatively predict future market

returns. I also construct the ratio of planned structures investment to structures investment

expenditure analogous to Jones and Tuzel (2013b)’s ratio of nonresidential building starts

to structures investment expenditure (Starts/SI). I find that my ratio shows the highest pre-

dicting R2 for annual market returns. However, Starts/SI displays large predicting power at

long horizons from 5 to 7 years. This difference could be due to the inclusion of government

structures investment in Starts/SI. Belo and Yu (2013) show that government investment is

negatively correlated with private investment and positively predicts future market returns.

Further decomposition of government investment into equipment and structures shows that

equipment predicts returns positively at all horizons, while structures predicts negatively

at long horizons. Thus, it is possible that government structures counteracts the negative

prediction of private structures at short horizons, but reinforces it at long horizons.12

This paper contributes to the asset pricing literature that studies the heterogeneities be-

tween equipment and structures. Tuzel (2010) emphasizes the slower depreciation of struc-

tures than equipment and shows that firms with more real estate holdings suffer more from

bad productivity shocks and are riskier on average. Her paper focuses on cross-sectional

return predictability, while this paper focuses on time-series return predictability. Jermann

(2010) and Israelsen (2010) model equipment and structures as two types of capital with

10In the appendix, I show that intangible investment has only mild predictability for market returns. This
is consistent with the main finding that TTB decreases return predictability, since intangible investment,
such as R&D, usually takes years to complete. For example, xx shows that it takes eight years on average
for developing a drug. I didn’t include it in the main analysis for simplicity, because both equipment and
structures are tangibles.

11A recent paper by Li, Wang, and Yu (2017) shows that a bottom-up measure of aggregate investment
plans also predicts future stock market returns.

12In addition, the strong positive prediction of government equipment for returns could also contaminate
Jones and Tuzel (2013b)’s new orders to shipment ratio (NO/S), which shows predictability only at short
horizons up to 1 year.

6



different prices, adjustment costs, and depreciation rates, and investigate asset valuations

from the producer’s first-order conditions. This paper concentrates on another dimension of

heterogeneity, i.e., TTB, and studies its implications for asset prices and economic fluctua-

tions. In particular, I find that TTB reduces the elasticity of structures-capital supply and

dampens the fluctuation in structures investment. Thus, we do not necessarily need a higher

capital adjustment cost for structures, as in Tuzel (2010), to match the lower volatility of

structures investment, compared to equipment. In fact, equipment and structures have the

same adjustment cost in my benchmark calibration, while their volatilities are well matched

to the data.

This paper contributes to the literature on the implications of TTB for macro quantities

and asset prices. Kydland and Prescott (1982) is the first to show that TTB plays an

important role in shaping business cycle fluctuations. Altuğ (1993) shows that when there

is TTB, the marginal investment q does not equal the average investment q.13 A closely

related paper is Kuehn (2009). Kuehn brings TTB to asset pricing and demonstrates that

TTB can explain the negative correlation between investment growth and stock returns as

found in the data.14 In Kuehn’s model, there is a single type of capital with two-period

TTB, and utility is constant relative risk aversion (CRRA), which does not generate a large

enough risk premium. My model is more complex with two types of capital, more periods of

TTB, and external habit preference, generating realistic asset prices. In addition, as noted in

Rouwenhorst (1991), the impulse responses to TFP shocks oscillate for a TTB model with

a single type of capital and no adjustment costs. This is inconsistent with the empirical

evidence. Kuehn shows that adding investment adjustment cost can make the impulse

responses become smooth, but adding capital adjustment cost does not work. However, in

my model, even when there is no adjustment cost, the impulse responses are smooth due

to the assumption of two types of capital. Equipment with the standard 1-quarter TTB

13For other TTB implications in macro literature, see Altuğ (1989), Rouwenhorst (1991), Christiano and
Todd (1996), Wen (1998), Zhou (2000), Gomme, Kydland, and Rupert (2001), Christiano and Vigfusson
(2003), Millar (2005), Casares (2006), Edge (2007), Lucca (2007), Kalouptsidi (2014), Bornstein, Krusell,
and Rebelo (2017), among others.

14In addition, Chen (2016) demonstrates that TTB generates procyclical dividends and increases the risk
premium. TTB has also been applied to studies of capital structure and investment-cash flow sensitivity.
Tsyplakov (2008) finds that smaller firms have longer TTB and may explain the leverage differences between
small and large firms. Tsoukalas (2011) shows that TTB helps to explain investment-cash flow sensitivity.

7



can absorb TFP shocks upfront. The supply of overall capital (equipment plus structures) is

elastic in the short run, although the supply of structures capital is not. The assumption of a

single type of capital also leads to a counterfactual negative correlation between consumption

growth and investment growth when TTP is strong in Kuehn’s model. However, my model

still produces a positive correlation as in the data, since equipment investment comoves with

consumption.

This paper also contributes to the literature that links investment to stock returns (see

Kogan and Papanikolaou (2012) and Zhang (2017) for an overview). Cochrane (1991) shows

that the stock return should equal the investment return (see also Restoy and Rockinger

(1994)) and finds empirical support in aggregate time-series data. Cochrane (1996) tests

aggregate investment growth as a risk factor for the cross section of stock returns. Liu,

Whited, and Zhang (2009) extend Cochrane (1991) to test the equivalence between the stock

return and the investment return at the level of individual firms, and find some supporting

evidence. The literature of cross sectional asset pricing has shown that firms with high

investment today have lower subsequent average stock returns (see portfolio sorts on growth

in investment-sales ratio in Titman, Wei, and Xie (2004), on investment growth in Anderson

and Garcia-Feijóo (2006), on investment rate in Xing (2007), on asset growth in Cooper,

Gulen, and Schill (2008), on inventory growth in Belo and Lin (2011), and on investment

rate in brand capital in Belo, Lin, and Vitorino (2014)).15 More recently, Hou, Xue, and

Zhang (2015) and Fama and French (2016) include an investment factor in their four-factor

and five-factor asset pricing models, respectively, to explain the wide range of cross-sectional

asset pricing anomalies.

In addition, a strand of literature on production-based asset pricing models—in either

general-equilibrium approach or partial-equilibrium approach with an exogenously specified

stochastic discount factor—studies how firms’ investment decisions affect the cross-section

of stock returns. An incomplete list of contributions include Berk, Green, and Naik (1999),

Kogan (2001), Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004),

Kogan (2004), Zhang (2005), Cooper (2006), Ai and Kiku (2013), Kogan and Papanikolaou

15Relatedly, firms’ hiring is like investment when there are labor adjustment costs. Belo, Lin, and Baz-
dresch (2014) show that firms with higher hiring rates also have lower average future stock returns.
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(2013), and Kogan and Papanikolaou (2014). Also, several papers, namely Cochrane (1988),

Cochrane (1993), Belo (2010), and Jermann (2010), develop alternative production tech-

nologies to recover the stochastic discount factor from the marginal rates of transformation

inferred from producers’ first-order conditions, to directly link investment to stock returns

without consumption. Fitted in this broad investment asset pricing literature, this paper

shows that TTB breaks the equivalence between the investment return and the stock return,

leading to weak linkage between investment types with long TTB and the stock return.

This paper is related to the asset pricing literature studying general equilibrium pro-

duction models. This literature demonstrates that it is difficult for standard production

models to simultaneously match business cycle and asset pricing statistics (see Jermann

(1998) and Boldrin, Christiano, and Fisher (2001), who use internal habit preferences (e.g.,

Abel (1990a); Constantinides (1990))). Chen (2017) improves over the previous models by

introducing external habit preference (Campbell and Cochrane (1999)) to the standard pro-

duction model and shows that a low intertemporal elasticity of substitution paired with large

capital adjustment cost can generate a high equity premium and a high investment volatility

while giving a low volatility of the risk-free rate.16 Chen (2017) also shows that the invest-

ment rate can predict stock returns in his model as in the data. I introduce two types of

capital—equipment and structures with heterogeneous TTB—into his single-capital model.

I find that TTB dampens the volatility of structures investment, delays the responses of

structures investment to productivity shocks, and weakens the predicting power of structures

investment for stock returns. My TTB model shares some similarities with the two-sector

model with factor immobilities in Boldrin, Christiano, and Fisher (2001). In both models,

capital supply is inelastic in the short run.17 This leads to consumption overshooting and the

16For other theories besides habit formation, see Kogan and Papanikolaou (2012) for an overview of the
general equilibrium asset pricing literature. See the seminal Mehra and Prescott (1985); the early Tallarini
(2000); papers related to long-run consumption risk à la Bansal and Yaron (2004): Kaltenbrunner and
Lochstoer (2010), Campanale, Castro, and Clementi (2010), Ai, Croce, and Li (2013), Croce (2014), Kung
and Schmid (2015), Ai, Croce, Diercks, and Li (2017); papers related to rare disasters à la Barro (2006):
Gourio (2012); papers related to investment shocks: Papanikolaou (2011), Garlappi and Song (2017); papers
related to labor frictions: Danthine and Donaldson (2002), Favilukis and Lin (2015), and Petrosky-Nadeau,
Zhang, and Kuehn (2017); and papers related to technology innovation and competition: Gârleanu, Kogan,
and Panageas (2012), Gârleanu, Panageas, and Yu (2012), Bena, Garlappi, and Grüning (2016), Gârleanu,
Panageas, Papanikolaou, and Yu (2016), Corhay, Kung, and Schmid (2017), Gofman, Segal, and Wu (2017),
and Kogan, Papanikolaou, and Stoffman (2017); among others.

17In my model, the supply of structures capital is inelastic in the short run due to TTB, but the supply
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“inverted leading-indicator property of interest rates” as in the data. Consumption volatility

is usually too high in this type of models featuring inelastic short-run capital supply. But

because there are two types of capital in my model, equipment investment in addition to

consumption absorbs the productivity shocks on impact. Thus my model delivers a realistic

consumption volatility.

This paper is also related to the vast literature on time-series return predictability (see

Lettau and Ludvigson (2010) and Koijen and Van Nieuwerburgh (2011) for an overview), and

in particular the predictability of macro quantities (such as output, consumption, investment,

and labor) for stock returns. Cochrane (1991) and Lamont (2000) show that investment

predicts stock returns. I show that equipment investment is more tightly linked to stock

returns than structures investment. Other macro predictors include the consumption-wealth

ratio (CAY; Lettau and Ludvigson (2001)), the consumption-labor income ratio (Santos and

Veronesi (2006)), the output gap (Cooper and Priestley (2009)), the employment growth

(Chen and Zhang (2011); Belo, Donangelo, Lin, and Luo (2017)), the ratio of new orders to

shipments of durable goods (Jones and Tuzel (2013b)), the expected investment growth (Li,

Wang, and Yu (2017)), and the government debt-output ratio (Liu (2017)), etc.

This paper is structured as follows. Section 2 describes the data, defines the variables

used, presents summary statistics, and shows the empirical specifications and results. Section

3 sets up the model and derives theoretical implications. Section 4 presents calibration and

quantitative predictions, and Section 5 concludes.

2 Empirical Evidence

In this section, I first describe the data dealings and constructions for the main variables—

the investment rates of equipment and structures—at aggregate level, asset level, industry

level, and international level. I then present the summary statistics. Next, I provide evidence

of longer TTB for structures than for equipment. Last, I specify the predictive regressions

of investment rates for risk premia and present the empirical results and note in particular

that the investment rates of equipment predict risk premia better than the investment rates

of equipment capital is partially elastic under adjustment costs.
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of structures.

2.1 Data

I follow Cochrane (1991) and construct the time series of the investment-capital ratio or

investment rate (IK) using the following recursion derived from the perpetual inventory

method:

IKt =
It
It−1

IKt−1

1− δ + IKt−1
. (2.1)

The initial value of the investment rate is set to be the steady-state level, i.e., the depreciation

rate plus the average investment growth rate, IK0 = δ+E(It/It−1). Given the initial value,

the whole time series of the investment rate can be derived from the above recursion.

I use quarterly investment data from BEA National Income Product Accounts (NIPA)

tables and annual depreciation rates implied from BEA Fixed Assets (FA) tables. I use

one-fourth of annual depreciation rates as quarterly rates. The sample period is from 1947

quarter 1 to 2015 quarter 4. Quarterly private nonresidential real equipment and structures

investment is from nominal values in NIPA Table 1.1.5 line 11 (equipment) and line 10

(structures) deflated by corresponding price indexes in NIPA Table 1.1.4. In NIPA, total

private nonresidential investment includes equipment, structures, and intellectual property

and products (IPP). Since this paper focuses on equipment and structures, I exclude IPP for

convenience and consistency.18 To construct a series for real total nonresidential investment

without IPP, I apply the Fisher formula to equipment and structures.19

I calculate annual depreciation rates as the time-series averages of the ratio of real de-

preciation to last yearend real capital stock. The real capital stock series for equipment and

structures are the nominal capital stocks of base year 2009 in FA Table 1.1 line 5 (equipment)

and line 6 (structures) multiplied by the corresponding chain-type quantity indices in FA

Table 1.2 and scaled by 100. The real depreciation series for equipment and structures are

constructed similarly with nominal stocks in FA Table 1.3 and chain-type quantity indexes

18Including IPP has little effect on empirical results; see Appendix A.5.
19The Fisher formula for the growth rate of nonresidential total from time t − 1 to t is√ ∑

pt−1qt∑
pt−1qt−1

×
∑

ptqt∑
ptqt−1

, where p’s and q’s represent price indices and real quantities of equipment and struc-

tures. See Bureau of Economic Analysis (2016) for how BEA constructs aggregate estimates from detailed
components.
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in FA Table 1.4. I apply the Fisher formula again to obtain the real capital stock and real

depreciation of total nonresidential capital without IPP. Annual estimates for depreciation

rates of nonresidential total, equipment, and structures are, respectively, 5.04%, 10.90%, and

3.17%.20

I construct quarterly disaggregated nonresidential equipment and structures investment

rates at asset level. BEA disaggregates nonresidential equipment into information process-

ing equipment, industrial equipment, transportation equipment, and other equipment, and

nonresidential structures into commercial and health care; manufacturing; power and com-

munication; mining exploration, shafts and wells; and other structures. I apply the same

perpetual inventory method in equation (2.1). I use investment data from NIPA Table 5.3.4

and 5.3.5, and calculate implied depreciation rates from FA Table 2.1, 2.2, 2.4, and 2.5. The

data sample is from 1947Q1 to 2015Q4 for equipment assets and from 1959Q1 to 2015Q4

for structures assets, due to the absence of data for early years.

I also construct annual disaggregated equipment and structures investment rates at in-

dustry level.21 I use BEA 19 industries classified by the three-digit 2012 North American

Industry Classification System (NAICS). I apply the same perpetual inventory method as

in equation (2.1). I use investment data from FA Table 3.7E, 3.7S, 3.8E, and 3.8S, and

calculate implied depreciation rates from FA Table 3.1E, 3.1S, 3.2E, 3.2S, 3.4E, 3.4S, 3.5E,

and 3.5S. At the industry level, BEA reports only total investment of nonresidential and

residential, and does not report them separately. This data limitation introduces the effect

of residential investment to the industry-level analysis. However, residential investment is

mostly reflected in the real estate sector and has little effect on other sectors. To mitigate

the effect of residential investment, I drop the real estate industry. I also drop finance and

utilities, following the standard practice in the literature. In addition, I drop two industries—

management of companies and enterprises and educational services—due to limited data on

20Note that directly using current-cost measures will generate a higher depreciation rate for equipment
and a slightly lower depreciation rate for structures as the relative price of equipment has been declining
over the sample and the relative price of structures has increased a little. Current cost measures capture
both physical wear and economic obsolescence, while real cost measures account for only physical wear. See
Jermann (2010), who estimates depreciation rates in current cost measures over the sample 1947-2002 for
equipment and structures to be 13.06% and 2.7%, respectively. After adjusting prices, he obtains 11.2% and
3.1%.

21Industry-level data are not available at quarterly frequency.
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stock returns. This leaves 14 industries for analysis.

The data for total factor productivity (TFP) is from John Fernald’s website, “dtfp”. Real

gross domestic product (GDP) is the nominal value in NIPA Table 1.1.5 line 1 deflated by

the corresponding price index in NIPA Table 1.1.4. The data for nominal aggregate stock

market returns and the risk-free rate is from Kenneth French’s website. Real returns are

nominal returns deflated by seasonally adjusted consumer price index for all urban consumers

from the Bureau of Labor Statistics.

Industry-level returns are calculated from the Center for Research in Security Prices

(CRSP) and Compustat. I use monthly stock returns from CRSP, and correct the delist-

ing bias following the approach in Shumway (1997). I include firms with common shares

(shrcd=10 and 11) and firms traded on the NYSE, AMEX, and NASDAQ (exchcd=1, 2, and

3). I use Standard Industrial Classification (SIC) and NAICS from the CRSP/Compustat

Merged Annual Industrial Files. Firms are assigned to BEA industries based on their NAICS.

If a firm’s NAICS is not available, it is set to be the most frequent 3 digit NAICS based

on the firm’s SIC.22 The industry risk premium is calculated as the difference between the

value-weighted returns for all firms in that industry and the risk-free rate. The sample is

annual from 1962 to 2015.

I construct UK aggregate investment rate series for nonresidential equipment and struc-

tures, using the perpetual inventory method in equation (2.1). Quarterly investment data

from 1970Q1-2013Q4 are downloaded from “gross fixed capital formation by 6 asset types”

(namq pi6 k) in the Eurostat database. Nonresidential equipment is the aggregate sum of

N11131 transport equipment and N11132 other machinery and equipment, while nonresiden-

tial structures is N1112 other buildings and structures. Data for returns are from Kenneth

French’s and John Campbell’s websites and International Monetary Fund (IMF) Interna-

tional Financial Statistics. See Appendix A.3 for more details.

22In rare cases, there is no NAICS match for the firm’s SIC, and the SIC-NAICS concordance tables from
the US Census Bureau are used.
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2.2 Descriptive Statistics

Table 1 reports the descriptive statistics of investment rates at aggregate level, asset level and

industry level. Panel A shows statistics for quarterly aggregate investment rates. Equipment

shows a higher depreciation rate than structures, 2.72% vs 0.79%. Equipment IK has a higher

mean (3.88%) and volatility (0.49%) than structures IK (1.35%, 0.25%), while structures IK

is slightly more persistent than equipment IK, 0.99 vs. 0.97. Equipment IK highly correlates

with total nonresidential IK (0.93), but has a relatively small correlation with structures IK

(0.26).

[Insert Table 1 about here]

[Insert Figure 1 about here]

Figure 1 depicts the time series of quarterly aggregate investment rates, which are procy-

clial. However, structures IK is less procyclical than equipment IK, such as in the recessions

of the mid-1950s and early 1960s; structures IK actually increases over the two recessions.

Structures IK also shows delayed responses in the 1981-1982 recession and the recent Great

Recession of 2007-2009. There are small increases for structures IK at the beginning of the

two recessions before it falls; in contrast, equipment IK falls immediately once the recession

starts. The correlation between Hodrick-Prescott (HP; Hodrick and Prescott (1997)) filtered

IK and HP-filtered log GDP is 0.81 for equipment and 0.48 for structures (not tabulated).

Table 1 Panel B shows the statistics for quarterly asset-level investment rates of equip-

ment and structures. Information processing equipment has the highest mean (5.69%) ,

volatility (0.95%), and correlation with aggregate nonresidential (0.87) among all of the as-

set types. This conforms to the rise of information and communications technology in the

economy over the post-war sample.23 Mining exploration, shafts, and wells shows the low-

est correlations among all asset types: 0.21, 0.03, and 0.31, with aggregate nonresidential,

equipment, and structures respectively. This is likely because among all of the structures

types, mining structures capital depreciates the fastest (1.91%) and the net investment rate

(gross net of depreciation) of mining is the smallest (0.24%).

23See Ward (2017) for the evolution and growth implications of IT sector.

14



Table 1 Panel C shows the statistics for annual industry-level investment rates of equip-

ment and structures. First, industry equipment displays faster depreciation than industry

structures. The lowest depreciation rate among industry equipment—8.93% of transporta-

tion and warehousing equipment—is still higher than the highest depreciation rate among

industry structures, i.e., 7.01% of mining structures. Second, industry equipment IKs are all

positively correlated with aggregate nonresidential IK and aggregate equipment IK. However,

the structures IKs of health care and social assistance and other services except government

are mildly negatively correlated with aggregate nonresidential IK. Puzzlingly, the structure

IK of transportation and warehousing has a significant negative correlation of -0.41 with

aggregate structure IK. The likely reason is that this industry has the second-lowest average

gross IK (2.98%) and net IK (0.75%). The industry with the lowest structure IK is agricul-

ture, which has 2.17% gross IK and -0.32% net IK. Agriculture is the only industry whose

structures investment falls behind the depreciation.

2.2.1 Business-Cycle Properties of Investment

I document that equipment investment is different from structures investment in its business-

cycle properties. Equipment investment tends to comove with TFP and GDP, while struc-

tures investment tends to lag TFP and GDP for several quarters. Table 2 reports the

quarterly cross-correlations between nonresidential investment (equipment and structures)

and TFP, and between nonresidential investment and GDP. I calculate three types of cross-

correlations using first-differenced data, HP-filtered data (λ = 1600), and bandpass-filtered

data (Baxter and King (1999), fluctuations from 6 to 32 quarters), as shown in Panels A, B,

and C, respectively.

[Insert Table 2 about here]

[Insert Figure 2 about here]

The first robust result is that equipment has a significant higher contemporaneous corre-

lation (i = 0) with TFP and GDP (ranging from 0.42 to 0.80) than structures (ranging from

0.05 to 0.44). In particular, the contemporaneous correlation between structures and TFP

is fairly small: 0.13, 0.05, and 0.08 across the three measures. Second, structures lags TFP
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and GDP more quarters than equipment. Structures lags TFP 3-4 quarters, and lags GDP

about 2 quarters, while equipment lags TFP 0-2 quarters, and lags GDP 0-1 quarter. Figure

2 shows the correlations between investment growth and TFP growth (i.e., first-differenced

data). Equipment investment comoves with TFP, but structures investment lags TFP 4

quarters with increasing correlations from a 1-quarter lag to a 4-quarter lag. The bivariate

VAR analysis with TFP growth (ordered first) and investment growth also highlights the

lagging behavior of structures investment, as shown in Appendix Figure A1. Christiano and

Todd (1996) show that TTB and TTP help explain the fact that nonresidential investment

lags output over the business cycle. Leaning on their findings, I show later in the paper that

assuming a longer TTB (along with TTP) for structures than for equipment can generate a

longer investment lag for structures than for equipment.

In addition, the positive correlations between structures and GDP stretch into long hori-

zons at 5- and 6-quarter investment lags, where equipment has little or negative correlation

to GDP. Take the HP-filtered measure, for example: The correlations between structures

and GDP with 5- and 6-quarter investment lags are 0.35 and 0.22, respectively, while the

analogs for equipment are 0.03 and -0.13. See also Stock and Watson (1999), who show the

cyclicality of various macro quantities and prices, including nonresidential equipment and

structures.

2.3 Direct Evidence of TTB

Before getting into the main empirical analysis, I provide some direct empirical evidence for

a longer TTB for structures than for equipment, which this paper emphasizes.

The source data BEA use to construct series of nonresidential equipment investment is

based on the Census Bureau’s Survey of Manufacturers’ Shipments, Inventories, and Orders.

Abel and Blanchard (1988) estimate delivery lags using this survey, along with other datasets,

and find that the delivery lags are 2, 2, 3, and 0 quarters for fabricated metals, non-electrical

machinery, electrical machinery, and motor vehicles, respectively. Jones and Tuzel (2013a)

also use this survey and show that the delivery lag (approximated by the ratio of unfilled

orders to shipments) for durable goods is about 4 months. In detail, the delivery lags are

1.99, 2.44, 3.28, 2.93, and 6.22 for primary metal, fabricated metal, industrial machinery,
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electronic equipment, and transportation equipment.

The source data BEA use to construct series of nonresidential structures investment is

based on the Census Bureau’s Survey of Construction Spending, also known as the Value

of Construction Put in Place Survey. Montgomery (1995) uses the confidential project-level

data from this survey of over 52,000 private nonresidential construction projects and finds

that the value-weighted construction length of time (LoT) averages 5 to 6 quarters (16.7

months) over the period 1961-1991.24 Although I do not have access to project-level data, I

update the LoT statistic for the recent sample 2001-2015, using publicly available data from

the Census Bureau website: see Appendix A.1 for details.

Table 3 reports the LoT, or the average number of months from start to completion,

for private nonresidential construction projects in 1990-91 and 2001-2015 by value and type

of construction. Montgomery (1995) shows that the value-weighted LoT is 15.7 months in

1990-91. I find that the value-weighted LoT is 13.6 months over 2001-2015.25 Although

there is a 2- to 3-month decrease over the years, the LoT of 4-5 quarters for nonresidential

structures is significantly longer than the delivery lag for nonresidential equipment. The

difference is sizable, in terms of the standard quarterly frequency used in the presentation

of macro data by statistical agencies and in the calibration of macro models.

[Insert Table 3 about here]

The LoT increases with project value, as shown in Panel A. During 2001-15, it takes 20.1

months to complete a project valued at $10,000 thousands or more and 3.9 months for $75-

$249 thousands. The equal-weighted LoT across all projects decreases from 14 months in

1990-91 to 7.6 months in 2001-15. This is likely because there are many more small projects

in the recent sample, since LoTs across value categories do not change much. This also leads

to significantly shorter LoTs across different types in 2001-15 relative to 1990-91, as shown

24Construction LoT in the language of the Census Bureau, is the same as TTB period in this paper.
25We would expect that there is a significantly shorter LoT for recent sample years, as the technology has

improved. Instead, the construction industry has become less productive. One reason is that the industry
has become less capital-intensive, with machinery replaced by workers; see Economist (2017): “ ‘While
we are all using iPhones, construction is still in the Walkman [Sony cassette player] phase,’ says Ben van
Berkel, a Dutch architect. Many building professionals use hand-drawn plans riddled with errors. A builder
of concrete-framed towers from the 1960s would find little has changed on building sites today, except for
better safety standards.”

17



in Panel B. Consistently across different samples and equal- or value- weighted measures,

commercial buildings have the shortest LoT. Nevertheless, Millar, Oliner, and Sichel (2016)

find that TTP lags are long for commercial construction projects—about 16 months for the

equal-weighted measure and about 26 months for the value-weighted measure.

2.4 Empirical Specifications

I use the standard short- and long-horizon predictive regressions (Fama and French (1989))

of the form
H∑
h=1

Rt+h = a+ b IKt + εt+H . (2.2)

H is the forecast horizon in quarters.
∑H

h=1Rt+h is the H-period cumulated log excess return

for the aggregate stock market or for one industry. Rt is the difference between log aggregate

or industry stock return and log risk-free rate. IKt is the investment rate at aggregate, asset

or industry level. Both in-sample and out-of-sample tests are performed. For in-sample tests,

I report R2, the regression slope coefficient b, and Newey and West (1987) p values with the

correcting lag for standard errors being the number of overlapping periods, H − 1. For out-

of-sample tests, I use the first half of the sample as the training sample, then recursively

test and retrain in subsequent periods. I report out-of-sample R2 relative to historical mean

forecasts and the ENC-NEW encompassing test statistic from Clark and McCracken (2001).

2.5 Empirical Results

This subsection establishes the empirical finding that the equipment investment rate predicts

stock returns better than the structures investment rate with the use of US aggregate-, US

asset-, US industry-, and UK aggregate-level data.

2.5.1 How Do Aggregate IKs Predict Aggregate Returns?

Aggregate equipment IK predicts market excess returns better than aggregate structures

IK. Table 4 reports return predictability results for US investment rates of private nonresi-

dential total, equipment, and structures. Consistent with neoclassical investment theory, all

prediction slope coefficients are negative. When discount rates fall, investment should in-
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crease. Consistent with Cochrane (1991) and Lamont (2000), nonresidential IK predicts the

aggregate risk premium very well, both in-sample and out-of-sample. The R2 increases over

horizons from 1 quarter to 20 quarters, with in-sample R2 increasing from 3.90% to 39.26%

and out-of-sample R2 increasing from 0.68% to 33.98% at 16 quarters and decreasing to

26.99% at 20 quarters. Equipment IK predicts risk premium as well as nonresidential IK,

but structures IK has small in-sample R2 and negative out-of-sample R2. This suggests that

equipment is the driving component that links nonresidential investment to stock returns.26

Goyal and Welch (2008) show that the out-of-sample R2 is usually negative for well-known

return predictors, including the dividend-price ratio and the book-market ratio. The strong

positive out-of-sample R2 for IK suggests that IK truly contains useful information for pre-

dicting movements in the risk premium.

[Insert Table 4 about here]

[Insert Figure 3 about here]

Figure 3 shows the actual and predicted future 5-year-ahead risk premium from 1947Q2

to 2011Q1 when the predictor is equipment IK. The predicted in-sample risk premium is

countercyclical and captures a significant portion of the variation in the actual risk premium.

The predicted out-of-sample risk premium in the second half of the sample almost coincides

with the predicted in-sample risk premium. This indicates that the predicting coefficients

are fairly stable.

[Insert Table 5 about here]

The IK series following Cochrane (1991) are constructed under the assumption of constant

depreciation rates.27 In reality, however, depreciation rates are time-varying. To check

the robustness of the results to this assumption, I construct alternative IK series following

the method in Bachmann, Caballero, and Engel (2013), who use time-varying depreciation

26Table A1 shows that the component intellectual property and product of nonresidential investment shows
little return predictability. Certainly, IPP has become an important part of nonresidential investment in the
recent years. And there is mismeasurement for IPP in BEA data.

27Typical macro models assume this as well.
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estimates from BEA;28 see Appendix A.2 for details. Table 5 reports the return predictability

results from these alternative IK series, which are similar to those in Table 4. The predicting

power for equipment IK is even stronger than nonresidential IK at longer horizons; for

example, equipment IK has a 33.71% in-sample R2 and a 43.21% out-of-sample R2, while

the analogs for nonresidential IK are 27.74% and 19.86%, respectively, at the 20-quarter

horizon.

2.5.2 How Do Asset-Level IKs Predict Aggregate Returns?

Does a specific type of equipment or structures drive the predicting difference between ag-

gregate equipment and aggregate structures? Do different types of equipment or structures

show significant differences in predicting aggregate risk premium? Table 6 answers these

questions; it reports predictability results by equipment- and structures-asset types. All

of the four types of equipment, i.e., information processing, industrial, transportation, and

other, predict aggregate risk premium well. Also, structures types generally exhibit lower

predicting R2 than equipment. Therefore, equipment’s superior performance to structures

in return predictions is not driven by a specific type of equipment or structures asset.

[Insert Table 6 about here]

Notably, the investment in mining exploration, shafts, and wells has no predicting power

and the predicting slope is even positive though not significant. This positive slope is driven

by the sub-asset type petroleum and natural gas.29 As shown in Bornstein, Krusell, and

Rebelo (2017), the average lag between investment and production in the oil industry is 12

years. The long TTB lag makes the investment in oil wells reflect mostly past economic

climates and reacts little to future business conditions. Investment in petroleum and natural

gas is acyclical, and has a contemporaneous correlation of 0.04 with GDP and -0.05 with

TFP in growth rates.

28BEA calculates aggregate equipment and structures investment from detailed asset-level investment
data. BEA assumes constant depreciation rates for detailed assets, but due to compositional changes over
time, aggregate equipment and structures have time-varying depreciation rates.

29Mining exploration, shafts, and wells include two sub-asset types, i.e., petroleum and natural gas and
mining. Mining actually has a negative predicting slope.
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2.5.3 How Do Industry IKs Predict Aggregate and Industry Returns?

Industry equipment IK predicts aggregate risk premium better than industry structures IK

does. Table 7 Panel A shows how 14 US industry equipment IK series and structures IK series

predict aggregate risk premium at a 5-year horizon. The last column shows that equipment

has a higher predicting R2 than structures for all industries except mining. The difference

in R2 can be as large as about 20% for wholesale and transportation and warehousing. The

positive slope of mining (2.81) structures IK is reminiscent of the result for structures type

mining exploration, shafts, and wells in Table 6. Consistently, detailed industry-level data

show that the oil and gas extraction industry drives the positive prediction. The detailed

industry-level data also show that the railroad transportation industry drives the positive

predicting slope (3.45) of transportation and warehousing structures IK. This rejoins the idea

that investment in assets with long TTB periods may even predict aggregate risk premium

positively, though not significantly.

In addition, service industries have lower R2 than traditional industries such as man-

ufacturing; a possible explanation is that service industries are labor-intensive instead of

capital-intensive. Fluctuations in labor hiring in these industries, therefore, may be more

informative about aggregate economic conditions.

[Insert Table 7 about here]

For most industries, equipment IK also captures more industry risk premium than struc-

tures IK does. Table 7 Panel B shows how US 14 industry IK series predict each industry’s

risk premium. As shown in the last column, equipment IK outperforms structures IK in the

sectors wholesale trade, transportation and warehousing, information, and professional, sci-

entific, and technical services ; the difference of R2 can be as large as about 26%. Structures

IK outperforms equipment IK in the retail sector with about 10% R2 difference.

2.5.4 International Evidence

UK aggregate-level data also show that equipment IK predicts aggregate risk premium better

than structures IK does. Table 8 reports return predictability results for UK quarterly IK
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series of nonresidential equipment and structures. At short horizons from 1 quarter to 8

quarters, both equipment and structures have little predictability. As the horizon increases

to 16 quarters to 24 quarters, equipment shows significantly higher in-sample and out-of-

sample R2 than structures. For equipment, the in-sample R2 ranges from 11.12% to 23.46%,

and the out-of-sample R2 is large, from 21.33% to 33.18%.

[Insert Table 8 about here]

3 Model

To explain the stronger power of equipment investment than structures investment for pre-

dicting returns and the lagging behavior of structures investment to total factor productivity

(TFP), in this section I build a general equilibrium production model that features a longer

TTB for structures than for equipment.

3.1 Economic Environment

There is a representative firm and a representative household in the aggregate production

economy. The representative firm has a Cobb-Douglas production function F with self-

accumulated equipment capital Ket, structures capital Kst and employed household labor Lt

as inputs,

Yt = F (Ket, Kst, Lt) = AtK
αe
et K

αs
st (ZtLt)

1−αe−αs ,

where Yt is the total output, αe (αs) is the production share of equipment (structures), At

is the TFP, and Zt is the deterministic growth component. At follows an AR(1) process,

log(At+1) = ρa log(At) + εt+1,

where ρa (0 < ρa < 1) is the persistence parameter, and ε is the TFP shock, which follows a

normal distribution, ε ∼ N(0, σ2
a). Zt grows exponentially at a constant rate µ starting from

the normalized initial value 1, Zt = exp(µt).

The firm accumulates structures capital from the undepreciated structures capital left
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from the previous period and the new structures investment,

Ks,t+1 = (1− δs)Kst +Xs,t−Js+1, (3.1)

where δs is the depreciation rate of structures, and Js is the TTB period for structures

investment. It takes Js periods for Xs,t−Js+1, the structures investment project initiated at

time t−Js+1, to become productive capital. Therefore, there are Js structures projects each

period with 1, 2, ..., Js periods to completion, respectively. Total investment expenditures of

structures at time t, denoted as Ist, are split into those Js projects as follows:

Ist =
Js∑
j=1

ωsjXs,t−j+1,

Js∑
j=1

ωsj = 1, (3.2)

where Xs,t−j+1 the investment project initiated at time t − j + 1 with Js − j + 1 periods

to completion, and ωsj is the fraction of investment cost incurred in the jth stage of the

project.30 {ωsj}Jsj=1 are structural parameters, time-invariant and project-independent. They

sum equal to one and reflect how the investment cost is distributed over the stages of a

project. Similarly, the capital accumulation equation and investment equation for equipment

are as follows:

Ke,t+1 = (1− δe)Ket +Xe,t−Je+1, (3.3)

Iet =
Je∑
j=1

ωejXe,t−j+1,

Je∑
j=1

ωej = 1. (3.4)

I assume Je < Js to capture that structures require a longer time to build. The standard

RBC model, as in Cooley and Prescott (1995), assumes a single type of capital with a

one-period TTB. This corresponds to J = 1 and Xt = It.

30I have adopted the simplified notation for investment projects Xt−j , as in Christiano and Vigfusson
(2003) and Chen (2016). The original Kydland and Prescott (1982) would denote Xt−j as XJ−j,t−j , which
keeps track of both the time when the project is initiated (t − j) and periods to completion (J − j). This
more complex notation would be more suitable for the recursive formulation of the dynamic programming
problem.
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The firm incurs adjustment costs for adjusting capital stocks,

Gi(Kit, Xi,t−Ji+1) =
ηi
νi

(
Xi,t−Ji+1

Kit

− δ̄i
)νi

Ki, i = e, s,

where Gi is the adjustment cost function and is homogeneous degree of one (HD1) with

respect to Ki and Xi. ηi and νi (capturing curvature) are adjustment cost parameters.

δ̄i = eµ − 1 + δi is the growth-adjusted depreciation rate, i = e for equipment and i = s for

structures.

The firm is all equity-financed. The residual cash flow, i.e., dividend Dt, is distributed

to the equity-holder, i.e., the household, after the firm pays the investment costs Iet + Ist,

the capital adjustment costs Ge(t) +Gs(t), and the wage payments WtLt,

Dt = Yt − Iet − Ist −Ge(Ket, Xe,t−Je+1)−Gs(Kst, Xs,t−Js+1)−WtLt. (3.5)

The firm maximizes the cum-dividend firm value Vt (Pt + Dt, Pt is the ex-dividend firm

value) using the stochastic discount factor (SDF) Mt implied from the household’s optimality

conditions,

Vt ≡ Pt +Dt = max
{Ke,t+Je+j ,Xe,t+j ,Ks,t+Js+j ,Xs,t+j ,Lt+j}∞j=0

Et

[
∞∑
j=0

Mt,t+jDt+j

]

subject to the capital accumulation equations (3.1) and (3.3), the investment equations (3.2)

and (3.4), and the cash flow constraint (3.5).

The representative household has external habit preferences (see Campbell and Cochrane

(1999) and, more recently, Chen (2017)). The household maximizes lifetime utility subject

to the budget constraint,

max
{Ct+j ,Lt+j ,χt+j+1,Bt+j+1}∞j=0

Et

[
∞∑
j=0

βj
(Ct+j −Ht+j)

1−γ − 1

1− γ

]

Ct + Ptχt+1 +Bt+1 ≤ WtLt + (Pt +Dt)χt +RftBt.

β is the time discount factor and γ is the relative risk aversion. At period t, the household
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consumes Ct, buys χt+1 share of stocks at price Pt and bonds Bt+1, and receives income from

wage WtLt and portfolio holdings, including stock holdings (Pt + Dt)χt and bond holdings

RftBt, where Rft is the gross risk-free interest rate. H is the habit level the household’s

utility from consumption depends on. Define the aggregate surplus consumption ratio Ŝ as

Ŝt ≡
Ĉt −Ht

Ĉt
ŝt ≡ log(Ŝt),

where x̂ denotes aggregate variable x. ŝt is assumed to follow,

ŝt+1 = (1− ρs)s̄+ ρsŝt + λs(log(Ĉt+1)− log(Ĉt)− µ).

In the endowment economy model of Campbell and Cochrane (1999), λs is time-varying

and reverse-engineered to achieve a constant risk-free rate. In the production economy

here, I follow Chen (2017) and assume that λs is constant, λs = 1/S̄ − 1. Since there is a

representative household, Ct = Ĉt and St = Ŝt; thus I drop the hat henceforth.

In equilibrium, all markets clear. The clearing of the goods market implies the aggregate

resource constraint,

Ct + Iet + Ist +Ge(Ket, Xe,t−Je+1) +Gs(Kst, Xs,t−Js+1) = Yt.

The labor market clears. Since leisure is assumed to not enter the utility function, labor is

inelastically supplied at the household’s endowment of one unit, Lt = 1. The asset markets

clear: χt = 1 and Bt = 0. That is, there is one share of stock and zero net supply of risk-free

bonds in the economy.

3.2 Investment Q and Asset Prices

Let the Lagrange multipliers on equations (3.3) and (3.1) be qe and qs, respectively. The

first order condition for Xit implies

Et(Mt,t+Ji−1qi,t+Ji−1) = Et [Mt,t+Ji−1GXi
(Ki,t+Ji−1, Xit)] + Et

(
Ji∑
j=1

Mt,t+j−1ω
i
j

)
, i = e, s.

(3.6)
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qe (qs) is the shadow price or marginal q of equipment (structures) capital. GXi
denotes

the partial derivative of function Gi with respect to Xi. The left-hand-side is the marginal

benefit of investment in the new project Xit. Due to TTB, the one additional unit of new

investment will become productive capital at time t+Ji−1 and can be sold at price qi,t+Ji+1.

The right-hand-side is the marginal cost. The first term is the adjustment cost that occurs

at time t + Ji − 1. The second term reflects how the one additional unit of investment in

the new project goes into investment expenditures across the stages of the project. Due to

TTB, the costs and benefits occur with time lags, to which expectations and discounting are

thus applied.31

The first-order condition for Ki,t+1 implies the asset pricing equation

EtMt,t+1Ri,t+1 = 1, i = e, s, (3.7)

where

Mt,t+1 = β

(
Ct+1

Ct

)−γ (
St+1

St

)−γ
,

Ri,t+1 =
FKi

(t+ 1)−GKi
(Ki,t+1, Xi,t−Ji+2) + (1− δi)qi,t+1

qit
.

M is the SDF implied from the household’s optimality conditions. GKi
denotes the partial

derivative of function Gi with respect to Ki. Ri,t+1 is the investment return in equipment

(i = e) or structures (i = s). Its denominator is the marginal cost of installing an additional

unit of capital at time t, qit, and its numerator is the corresponding benefits at time t + 1,

which includes the marginal product of capital FKi
(t+1), the sale value of the undepreciated

extra unit of capital qi,t+1(1−δi), and the savings in adjustment cost −GKi
(Ki,t+1, Xi,t−Ji+2).

Define the stock return Rm,t+1 as the firm’s cum-dividend value divided by the previous

period ex-dividend value, and the total investment return RI,t+1 as the value-weighted return

of equipment investment and structures investment,

Rm,t+1 =
Pt+1 +Dt+1

Pt
,

31When Ji = 1, the standard q-investment equation appears, qit = GXi
(Kit, Xit) + 1.
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RI,t+1 =
qetKe,t+1

qetKe,t+1 + qstKs,t+1

Re,t+1 +
qstKs,t+1

qetKe,t+1 + qstKs,t+1

Rs,t+1.

Proposition 1. Because both the Cobb-Douglas production function and adjustment cost

functions are homogeneous of degree 1 (HD1), the firm value Pt can be shown to satisfy

Et−Js+2(Mt−Js+2,tPt) = Et−Js+2[(Mt−Js+2,t(qetKe,t+1 + qstKs,t+1)]︸ ︷︷ ︸
value of productive capital

+ Et−Js+2

(
Js−1∑
j=1

Mt−Js+2,t−Js+j+1ω
s
jXs,t−Js+2

)
+ ...+ Et−Js+2 (Mt−Js+2,tω

s
1Xst)︸ ︷︷ ︸

value of unfinished structures projects

+ Et−Js+2

(
Je−1∑
j=1

Mt−Js+2,t−Je+j+1ω
e
jXe,t−Je+2

)
+ ...+ Et−Js+2 (Mt−Js+2,tω

e
1Xet)︸ ︷︷ ︸

value of unfinished equipment projects

.

(3.8)

Proof. See Appendix A.4 for the derivation.

The value of the firm equals the value of the productive capital, plus the value of the

completed parts of all the unfinished equipment and structures projects.32 When Je = Js = 1,

the firm value equals the value of the productive capital, and the average q (Q) equals the

(capital-weighted) marginal q (Hayashi (1982)),

Pt = qetKe,t+1 + qstKs,t+1

⇒ Q ≡ Pt
Ke,t+1 +Ks,t+1

=
Ke,t+1

Ke,t+1 +Ks,t+1

qet +
Ks,t+1

Ke,t+1 +Ks,t+1

qst. (3.9)

Also, the stock market return equals the investment return, Rm,t+1 = RI,t+1 (Cochrane

(1991); Restoy and Rockinger (1994)). When Je = Js = 2, equation (3.8) can be simplified

without expectation,33

Pt = qetKe,t+1 + qstKs,t+1 + ωe1Xet + ωs1Xst.

32See equation (32) in Altuğ (1993), who derives a similar equation under partial equilibrium.
33Kuehn (2009) derives the firm value in the case of a single type of capital with two-period TTB. I derive a

more general expression for firm value when there are two types of capital with potentially different multiple
TTB periods. The expression can easily be extended to the case of multiple (more than two) types of capital.
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Xit is the newly initiated project, which will be completed wi1 fraction in this period and wi2

fraction in the next period. The completed wi1 fraction of the project contributes to the firm

value in addition to the productive capital. Due to the existence of unfinished projects, the

average q does not equal the marginal q. The stock return can be shown to satisfy

Rm,t+1 =
qetKe,t+1

Pt
Re,t+1 +

qstKs,t+1

Pt
Rs,t+1

+
(qe,t+1 −GXe(Ke,t+1, Xet) + ωe2)Xet

Pt
+

(qs,t+1 −GXs(Ks,t+1, Xst) + ωs2)Xst

Pt
.

The stock return does not equal the investment return, Rm,t+1 6= RI,t+1. The introduction

of multiple-period TTB breaks down the equivalence between average q and marginal q and

between the stock return and the investment return.

Finally, the risk-free rate is defined as

Rft = 1/Et(Mt,t+1).

And the risk premium is Rex,t = Rmt −Rf,t−1.

4 Quantitative Results

In this section, I first calibrate the model. Then I show that the model matches the empirical

moments for macro quantities and asset prices. Next, I demonstrate that the model generates

the lagging behavior of structures investment to TFP and the better return predictability

for equipment investment than for structure investment, as in the data. I examine the

model mechanism through the impulse response functions. After that, I show that the

model provides theoretical support for previous empirical findings of return predictability

from planned investment. Finally, I show that discount rates drive the variation in the

dividend-price ratio in the model, as in the data.
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4.1 Calibration

The model is calibrated at quarterly frequency. Table 9 shows the parameter values. Several

are from Chen (2017), including the average GDP per capita growth rate µ set to 0.0048,

the persistence of TFP ρ set to 0.98, the time discount factor β set to 0.995, the risk-

aversion coefficient γ set to 2 as in Campbell and Cochrane (1999), the persistence of surplus

consumption ratio ρs set to 0.98, and the steady state of surplus consumption ratio S̄ set to

0.07. The volatility of TFP shock σa is set to 0.01 to largely match the average volatility of

GDP growth of 0.97. It is between the value of 0.007 used in Cooley and Prescott (1995)

and 0.018 used in Boldrin, Christiano, and Fisher (2001).

[Insert Table 9 about here]

The rest of the parameters capture the heterogeneities between equipment and structures.

First, the growth-adjusted depreciation rates of equipment and structures, δ̄e and δ̄s, are set

to be the average quarterly equipment and structures investment rates 0.0386 and 0.0125,

which results in depreciation rates 0.0338 and 0.0077. Second, the capital share αe + αs is

set to 0.36 as in Tuzel (2010). Individual production shares for equipment and structures,

αe and αs, are then calibrated to match the average relative ratio of private nonresidential

equipment investment to structures investment, 1.86. This gives αe as 0.202 and αs as 0.158,

which are close to the values of 0.216 and 0.144 used by Tuzel (2010). The resulting steady

state of the relative ratio of equipment capital stock to structures capital stock is about 0.6,

which is consistent with Tuzel (2010) and Jermann (2010).

The third heterogeneity is the capital adjustment cost. The literature is not settled on

whether equipment or structures is more costly to adjust. Israelsen (2010) estimates higher

adjustment costs for equipment, while Tuzel (2010) and Jermann (2010) calibrate higher

adjustment costs for structures.34 Since the adjustment costs in the model are zero at the

deterministic steady state, there is no counterpart in macro data that can be used to calibrate

the adjustment cost parameters. I follow Greenwood, Hercowitz, and Krusell (2000) and set

the same parameter values for equipment and structures. I use the standard quadratic

34The adjustment costs in Israelsen and Jermann’s models are non-quadratic and for aggregate capital
adjustment, while Tuzel’s adjustment cost is quadratic and asymmetric and for firm-level adjustment.
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adjustment cost, νe = νs = 2. I calibrate the adjustment cost parameter η to largely match

the relative volatility of equipment and structures investment growth to output growth, 3.65

and 3.12, respectively. This leads to ηe = ηs = 50.35

Finally, the TTB specifications are different for equipment and structures. As the ev-

idence presented in Section 2.3 shows, the TTB for equipment Je is set to 1 to capture a

1-quarter equipment delivery lag, and the TTB for structures Js is set to 5 to capture the

long planning and construction lags. Since Je = 1, ωe = 1. The project completion pat-

tern parameters for structures (ωs =(0.10,0.15,0.20,0.25,0.30)) are set to capture the idea

of time-to-plan in Christiano and Todd (1996) and to match the pattern of the increasing

cross-correlations between structures investment growth and TFP growth.

4.2 Model Statistics

Because there are seven state variables in the model, namely {Ket, Kst, {Xs,t−i}4i=1, At},

global solution methods are generally infeasible. I solve the model using the perturbation

method with Dynare++ third-order approximation. I first normalize the model variables

by dividing by the deterministic growth component Zt and solve the model in terms of the

stationary variables. Then I add Zt back into the variables in the simulations. The model is

simulated 500 times each 280 quarters, and mean statistics are reported.

Table 10 reports the statistics for macro quantities and asset prices across various model

variants. The benchmark model matches the volatilities and correlations of the macro quan-

tities well. Consumption is less volatile than output, while investment fluctuates much more

than output. As for asset prices, the model generates a high and volatile risk premium

(4.28% mean and 15.01% volatility), as in the data.36 However, the model overshoots the

mean and volatility of the risk-free rate in comparison with the data: 1.92% versus 0.57%

for the mean, and 5.84% versus 2.52% for the volatility.37

35The numbers seem high, but Chen (2017) shows that an adjustment cost of 100 results in less than 1%
mean adjustment cost as a percentage of output. The adjustment cost percentages in my calibration are
0.09%, 0.17%, and 0.26% for equipment, structures, and total capital, respectively.

36I assumed that the firm is all equity-financed with zero leverage. Assuming a debt-equity ratio of 0.5
instead will bring the mean risk premium up to a closer match at 6.42%, but overshoot the volatility of the
risk premium at 22.51%.

37The mean and volatility of the risk-free rate in the data could be higher if we use a longer sample. For
example, Campbell (2003) reports that the mean and volatility of the risk-free rate are 2.02% and 8.81%,
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[Insert Table 10 about here]

To investigate how each heterogeneity between equipment and structures (depreciation,

production share, or TTB) affects model predictions, I strip each heterogeneity out of the

model benchmark separately in three alternative model scenarios, Models 1-3, whose model

statistics are shown in Table 10. I find that removing heterogeneity in the depreciation

rate or production share has relatively small effect on model fits. Removing TTB, however,

dramatically reduces model fit in both macro quantities and asset prices.

In Model 1, in which equipment and structures have the same (growth-adjusted) depre-

ciation rate, δ̄e = δ̄s = 0.025, the volatility of equipment investment increases from 3.84% to

4.52%, while the volatility of structures investment decreases from 3.14% to 1.49%. Equip-

ment at a lower depreciation rate needs a larger adjustment when responding to the same

amount of a productivity shock, which leads to higher volatility. The opposite is true for

structures. In addition, the stock return and risk premium fall, because the reduced risk due

to higher depreciation of structures outweighs the added risk due to the lower depreciation

of equipment.

In Model 2, in which equipment and structures have the same production share, αe = αs =

0.18, a lower production share of equipment raises the volatility of equipment investment

from 3.84% to 4.21% and leads to more risky equipment investment. The opposite is true

for structures; structures investment becomes less volatile and less risky. Because the added

risk of equipment investment exceeds the reduced risk of structures investment, the means

and volatilities of stock return and risk premium all rise.

When both equipment and structures have only a 1-quarter TTB in Model 3 (no TTB,

Je = Js = 1), as in the standard RBC model, the short-run supply of structures capital

becomes elastic. The volatility of structures investment rises from 3.14% to 5.77%, and

the volatility of equipment investment falls from 3.84% to 1.67%. This suggests that a

longer TTB reduces the elasticity of structures capital supply and dampens the volatility of

structures investment. This also explains why I do not need to calibrate a higher adjustment

cost for structures as in Tuzel (2010) (her model has the standard one-period TTB) to match

the volatilities of structures investment and equipment investment. Because the supply of

respectively, over the sample of 1891-1998.
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overall capital is more elastic in the economy, consumption absorbs less TFP shock and

becomes less volatile; its volatility decreases from 0.50% to 0.36%. In addition, the correlation

between output and structures investment becomes too high, at 0.97, in comparison with

the data at 0.34. As for asset prices, the means and volatilities of the stock return and risk

premium all fall, due to the higher elasticity of capital supply. Also, the mean of the risk-free

rate rises from 1.92% to 3.81% and its volatility decreases from 5.84% to 0.54%, because the

TFP shock loads less in consumption.

4.3 Model Discussion

In addition to TTB, several other important elements are built into the model, such as

capital adjustment cost, habit, and TTP. Both TTB and capital adjustment cost reduce

the elasticity of capital supply. TTB makes only the short-run capital supply inelastic,

while the capital adjustment cost reduces the elasticity in both the short run and long run.

Ceteris paribus, a lower elasticity of capital supply makes the equilibrium price of capital

more volatile (see Kogan and Papanikolaou (2012), Figure 1, for a graphic illustration).

On the other hand, habit preference induces strong motives in consumption smoothing and

amplifies fluctuations in capital demand. This magnifies the effect of the low elasticity of

capital supply due to TTB and capital adjustment cost, and boosts the size and volatility

of the risk premium. In addition, TTP makes investment more risky by loading investment

expenditures more on past investment decisions. I discuss in Models 4-8 how these various

model elements are necessary to achieve reasonable macro quantities and asset prices.

When there is no TTP in Model 4 (ωsi = 0.2, i = 1, ..., 5), structures investment comoves

with output more. Both the volatilities of structures investment and equipment investment

decrease slightly, while the volatility of aggregate investment increases a bit. This leads to

slightly lower consumption volatility. The removal of TTP decreases the stock return and

the risk premium.

When there is no habit or utility is CRRA (constant relative risk aversion) in Model

5 (Ht = 0), consumption volatility jumps to 1.12% and investment volatilities fall. The

removal of habit weakens the desire to smooth consumption and reduces the elasticity of

capital demand, resulting in a high average risk-free rate at 5.77%, a small risk-free rate
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volatility at 0.48%, a small stock return volatility at 3.35%, and a low average risk premium

at 0.17%. As is evident from Models 5-8, habit is necessary to generate a sizable and volatile

risk premium.

When adjustment cost is further removed, in addition to habit preference, in Model 6

(Ht = 0, ηe = ηs = 0), both equipment and structures investment become more volatile.

Structures investment has a negative correlation to output at -0.21. This means that struc-

tures investment decreases on impact in response to a positive TFP shock, which translates

into a small negative risk premium at -0.02%. In comparison to Model 5, the zero adjustment

cost in Model 6 increases the elasticity of the capital supply at both short and long horizons.

As a result, the volatilities of the stock return and the risk premium decline from 3.35% and

3.26%, respectively, in Model 5 to 0.23% and 0.08% in Model 6.

In Model 7, TTB instead of the adjustment cost is removed, in addition to habit preference

(Ht = 0, Je = Js = 1). Relative to Model 5 (no habit alone), the rise in investment volatility

is smaller than that in Model 6 (no habit and no adjustment cost). Also, the decline in

stock return volatility is smaller. This is because TTB reduces only the short-run elasticity

of structures capital supply, but adjustment cost technology has a long-lasting effect on

the capital adjustment of both equipment and structures. In addition, both equipment

investment and structures investment show perfect correlations with output.

In Model 8, in which there is no habit, no TTB, and no adjustment cost (Ht = 0, Je =

Js = 1, ηe = ηs = 0), both equipment investment and structures investment become highly

volatile. Because they move in opposite directions (as seen from the positive correlation

between output and equipment investment but the opposite for structures investment), the

volatility of aggregate investment is reasonable at 2.45%. Since the capital supply becomes

perfectly elastic without TTB and adjustment cost, the risk premium is negligible and returns

are not volatile.

4.4 Predictions on Cross-Correlations

The benchmark model generates similar investment-TFP correlations as in the data. Fig-

ure 4 depicts how investment growth correlates with TFP growth in the model. The model

generates comovement between equipment investment and TFP and a 4-quarter lag of struc-
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tures investment relative to TFP, as in the data (Figure 2). However, the mildly negative

correlations for lags at 1-4 quarters between equipment and TFP is inconsistent with the

data. In addition, the model produces higher investment-TFP correlations than in the data.

One possible reason is that I ignore other components of investment in the model, including

inventory, land, and IPP, which are used in John Fernald’s TFP data series.

[Insert Figure 4 about here]

To investigate which model assumption of capital heterogeneity leads to the difference in

TFP correlations between equipment and structures, Figure 4 also shows the investment-TFP

cross-correlations for three alternative models, stripping out each heterogeneity separately,

in which equipment and structures have the same depreciation rate (Model 1 ), the same

production share (Model 2 ), and the same 1-quarter TTB (Model 3 ). The cross-correlations

in Model 1 and Model 2 are similar, as in the benchmark model. But both equipment

investment and structures investment comove with TFP when longer TTB for structures is

assumed away in Model 3. The results suggest that the heterogeneity in TTB is the key

driver of the lagging behavior of structures investment.

4.5 Predictions on Return Predictability

The benchmark model also generates reasonable results in return predictability from invest-

ment rates as in the data. Table 11 reports the in-sample R2 and regression slopes b for

predictive predictions for the stock return, risk premium, and risk-free rate across various

horizons ranging from 1 quarter to 20 quarters.38

[Insert Table 11 about here]

In predicting the stock return, the model produces higher R2 for equipment IK than

structures IK at both short horizons and long horizons, as in the data. The R2 at a 1-

quarter horizon and 20-quarter horizon for equipment versus structures are 7.2% versus

38Note that model-implied investment rates are generated using the simulated investment data and the
perpetual inventory method, which is how investment rates in the data are constructed. Because the model
assumes multiple-quarter TTB for structures—but a 1-quarter TTB is assumed in the data—directly dividing
the simulated structures investment by the simulated structures capital stock is not consistent with the data
procedure.
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0.8% and 27.9% versus 15.2%. Equipment IK over-predicts the stock return at the short

horizon (20.9% R2 in the model versus 7.9% R2 in the data at a 4-quarter horizon), while

structures IK over predicts the stock return at the long horizon (15.2% R2 in the model

versus 3.7% R2 in the data at a 20-quarter horizon). This result suggests that there may be

a longer TTB for equipment—and an even longer TTB for structures—than what the model

assumes. In addition, the predicting slopes are negative, as in the data. When discount

rates fall, investment rises.

As for predicting the risk premium, the model generates similar R2 for structures IK, as

in the data but relatively low R2 for equipment in comparison with the data. The reason is

that equipment IK predicts the risk-free return negatively with large R2 at short horizons.

Because the risk premium is the difference between the stock return and the risk-free return,

the combination of negative predictions for both the stock return and risk-free return results

in less negative predicting slopes and lower R2 for predicting the risk premium than for

predicting the stock return.

To investigate which model assumption of capital heterogeneity drives the difference in

return predictability between equipment and structures, Table 11 also shows predictabil-

ity results for the three alternative models, stripping out each heterogeneity separately, in

which both equipment and structures have the same depreciation rate (Model 1 ), the same

production share (Model 2 ), and the same 1-quarter TTB (Model 3 ).

In Model 1 and Model 2, the better performance of equipment is preserved. But in Model

3, there is no significant prediction difference between equipment and structures. This is

because when both equipment investment and structures investment react to productivity

shocks in the same way, their marginal q ’s contain the same set of information reflected

in stock prices. Since marginal q is a linear function of IK due to the assumption of the

quadratic adjustment cost, equipment IK and structures IK have similar information for

predicting returns. The results across the three alternative models imply that the assumption

of the longer TTB for structures is the driver of the difference in return predictability.
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4.6 Model Mechanism

To examine the model mechanism, Figure 5 depicts the impulse responses of model variables

to a positive one standard deviation of TFP shock (1%) at time 1 across three models,

namely, the benchmark model, Model 3 when there is only a 1-quarter TTB, and Model 6

when utility is CRRA and adjustment cost is zero.

When a positive TFP shock hits the economy in the benchmark model, output, consump-

tion, and equipment investment rise on impact. Structures investment also rises on impact,

but it takes 5 quarters for it to achieve the maximum response due to TTB and TTP. Be-

cause the stock return rises on impact and then declines, the delayed response of structures

investment renders it less informative than equipment investment for predicting the stock

return. The structures investment decision (Xs) shows responses similar to those for equip-

ment investment, and is much more volatile than the structures investment (expenditures).39

In addition, because output rises on impact, while structures investment increases a little,

equipment investment and consumption have to overshoot to absorb the productivity shock.

Thus equipment investment and consumption gradually decline from quarter 1 to quarter 5,

when the supply of structures capital becomes elastic.

[Insert Figure 5 about here]

Because consumption overshoots on impact, the risk-free rate decreases in the short run.

To see this, first, the surplus-consumption ratio (not shown in the figure) shares the same

pattern of impulse response as consumption. So does the consumption surplus, which is

consumption multiplied by the surplus-consumption ratio (Ct −Ht = Ct ∗ ((Ct −Ht)/Ct)).

Because the consumption surplus rises on impact, the marginal utility of current consumption

surplus falls. The marginal utility of future short-run consumption surplus also falls, but by

a lesser amount, because the consumption surplus declines in the short run but is still above

the stochastic steady state. And the risk-free rate is the ratio of the former marginal utility

to the latter marginal utility (up to the multiplication of the time discount factor).

The decline of the risk-free rate in the short run is shared by other models that feature

short-run factor inflexibilities, such as the two-sector model with labor and capital immobil-

39Similar to equipment investment, Xs predicts stock returns well, as will be shown in Section 4.7.
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ities across sectors in Boldrin, Christiano, and Fisher (2001) and the 1-period TTP model

analyzed in that paper as well. This is both a blessing and a curse. The blessing is that the

model generates the “inverted leading-indicator property of interest rates” as in the data

highlighted in Boldrin, Christiano, and Fisher (2001): High interest rates today are associ-

ated with lower future output.40 The curse is that the risk-free rate becomes too volatile.

Also, the equipment IK will be strongly negatively associated with the short-run risk-free

return, because equipment investment rises on impact, while the risk-free rate drops on im-

pact. This weakens the negative predictions of equipment IK for the risk premium, as shown

in Table 11 above.

When both equipment and structures have a 1-quarter TTB (the “No TTB” case in

Figure 5), both equipment and structures investment rise on impact. The simultaneous

movement of equipment investment and structures investment makes both investment rates

similarly informative for return fluctuations as shown in Table 11. Structures capital becomes

elastic in the short run and absorbs part of the productivity shock, which is loaded on

consumption and equipment investment before. Therefore, structures investment rises more

on impact and becomes more volatile, while equipment and consumption rise less on impact

and become less volatile. Consumption does not overshoot, and the risk-free rate has a

small volatility. The stock return and risk premium rise on impact, then decline to their

stochastic steady states. All of the impulse responses converge to the ones in the benchmark

model after the TTB periods for structures, when structures capital becomes elastic in the

benchmark model.

When the TTB assumption for structures is retained but habit preference and adjustment

cost are removed from the model (the “No Habit No Adj” case in Figure 5), the marginal q

for equipment equals one and the marginal q for structures investment is smaller than 1 due

to TTB and the discounting. It is more beneficial to invest in equipment in the short run.

Thus, equipment investment overshoots and structures investment even decreases on impact.

Consumption increases on impact and has a hump-shaped response, as in a standard RBC

model. As a result, the risk-free rate rises on impact and has a small volatility. Because

40See also Beaudry and Guay (1996) and King and Watson (1996). The standard RBC model generates
positive comovement between interest rates and output because the impulse response of consumption is
hump-shaped.
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the removal of habit preference reduces the fluctuation in capital demand and the removal

of adjustment cost makes capital supply more elastic, the resulting stock return and risk

premium have little volatility.

As noted in Rouwenhorst (1991), the impulse responses oscillate for a TTB model with

a single type of capital and no adjustment costs. This is inconsistent with the empirical

evidence. Kuehn (2009) shows that adding the investment adjustment cost can render the

impulse responses to become smooth but adding capital adjustment cost does not work.

Here, even though there is no adjustment cost, the impulse responses are smooth due to the

assumption of two types of capital. Equipment has the standard 1-quarter TTB and can

absorb the shock upfront. The supply of overall capital (equipment plus structures) is elastic

in the short run, although the supply of structures capital is not.

4.7 Planned Investment and Return Predictability

The model provides theoretical support for previous empirical findings of return predictabil-

ity from planned investment, as in Lamont (2000) and Jones and Tuzel (2013b). Table 12

shows how the structures investment decision or planned structures investment in the lan-

guage of Lamont (2000) predicts market returns. The growth rate of planned structures

investment (log(Xst/Xs,t−1)) negatively predicts annual market returns with a 10% R2. The

structures investment rate (Xst/Ks,t+4) also negatively predicts annual market returns with

12% R2. These two results are empirically shown by Lamont (2000) (in his Tables III and V,

respectively). One difference is that Lamont’s planned investment includes both structures

and equipment.41

[Insert Table 12 about here]

The ratio of structures investment decision to structures investment expenditures (Xst/Ist)

is similar to Jones and Tuzel (2013b)’s ratio of nonresidential building starts to structures

investment expenditures (Starts/SI) constructed using the same logic as their new orders

41Another difference is that for the investment rate that Lamont uses, the capital stock from BEA con-
structed under the assumption of a 1-quarter TTB, while the structures capital stock in the model has a
5-quarter TTB. Because the structures capital stock is persistent in the model, using instead the capital
stock accumulated from the simulated structures investment under the assumption of 1-quarter TTB has
little effect on the result.
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to shipment ratio. Xst/Ist shows the highest predicting R2 of 25% for annual market re-

turns. The R2 first increases with the predicting horizon up to 4 quarters, then declines.

The pattern is the same when log(Xst/Xs,t−1) is the predictor; but the R2 for Xst/Ist is

quantitatively larger than the R2 for log(Xst/Xs,t−1).

The pattern of R2 for Starts/SI is different from Xst/Ist. It increases with the predicting

horizon, and is small at short horizons and large at long horizons. This could be due to

the inclusion of government structures investment in Starts/SI. First, government construc-

tion projects usually have longer TTB than private nonresidential construction projects; for

example, Census Bureau (1992) reports that the average number of months from start to

completion for state and local construction projects is 20.3 months, while the analog for

private nonresidential is 14 months. This could lead to predictability’s showing up only in

long horizons.

Second, government investment is negatively correlated with private investment (-0.23

correlation), and positively predicts aggregate risk premium, as shown by Belo and Yu

(2013).42 The decomposition of government investment into equipment and structures shows

that the equipment investment rate predicts the risk premium positively at all horizons,

while the structures investment rate predicts the risk premium negatively at long horizons

in Jones and Tuzel (2013b)’s sample from 1958 to 2009, as shown in Table A2.43 If the

prediction result for investment expenditures in government structures also holds for the

planned investment, the negative prediction from government structures investment at long

horizons could reinforce the negative prediction from private structures investment, and

lead to the large R2 in long horizons for Starts/SI. It is possible that at short horizons,

the negative correlation between government structures investment and private structures

investment counteracts the negative prediction of private structures investment for the risk

premium and leads to the small R2 for Starts/SI.

42Relatedly, Bansal, Croce, Liao, and Rosen (2016) show that there is reallocation from private investment
to government investment when productivity uncertainty is high.

43The definition of government investment here is slightly different from that of Belo and Yu (2013), who
exclude federal defense spending from gross government investment.
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4.8 Discount Rates versus Cash Flows

If the stock price increases today, either the expected dividend growth increases or the

discount rate falls, or both. Campbell and Shiller (1988) decompose the aggregate dividend-

price ratio into long-run stock returns (discount rates) and long-run dividend growth (cash

flows), and find that discount rates drive the variation in the dividend-price ratio.44 In the

model, TFP shocks drive variations of both discount rates and cash flows. It is not certain

that the return predictability in the model from investment rates truly comes from discount

rate variations; it is possible that cash flows drive the variation in the dividend-price ratio

and correlate negatively with discount rates. High investment today that predicts lower

future discount rates is simply a manifestation for predicting higher future cash flow growth.

This is not the case, however, seen from the impulse responses in Figure 5. When a

positive TFP shock hits the economy, the stock price (P ) and stock return (Rm) rise, while

dividend (D) falls. This suggests that a positive TFP shock acts as a negative discount rate

shock: The stock price has to fall to accommodate the decline in dividends. To verify this

formally, I use VAR analysis and perform Campbell-Shiller decomposition for the dividend-

price ratio; the results are shown in Table 13. It is evident that discount rates truly drive the

variation in the dividend-price ratio in the model. Therefore, high investment rates today

are indeed predicting lower discount rates.

[Insert Table 13 about here]

The model shows regression results similar to those for data for the first-order VAR: The

dividend-price ratio predicts the next-year stock return significantly positively but does not

predict the next-year dividend growth. The prediction sign in data for dividend growth is

positive. The high long-run coefficient for returns and low coefficient for dividend growth

suggest that discount rates drive the variation in the dividend-price ratio. The variance

decomposition further confirms this; almost all the variation in the dividend-price ratio

comes from the variation in discount rates. The discount rates variation as a percentage

of total dividend-price variation is over 100% (104.46% in the model and 161.67% in the

data), due to the positive correlation between discount rates and cash flows. The variance

44See Cochrane (2011) for a recent review.
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in discount rates (0.1307) in the model is smaller than that in the data (0.2435), because

the stock return in the model has a slightly smaller mean and standard deviation than in

the data.

5 Conclusion

This paper establishes a new and robust empirical finding: Equipment investment is more

tightly linked to stock returns than structures investment. I build a general equilibrium

production model with heterogeneous time-to-build for equipment and structures to explain

this empirical finding. Equipment investment requires less time to transform into productive

capital, and thus it reacts to productivity shocks more promptly than structures investment,

and reflects more of the information contained in stock prices. I show that among the hetero-

geneities between equipment and structures, only heterogeneity in time-to-build is necessary

for the model to deliver the heterogeneous relations to stock returns. It is also necessary

to match the empirical lead-lag correlations between productivity and equipment/structures

investment: Equipment investment comoves with productivity, while structures investment

lags productivity four quarters. In light of the significant impact of heterogeneous time-to-

build on asset prices and macro quantities, I argue that macro-finance models with different

types of capital should incorporate this heterogeneity.
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Figure 1: Quarterly Investment Rates 1947Q1-2015Q4. This figure shows the
investment-capital ratios of nonresidential total (excluding intellectual property and prod-
ucts), nonresidential equipment, and nonresidential structures over NIPA sample 1947 Quar-
ter 1 to 2015 Quarter 4. Investment data are from NIPA. Capital stocks are constructed
with the perpetual inventory method. Shaded areas are NBER-indicated recessions.
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Figure 2: Quarterly Cross-Correlations between Investment Growth Rates and
TFP Growth Rate 1947Q1-2015Q4. This figure shows quarterly lead-lag correlations
between nonresidential investment growth rates (in log) at t + i and TFP growth rate (in
log) at t over NIPA sample 1947 Quarter 1 to 2015 Quarter 4. Investment data are from
NIPA. Nonresidential investment excludes intellectual property and products. Equipment is
nonresidential equipment. Structures is nonresidential structures. TFP data are from John
Fernald’s website.
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Figure 3: Actual and Predicted 5-year Risk Premium. This figure shows the actual
and predicted 5-year-ahead risk premium from 1947 Quarter 2 to 2011 Quarter 1. The
predictor is equipment investment rate. “IS” means in sample. “OOS” means out of sample.
The out-of-sample procedure uses the first half of the sample as the training period, and
recursively predicts and retrains in subsequent periods. Shaded areas are NBER-indicated
recessions.
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Figure 4: Model-Implied Investment and TFP Cross-Correlations. This figure
shows the model-implied quarterly lead-lag correlations between investment growth rates (in
log) at t + i and TFP growth rate (in log) at t. The model scenarios include Benchmark
Model, Model 1 (same depreciation, δ̄e = δ̄s = 0.025), Model 2 (same production share,
αe = αs = 0.18), and Model 3 (no TTB, Je = Js = 1). Each model is simulated 500 times
and the mean correlations are reported.
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Figure 5: Model Impulse Responses to TFP Shocks. This figure shows log deviations
of model variables from stochastic steady states in response to a one standard deviation TFP
shock at time 1. All plotted responses are scaled by the standard deviation of the TFP shock
(1%). Model scenarios include the Benchmark Model, Model 3 (no TTB, Je = Js = 1), and
Model 6 (no habit, no adjustment cost, Ht = 0, ηe = ηs = 0).
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Table 1: Descriptive Statistics for Investment Rates

This table reports the descriptive statistics (mean (in percent), standard deviation (Std, in percent),
autocorrelation (AC(1)), and correlations) for US quarterly equipment and structures investment
rates at aggregate level, asset level, and industry level. Depreciation rates (Dep) for corresponding
capital types are also reported. The sample period is 1947Q1-2015Q4 for quarterly aggregate and
equipment-asset investment rates, 1959Q1-2015Q4 for quarterly structures-asset investment rates,
and 1947-2015 for annual industry investment rates.

Investment Rate (IK) Dep Mean Std AC(1)
Correlation with Aggregate

Nonresi. Equip. Struct.

Panel A: Quarterly Aggregate Investment Rates

Nonresidential 1.26 2.21 0.25 0.971 1.00 0.93 0.56

Equipment 2.72 3.88 0.49 0.965 0.93 1.00 0.26

Structures 0.79 1.35 0.25 0.988 0.56 0.26 1.00

Panel B: Quarterly Asset-Level Investment Rates

Equipment:

Information processing 3.11 5.69 0.95 0.969 0.87 0.81 0.52

Industrial 2.40 2.89 0.39 0.957 0.81 0.79 0.54

Transportation 3.28 4.05 0.73 0.923 0.65 0.74 0.25

Other 3.80 4.48 0.50 0.921 0.67 0.72 0.23

Structures:

Commercial and health care 0.64 1.34 0.39 0.988 0.59 0.35 0.88

Manufacturing 0.82 1.17 0.34 0.970 0.52 0.34 0.78

Power and communication 0.58 1.01 0.20 0.959 0.33 0.14 0.52

Mining exploration, shafts, & wells 1.91 2.15 0.69 0.952 0.21 0.03 0.31

Other structures 0.60 0.96 0.17 0.965 0.56 0.44 0.56
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Table 1 Continued

Investment Rate (IK) Dep Mean Std AC(1)
Correlation with Aggregate

Nonresi. Equip. Struct.

Panel C: Annual Industry-Level Investment Rates

Equipment:

Agriculture 14.39 15.92 3.44 0.851 0.12 0.28 -0.27

Mining 14.46 17.92 4.79 0.794 0.19 0.08 0.24

Construction 16.34 18.80 5.35 0.792 0.52 0.71 -0.14

Manufacturing 9.81 12.78 2.12 0.809 0.79 0.80 0.40

Wholesale 14.84 20.54 4.90 0.788 0.64 0.64 0.46

Retail 13.11 18.96 3.06 0.725 0.67 0.71 0.19

Transp & warehousing 8.93 11.27 2.48 0.730 0.67 0.81 0.01

Information 11.90 18.69 2.80 0.657 0.62 0.63 0.22

Profes, scient & techn serv 12.31 22.15 5.70 0.881 0.54 0.60 -0.08

Admin & waste manag serv 12.88 21.14 3.80 0.683 0.54 0.54 0.19

Health care & social assist 15.62 22.81 2.24 0.648 0.35 0.27 0.32

Arts, entert & recreation 14.53 18.81 4.18 0.845 0.33 0.49 -0.16

Accomodation & food serv 14.79 17.77 1.85 0.548 0.58 0.53 0.44

Other serv, except govern 12.96 17.89 4.00 0.783 0.34 0.29 0.23

Structures:

Agriculture 2.49 2.17 0.83 0.913 0.23 0.19 0.18

Mining 7.01 9.13 2.80 0.882 0.06 -0.21 0.49

Construction 2.75 7.96 5.05 0.886 0.17 -0.03 0.68

Manufacturing 3.22 4.36 1.40 0.853 0.55 0.39 0.76

Wholesale 2.63 7.93 3.60 0.790 0.24 -0.05 0.80

Retail 2.70 6.01 1.89 0.893 0.41 0.21 0.80

Transp & warehousing 2.23 2.98 0.75 0.837 0.15 0.24 -0.41

Information 2.58 5.66 1.45 0.882 0.71 0.49 0.75

Profes, scient & techn serv 2.70 9.06 3.73 0.852 0.11 -0.16 0.65

Admin & waste manag serv 2.48 6.33 2.88 0.899 0.26 0.00 0.74

Health care & social assist 2.18 7.59 3.58 0.940 -0.09 -0.31 0.63

Arts, entert & recreation 3.00 6.76 2.46 0.854 0.17 0.13 0.15

Accomodation & food serv 2.90 6.54 2.71 0.892 0.20 -0.01 0.69

Other serv, except govern 2.23 4.82 2.05 0.954 -0.03 -0.25 0.55
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Table 4: Return Predictability from Aggregate Investment Rates

This table reports in-sample and out-of-sample R2 (in percent) for OLS predictions of US aggregate
risk premium (from Kenneth French’s website) from 1947Q1 to 2015Q4 across various horizons
(H) ranging from 1 quarter to 20 quarters,

∑H
h=1Rt+h = a + b IKt + εt+H . Predictor variables

are US investment rates of nonresidential total (excluding intellectual property and products),
nonresidential equipment, and nonresidential structures. The out-of-sample procedure uses the
first half of the sample as the training period, then recursively tests and retrains in subsequent
periods. b denotes the prediction slope coefficient. p(NW) denotes in-sample p-values constructed
as in Newey and West (1987). Out-of-sample R2 is calculated against historical averages of the
predicted variable. ENC-NEW denotes the New Encompassing out-of-sample test statistic from
Clark and McCracken (2001), following the construction methodology described in Kelly and Pruitt
(2013). Significance for ENC-NEW statistics: ∗ ∗ ∗ : p < 0.01, ∗ ∗ : p < 0.05, ∗ : p < 0.1.

Investment Rates H
In Sample Out of Sample

R2% b p(NW ) R2% ENC-NEW

Nonresidential 1 3.90 -6.48 0.002 0.68 3.242∗∗∗

4 11.24 -22.55 0.001 6.31 4.414∗∗∗

8 18.45 -39.39 0.000 15.52 5.079∗∗∗

12 29.02 -57.63 0.000 26.68 7.170∗∗∗

16 38.08 -73.34 0.000 33.98 9.340∗∗∗

20 39.26 -85.80 0.000 26.99 8.931∗∗∗

Equipment 1 3.04 -2.93 0.005 -1.14 1.321∗

4 9.26 -10.45 0.003 1.10 2.196∗∗

8 15.52 -18.40 0.002 7.26 2.578∗∗

12 25.50 -27.38 0.000 18.48 4.351∗∗∗

16 35.16 -35.54 0.000 32.22 7.397∗∗∗

20 39.06 -42.57 0.000 34.73 9.520∗∗∗

Structures 1 0.97 -3.19 0.091 -2.55 0.462

4 2.42 -10.40 0.068 -6.47 0.099

8 3.99 -18.43 0.051 -12.22 0.179

12 6.44 -27.74 0.053 -26.44 0.326

16 8.46 -35.97 0.087 -50.93 0.328

20 7.83 -40.75 0.159 -87.25 0.063
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Table 5: Return Predictability from Aggregate Investment Rates with Time-
Varying Depreciation

This table reports in-sample and out-of-sample R2 (in percent) for OLS predictions of US aggregate
risk premium (from Kenneth French’s website) from 1953Q1 to 2015Q4 across various horizons (H)
ranging from 1 quarter to 20 quarters,

∑H
h=1Rt+h = a+ b IKt + εt+H . Predictor variables are US

investment rates of nonresidential total (excluding intellectual property and products), nonresi-
dential equipment, and nonresidential structures, constructed following Bachmann, Caballero, and
Engel (2013). See Appendix A.2 for details. The out-of-sample procedure uses the first half of the
sample as the training period, then recursively tests and retrains in subsequent periods. b denotes
the prediction slope coefficient. p(NW) denotes in-sample p-values constructed as in Newey and
West (1987). Out-of-sample R2 is calculated against historical averages of the predicted variable.
ENC-NEW denotes the New Encompassing out-of-sample test statistic from Clark and McCracken
(2001), following the construction methodology described in Kelly and Pruitt (2013). Significance
for ENC-NEW statistics: ∗ ∗ ∗ : p < 0.01, ∗ ∗ : p < 0.05, ∗ : p < 0.1.

Investment Rates H
In Sample Out of Sample

R2% b p(NW ) R2% ENC-NEW

Nonresidential 1 2.26 -4.51 0.022 -2.24 1.323∗

4 6.45 -15.59 0.005 1.38 2.681∗∗

8 9.93 -26.12 0.003 8.68 2.544∗∗

12 17.15 -39.29 0.000 15.57 3.284∗∗∗

16 25.62 -52.25 0.000 22.53 4.163∗∗∗

20 27.74 -62.83 0.000 19.86 3.957∗∗∗

Equipment 1 2.26 -2.78 0.023 -1.84 0.693

4 6.15 -9.34 0.011 3.38 2.060∗∗

8 9.03 -15.17 0.013 8.67 1.679∗∗

12 17.14 -23.61 0.000 18.62 2.856∗∗

16 28.33 -32.49 0.000 34.72 5.598∗∗∗

20 32.71 -39.13 0.000 43.21 8.471∗∗∗

Structures 1 1.10 -3.77 0.081 -1.40 0.856

4 2.62 -11.95 0.072 -0.94 0.818

8 4.04 -20.08 0.051 -1.03 0.507

12 6.10 -28.39 0.076 -3.70 0.477

16 7.46 -34.31 0.149 -10.97 0.343

20 5.74 -34.85 0.272 -33.87 -0.248
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Table 6: Return Predictability from Asset-Level Investment Rates

This table reports in-sample and out-of-sample R2 (in percent) for OLS predictions of US aggregate
risk premium (from Kenneth French’s website) from 1947Q1 to 2015Q4 across various horizons (H)
ranging from 4 quarters to 20 quarters,

∑H
h=1Rt+h = a+ b IKt + εt+H . Predictor variables are US

investment rates of different types of nonresidential equipment and nonresidential structures. The
out-of-sample procedure uses the first half of the sample as the training period, then recursively
tests and retrains in subsequent periods. b denotes the prediction slope coefficient. p(NW) denotes
in-sample p-values constructed as in Newey and West (1987). Out-of-sample R2 is calculated against
historical averages of the predicted variable. ENC-NEW denotes the New Encompassing out-of-
sample test statistic from Clark and McCracken (2001), following the construction methodology
described in Kelly and Pruitt (2013). Significance for ENC-NEW statistics: ∗ ∗ ∗ : p < 0.01, ∗ ∗ :
p < 0.05, ∗ : p < 0.1.

Investment Rates H
In Sample Out of Sample

R2% b p(NW ) R2% ENC-NEW

Panel A: Equipment

Information 4 6.41 -4.54 0.006 0.21 1.770∗∗

processing 12 18.88 -12.69 0.001 0.98 2.128∗∗

20 28.25 -20.07 0.000 -36.63 1.576∗

Industrial 4 6.51 -11.00 0.007 1.56 1.303∗

12 18.85 -29.58 0.000 10.55 2.066∗∗

20 34.05 -49.91 0.000 17.37 3.489∗∗∗

Transportation 4 4.58 -5.02 0.015 -6.38 0.607

12 13.91 -14.05 0.000 3.11 2.195∗∗

20 24.66 -23.49 0.000 19.76 5.199∗∗∗

Other 4 8.22 -9.68 0.004 0.25 2.552∗∗

12 21.15 -24.57 0.000 20.25 4.751∗∗∗

20 35.60 -39.96 0.000 38.11 10.595∗∗∗

Panel B: Structures

Commercial and 4 2.91 -7.60 0.090 2.75 1.310∗

health care 12 8.31 -20.70 0.074 0.12 0.503

20 9.07 -28.47 0.166 -21.81 -0.037

Manufacturing 4 0.00 -0.30 0.947 -2.62 -0.474

12 0.57 -5.73 0.558 -5.19 -0.298

20 1.08 -9.56 0.544 -10.25 -0.136

Power and 4 9.55 -26.13 0.003 7.89 4.081

communication 12 12.01 -44.64 0.009 -5.02 1.332∗

20 6.69 -39.73 0.203 -13.02 1.089∗

Mining exploration, 4 0.02 0.31 0.908 -0.91 -0.170

shafts, and wells 12 0.84 3.49 0.449 -6.07 -0.350

20 1.58 5.73 0.330 -13.66 -0.451

Other 4 3.34 -19.01 0.038 4.48 1.390∗

12 8.98 -49.51 0.022 8.87 0.955

20 12.64 -77.20 0.016 11.01 1.086∗
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Table 7: Return Predictability from Industry Investment Rates at 5-year Horizon

This table reports in-sample R2 (in percent) for OLS predictions of US aggregate risk premium
(Panel A) and of US 14 sectoral risk premium (Panel B) from 1962 to 2015 at a 5-year horizon,∑5

h=1Rt+h = a+b IKt+εt+5. Predictor variables are each industry’s investment rates of equipment
and structures. b denotes the prediction slope coefficient. p(NW) denotes in-sample p-values
constructed as in Newey and West (1987). The last column shows the difference in R2 between
equipment and structures.

Industry
Equipment Structures ∆R2

R2% b p(NW ) R2% b p(NW ) E-S

Panel A: How Does Industry IK Predict Aggregate Risk Premium?

Agriculture 7.25 -3.12 0.031 1.99 -6.03 0.184 5.27

Mining 0.12 -0.26 0.770 5.09 2.81 0.174 -4.97

Construction 14.32 -2.48 0.005 4.74 -1.58 0.259 9.57

Manufacturing 17.90 -7.01 0.003 11.96 -8.77 0.087 5.94

Wholesale 19.94 -3.19 0.001 0.26 -0.52 0.758 19.68

Retail 17.52 -5.07 0.000 9.30 -6.91 0.046 8.22

Transp & warehousing 20.95 -6.75 0.000 0.50 3.45 0.733 20.45

Information 18.23 -5.41 0.002 16.11 -11.21 0.029 2.12

Profes, scient & techn serv 6.04 -1.59 0.058 0.15 -0.38 0.829 5.89

Admin & waste manag serv 6.53 -2.41 0.100 0.02 0.18 0.921 6.51

Health care & social assist 6.57 -4.35 0.048 0.00 0.04 0.986 6.57

Arts, entert & recreation 5.94 -2.07 0.078 0.15 -0.58 0.814 5.79

Accomodation & food serv 7.92 -5.43 0.002 2.42 -2.17 0.214 5.51

Other serv, except govern 7.58 -2.47 0.169 0.63 1.51 0.597 6.95

Panel B: How Does Industry IK Predict Industry Risk Premium?

Agriculture 0.76 -1.38 0.476 0.06 -1.34 0.796 0.71

Mining 9.67 -2.52 0.132 10.70 -4.88 0.049 -1.04

Construction 2.27 1.48 0.351 1.06 1.14 0.696 1.21

Manufacturing 13.60 -5.94 0.005 17.54 -8.92 0.021 -3.94

Wholesale 20.63 -3.41 0.019 6.13 -2.76 0.021 14.50

Retail 5.05 -3.24 0.184 14.72 -10.04 0.022 -9.66

Transp & warehousing 22.64 -6.33 0.001 1.04 4.60 0.639 21.60

Information 26.10 -7.70 0.000 8.10 -9.56 0.174 18.00

Profes, scient & techn serv 29.10 -4.49 0.000 3.36 -2.86 0.378 25.74

Admin & waste manag serv 12.63 -4.28 0.018 2.92 2.68 0.292 9.71

Health care & social assist 0.32 2.04 0.774 4.59 -5.09 0.444 -4.26

Arts, entert & recreation 1.23 1.75 0.407 0.47 2.05 0.714 0.77

Accomodation & food serv 5.58 -5.74 0.033 3.69 3.31 0.182 1.89

Other serv, except govern 1.55 -2.44 0.330 0.00 0.14 0.989 1.55
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Table 8: Return Predictability from UK Aggregate Investment Rates

This table reports in-sample and out-of-sample R2 (in percent) for OLS predictions of UK value-
weighted market returns from 1970Q1 to 2013Q4 across various horizons (H) ranging from 1 quarter
to 20 quarters,

∑H
h=1Rt+h = a + b IKt + εt+H . Predictor variables are UK quarterly investment

rates of nonresidential equipment and structures. See Appendix A.3 for more details on the data
construction. The out-of-sample procedure uses the first half of the sample as the training period,
then recursively tests and retrains in subsequent periods. b denotes the prediction slope coefficient.
p(NW) denotes in-sample p-values constructed as in Newey and West (1987). Out-of-sample R2

is calculated against historical averages of the predicted variable. ENC-NEW denotes the New
Encompassing out-of-sample test statistic from Clark and McCracken (2001), following the con-
struction methodology described in Kelly and Pruitt (2013). Significance for ENC-NEW statistics:
∗ ∗ ∗ : p < 0.01, ∗ ∗ : p < 0.05, ∗ : p < 0.1.

Investment Rates H
In Sample Out of Sample

R2% b p(NW ) R2% ENC-NEW

Nonresidential 1 0.67 -2.75 0.205 -0.06 0.182

4 3.70 -13.54 0.024 5.41 1.596∗∗

8 5.44 -21.50 0.041 8.55 1.201∗

12 10.49 -35.42 0.003 20.62 2.881∗∗

16 17.16 -48.23 0.000 36.59 6.287∗∗∗

20 23.94 -55.84 0.000 41.71 8.089∗∗∗

24 28.60 -59.02 0.000 46.97 8.094∗∗∗

Equipment 1 0.73 -1.90 0.178 -1.20 0.181

4 2.50 -7.38 0.032 0.90 0.975

8 2.38 -9.43 0.113 1.98 0.522

12 4.36 -15.16 0.074 6.00 1.219∗

16 11.12 -25.99 0.020 21.33 3.535∗∗∗

20 19.71 -35.20 0.005 30.53 4.749∗∗∗

24 23.46 -37.25 0.003 33.18 3.513∗∗∗

Structures 1 0.10 -1.23 0.682 -1.46 -0.443

4 1.66 -10.35 0.166 2.94 0.551

8 3.12 -18.56 0.091 2.88 0.345

12 6.32 -31.07 0.020 8.71 0.766

16 7.46 -35.57 0.001 13.46 1.109∗

20 8.66 -36.94 0.000 13.91 1.082∗

24 11.03 -40.16 0.000 19.09 1.301∗
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Table 9: Calibration

This table reports the calibrated values of parameters in the model. The model is calibrated at
quarterly frequency.

Param Name Value

µ GDP growth rate 0.0048

ρa persistence of TFP 0.98

σa volatility of TFP shock 0.01

β time discount factor 0.995

γ risk aversion 2

ρs persistence of surplus consumption ratio 0.98

S̄ steady state surplus consumption ratio 0.07

δe depreciation rate of equipment 0.0338

δs depreciation rate of structures 0.0077

αe production share of equipment 0.202

αs production share of structures 0.158

νe equipment adjustment cost curvature 2

νs structures adjustment cost curvature 2

ηe equipment adjustment cost parameter 50

ηs structures adjustment cost parameter 50

Je quarters of TTB for equipment 1

Js quarters of TTB for structures 5

ωe equipment project completion pattern 1

ωs structures project completion pattern (0.10,0.15,0.20,0.25,0.30)
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Table 11: Return Predictability from Model-implied Investment Rates

This table reports model-implied in-sample R2 (in percent) and regression slopes β for OLS predic-
tions of aggregate risk premium, aggregate market return, and risk-free rate across various horizons
(H) ranging from 1 quarter to 20 quarters,

∑H
h=1Rt+h = a+ b IKt + εt+H . Predictor variables are

simulated equipment and structures investment rates. Note that model-implied investment rates
are generated using simulated investment data and the perpetual inventory method, as the invest-
ment rates in the data are constructed. The model scenarios include Benchmark Model, Model
1 (same depreciation, δ̄e = δ̄s = 0.025), Model 2 (same production share, αe = αs = 0.18), and
Model 3 (no TTB, Je = Js = 1).

H
Data

Model Model 1 Model 2 Model 3

Predictive Benchmark Same δ Same α No TTB

Regressions δ̄ = 0.025 α = 0.18 J = 1

R2% b R2% b R2% b R2% b R2% b

Equipment 1 2.7 -2.8 7.2 -8.2 3.6 -4.3 8.6 -9.7 1.2 -1.7

Predicts 4 7.9 -9.8 20.9 -24.2 11.1 -13.4 24.6 -28.0 4.8 -6.6

Rm 12 21.0 -25.6 23.7 -30.0 17.9 -23.2 26.1 -32.2 13.1 -18.7

20 33.1 -41.4 27.9 -37.2 24.1 -32.5 29.8 -38.6 20.0 -29.4

Equipment 1 3.0 -2.9 0.6 -1.8 0.7 -1.6 0.6 -1.8 0.7 -1.1

Predicts 4 9.3 -10.4 2.1 -6.9 2.6 -6.0 2.0 -6.8 2.7 -4.4

Rm −Rf 12 25.5 -27.4 5.5 -19.2 7.0 -16.5 5.0 -19.2 7.6 -12.1

20 39.1 -42.6 8.8 -30.3 11.2 -25.8 8.0 -30.6 11.9 -18.7

Equipment 1 0.7 0.1 35.9 -6.4 30.7 -2.7 38.3 -7.9 35.4 -0.6

Predicts 4 2.0 0.7 32.9 -17.3 25.5 -7.5 35.9 -21.1 35.5 -2.3

Rf 12 2.5 1.8 5.9 -10.8 9.7 -6.7 6.0 -13.0 35.3 -6.6

20 0.5 1.2 4.0 -6.9 9.9 -6.7 3.7 -8.1 34.9 -10.6

Structures 1 0.6 -2.4 1.1 -3.6 1.2 -2.6 1.1 -4.0 1.5 -1.7

Predicts 4 1.2 -7.3 2.6 -9.0 3.5 -7.9 2.2 -9.4 5.6 -6.7

Rm 12 3.0 -19.5 9.2 -19.8 11.0 -19.3 8.1 -20.0 15.5 -18.8

20 3.7 -29.5 15.2 -29.1 17.2 -29.2 13.5 -29.1 23.6 -29.5

Structures 1 1.0 -3.2 0.8 -2.7 0.7 -1.8 0.9 -3.1 0.8 -1.2

Predicts 4 2.4 -10.4 3.2 -10.5 2.7 -6.9 3.3 -11.9 3.1 -4.5

Rm −Rf 12 6.4 -27.7 9.0 -29.3 7.7 -19.2 9.1 -33.3 8.8 -12.5

20 7.8 -40.8 13.8 -44.8 11.9 -29.4 13.9 -51.0 13.8 -19.4

Structures 1 6.1 0.8 1.0 -0.8 4.0 -0.9 0.8 -0.9 40.2 -0.6

Predicts 4 10.6 3.1 1.1 1.5 3.4 -1.0 1.1 2.5 40.3 -2.2

Rf 12 13.1 8.2 5.1 9.4 7.0 -0.1 5.5 13.2 39.8 -6.3

20 10.0 11.2 8.7 15.6 10.2 0.2 9.3 21.8 39.0 -10.1
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Table 12: Return Predictability from Model-Implied Planned Investment

This table reports model-implied in-sample R2 (in percent) and regression slopes β for OLS pre-
dictions of aggregate market return across various horizons ranging from 1 quarter to 20 quar-
ters. Predictor variables are simulated log growth rates of the structures investment decision
(log(Xst/Xs,t−1)), structures investment rate (Xst/Ks,t+4), and the ratio of structures investment
decision to structures investment expenditures (Xst/Ist).

Predictor Horizon R2% Slope p(NW )

log(Xst/Xs,t−1) 1 0.95 -0.07 0.314

4 9.80 -0.52 0.000

8 6.06 -0.43 0.002

12 5.37 -0.45 0.002

16 5.00 -0.46 0.001

20 4.60 -0.47 0.002

Xst/Ks,t+4 1 4.02 -6.26 0.014

4 12.39 -18.95 0.003

8 15.81 -22.83 0.008

12 19.92 -27.97 0.011

16 23.68 -32.84 0.015

20 26.89 -37.14 0.017

Xst/Ist 1 6.79 -0.23 0.003

4 25.13 -0.76 0.000

8 18.35 -0.69 0.000

12 16.54 -0.71 0.001

16 15.45 -0.74 0.002

20 14.54 -0.76 0.003
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Table 13: VAR Analysis: Discount Rates versus Cash Flows

This table reports model-implied results for VAR analysis along with the empirical counterparts.
Data are at annual frequency from 1947-2015. I use annual value-weighted CRSP market returns
with and without dividends to back out the dividend-price ratio and then dividend growth (see
Cochrane (2011) Appendix A). The model is simulated at quarterly frequency and aggregated to
annual frequency. Median statistics from 500 simulations are reported. All variables, namely return
(r), dividend growth (∆d), and dividend-price ratio (dp), are in logs. Panel A shows the regression
slope coefficient, p value, and R2 (in percent) for first-order VAR with dpt as the right-hand variable.
Panel B shows the long-run coefficients for long-run returns (rlrt ) and dividend growth (∆dlrt ) implied
from the 1-year coefficients in Panel A. ρ is calculated as exp(−E(dp))/(1 + exp(−E(dp))). Panel
C shows the variance components for dividend-price ratio both in raw value and in percentage of
the variance in the dividend-price ratio (var(dpt)). Due to the approximation error from Campell-
Shiller decomposition, the sum of coefficients on rlrt and −∆dlrt in Panel B approximately equals
one, and the percentages of variance components sum to approximately 100%.

Panel A: First-Order VAR

Data Model

Left-Hand Variable Coeff p R2% Coeff p R2%

rt+1 0.11 0.018 7.05 0.12 0.003 11.14

∆dt+1 0.02 0.608 0.55 -0.00 0.753 0.17

dpt+1 0.94 0.000 90.89 0.90 0.000 80.88

Panel B: Long-Run Coefficients Implied by First-Order VAR

Data Model

Left-Hand Variable Coeff Coeff

rlrt =
∑∞

j=1 ρ
j−1rt+j 1.27 1.02

∆dlrt =
∑∞

j=1 ρ
j−1∆dt+j 0.27 0.01

Panel C: Variance Decomposition for Dividend-Price Ratio

Data Model

Value Percent Value Percent

var(dpt) 0.1506 100.00 0.1391 100.00

var(rlrt ) 0.2435 161.67 0.1307 104.46

var(∆dlrt ) 0.0110 7.31 0.0005 0.35

−2 cov(rlrt ,∆d
lr
t ) -0.1035 -68.76 -0.0021 -2.58
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A Appendices

A.1 Construction Length of Time

This section shows how construction length of time (LoT) statistics, as in Table 3, are con-

structed. The Census Bureau surveys construction projects, including privately owned nonresiden-

tial construction, projects owned by state and local governments, and privately owned multi-family

projects, and tracks them from start to completion. It reports the LoT statistics as a supplement to

the main estimates of value of construction put in place. LoT statistics are calculated by value and

type of construction based on projects completed in a 2-year window. For example, the LoT for all

private nonresidential projects during 2014-15 would be the length of time for each project com-

pleted in 2014-1545 weighted by its sampling rate. A sampling rate is assigned to each value-type

cell as the inverse of the probability of selecting a project with some adjustments. Sample rates

for private nonresidential construction projects are shown in Table 2 in Construction Methodol-

ogy of Construction Spending (https://www.census.gov/construction/c30/methodology.html).

For example, the sampling rate for manufacturing projects valued at $250,000 to $749,000 is 1/8.

As noted by Montgomery (1995), the “equal-weighted” LoT statistics without considering project

costs reported by the Census Bureau overstate smaller projects and understate larger projects,

distorting the aggregate statistics downward. Thus, I calculate a “value-weighted” version for the

sample 2001-2015.

The numbers for 1990-91 in Column 2 of Table 3 are taken directly from Census Bureau (1992),

except that the row “All (value-weighted)” of 16.7 months is from Montgomery (1995). For the

sample 2001-2015, Census Bureau (2016) reports the equal-weighted length of time statistics by

value and type of construction for each 2-year window, namely 2001-02, 2002-03,...,2013-14, 2014-

15. I calculate the value-weighted measures under some assumptions, since the microdata for each

project are not observable. Column 2001-15 shows the time-series average. To calculate the row “All

(value-weighted)” in Panel A, I assume the average value for each value category equals the midpoint

of the range, such as $2,000 (thousands) for the value category $1,000 - $2,999 (thousands). The

average value for $10,000 or more (thousands) is reported by the Census Bureau. I then weight

each value category by its average value and number of projects. I assume the distribution of

projects to be [1 2 4 8 16 32] for the six value categories (from highest to lowest).46 For example,

45These projects could be started anytime before or during 2014-15.
46This is a simple yet reasonable assumption, based on the sampling rates across each value-type cell shown
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the weight for the value category $1,000 - $2,999 (thousands) is $2,000 (thousands) multiplied by

8. The value-weighted length of time statistics for each 2-year window is then calculated as the

weighted average across the six value categories. To calculate value-weighted measures for each

type of construction in Panel B for 2001-2015, I weight across value categories with their midpoints

multiplied by the inverse of the sampling rates mentioned earlier.

A.2 Bachmann, Caballero, and Engel (2013)

For completeness, this section shows how to calculate investment rates as in Bachmann, Caballero,

and Engel (2013). I largely follow the description in their paper. Instead of assuming constant

depreciation rates and using the perpetual inventory method, I use information on capital stocks

and depreciation from BEA FA tables in addition to BEA NIPA tables. The data I use are (i)

nominal investment from NIPA Table 1.1.5 Gross Domestic Product at quarterly frequency, ĨQ,

and annual frequency, ĨY ; (2) investment deflators from NIPA Table 1.1.9 Implicit Price Deflators

for Gross Domestic Product at quarterly frequency, PQ; (3) nominal depreciation from FA Table

1.3. Current-Cost Depreciation of Fixed Assets and Consumer Durable Goods at annual frequency,

DY ; (4) nominal capital stock at year-end prices from FA Table 1.1 Current-Cost Net Stock of

Fixed Assets and Consumer Durable Goods at annual frequency, K̃Y .

First, I construct a quarterly investment series consistent with annual investment. Because

original quarterly investment is seasonally adjusted at annual rates, the average in each year is not

equal to total annual investment. I use IQt = IYy /4 ∗ ĨtQ/
∑

t∈y Ĩt
Q, where y denotes which year.

Second, to obtain quarterly depreciation, I assume the real depreciation rate is constant across 4

quarters in each year and the sum of quarterly depreciation equals annual depreciation,

D1

PQ1
=
D2

PQ2
=
D3

PQ3
=
D4

PQ4

D1 +D2 +D3 +D4 = DY .

Third, I adjust annual capital stocks at year-end price to quarter 4 price using KY = K̃Y ∗

2PQ4,y/(P
Q
4,y +PQ1,y+1). I use KY as quarter 4 capital stock and use a capital accumulation equation

to obtain capital stocks at quarters 1, 2, and 3,

KQ
t = KQ

t−1 −D
Q
t + IQt .

in Table 2 in https://www.census.gov/construction/c30/methodology.html. See the previous paragraph.
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Finally the real quarterly investment rates are defined as IKQ
t =

IQt
PQ
t

/
KQ

t−1

PQ
t−1

.

A.3 UK Data

Quarterly UK investment data is downloaded from “gross fixed capital formation by 6 asset types”

(namq pi6 k) in the Eurostat database.47 The quantity index for base year 2000 is used, since it has

longest time series for the break between equipment and structures. The sample is from 1970Q1 to

2013Q4. Seasonally and calendar adjusted data are used. The 6 asset types are N1111 dwellings,

N1112 other buildings and structures, N11131 transport equipment, N11132 other machinery and

equipment, N1114 cultivated assets, and N112 intangible fixed assets, along with the aggregate N11

total fixed assets. N1112 is used as the US counterpart of nonresidential structures, and the sum

of N11131 and N11132 is taken as nonresidential equipment, which I denote as N1113.

I use the perpetual inventory method to calculate investment rates for equipment and structures,

as for US. To calculate the growth rate of total nonresidential equipment N1113, I use the nominal

investment (not seasonally adjusted) weighted investment growth rates of N11131 and N11132

(year 2000 index). The depreciation rates used for N1112, N11131, and N11132 are 0.0203, 0.2059,

and 0.0757, which are annual and from Oulton and Srinivasan (2003), p.49, Table F ONS2 row.48

The depreciation rate for N1113 is calculated as the nominal investment (not seasonally adjusted)

weighted depreciation rates of N11131 and N11132, resulting in 0.1046.49

Return data are from Kenneth French’s and John Campbell’s websites and IMF International

Financial Statistics.50 All returns are transformed to log. For nominal stock market return 1970Q1

to 2015Q4, the early sample 1970Q1 to 1974Q4 from Campbell is spliced with the later sample

1975Q1 to 2015Q4 from French.51 For the nominal 3-month risk-free rate and consumer price index

47These data are from the European system of national and regional accounts ESA95. There is an update
in September 2014 from ESA95 to ESA 2010, to be consistent with the international System of National
Accounts (SNA 2008). I use ESA95, because it has longer time series back to 1970s, while ESA 2010 starts
from 1995 for the UK.

48These numbers are fairly similar to US numbers.
49Ideally, capital stock weighted depreciation should be used. However, Eurostat has only annual capital

stock data from 1995, which are derived assuming straight-line depreciation. The depreciation rates from
Oulton and Srinivasan (2003) are derived under the assumption of geometric depreciation. By any means,
the capital stock weighted depreciation for N1113 is 0.1024 or 0.097, if the 2005 chain-linked volume in
national currency or nominal value in national currency (sample period: 1995-2011) is used.

50http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F International Countries.zip,
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/KSCWRAGNIJ, and
http://data.imf.org/?sk=5DABAFF2-C5AD-4D27-A175-1253419C02D1.

51Monthly value-weighted market return in local currency without requiring the four price ratios in French’s
data is first taken log and then summed to quarterly value. The two return series from Campbell and French
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(CPI) from 1964Q1 to 2016Q4, Campbell’s data from 1964Q1 to 1996Q4 are directly extended to

2016Q4 using IMF’s IFS data, which is Campbell’s original source. Each quarter’s risk-free rate

and CPI are the 3 month Treasury bill yield and Consumer Price Index All items at the quarter-end

month, respectively.52 Realized inflation is the log change in CPI. Real stock return is the nominal

stock return minus realized inflation. The ex-post risk-free return is the nominal risk-free rate

minus realized inflation.

To obtain ex-ante real risk-free return, I follow the procedure of Beeler and Campbell (2012). I

regress the ex-post risk-free return on the risk-free rate (last quarter) and annual realized inflation

(divided by 4, last quarter) and use the predicted value as the ex-ante risk-free return.53 The risk

premium is defined as the real stock return minus either the ex-post risk-free return or ex-ante

risk-free return.

A.4 Firm Value Derivation

This section shows to how to derive firm value when there is TTB, as shown in equation (3.8). For

notational convenience, I denote

G(Ket, Xe,t−Je+1,Kst, Xs,t−Js+1) ≡ Ge(Ket, Xe,t−Je+1) +Gs(Kst, Xs,t−Js+1)

Π(Ket,Kst) ≡ Yt −WtLt.

For further simplification, I will use G(t) and Π(t) to denote the above adjustment cost function

and revenue function. It is easy to show that both G(t) and Π(t) are homogeneous of degree one

(HD1). The expression for dividend Dt can then expressed as follows:

Dt =Π(t)− Iet − Ist −G(t)

=ΠKe(t)Ket + ΠKs(t)Kst −
Je∑
j=1

ωejXe,t−j+1 −
Js∑
j=1

ωsjXs,t−j+1

−GKe(t)Ket −GKs(t)Kst −GXe(t)Xe,t−Je+1 −GXs(t)Xs,t−Js+1

have a correlation of 0.9978 in the overlapping sample 1975Q1-1997Q1. Early Campbell data 1970Q1-
1974Q4 are scaled by the relative ratio of average return from French to average return from Campbell in
the overlapping sample.

52The IMF’s CPI has changed the base year to 2010. I scale the IMF data part 1997Q1-2016Q4 by the
relative ratio of Campbell CPI to IMF CPI at 1996Q4.

53The regression coefficients on the ex-ante risk-free rate and realized inflation are 0.82 and -0.77, re-
spectively. The only difference from Beeler and Campbell (2012) is that I run the regression at quarterly
frequency, while their regression is at monthly frequency.
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− qet[Ke,t+1 − (1− δe)Ket −Xe,t−Je+1]

− qst[Ks,t+1 − (1− δs)Kst −Xs,t−Js+1]

=

e,s∑
i

[ΠKi(t)−GKi + qit(1− δi)]Kit − qitKi,t+1 + [qit −GXi(t)− ωiJi ]Xi,t−Ji+1 −
Ji−1∑
j=1

ωijXi,t−j+1

 .

The discounted cum-dividend firm value Et−1(Mt−1,tVt) or Pt−1 can then be derived,

Et−1(Mt−1,tVt) = Et−1

{
Mt−1,t[Dt + Et(Mt,t+1Dt+1) + ...]

}
=

e,s∑
i

{
qi,t−1Kit − qi,t−1Kit + Et−1

{
Mt−1,t[ΠKi(t)−GKi(t) + qit(1− δi)]Kit

}}

+

e,s∑
i

Et−1

{
Mt−1,t

[
− qitKi,t+1 + Et

(
Mt,t+1[ΠKi(t+ 1)−GKi(t+ 1) + qit(1− δi)]Ki,t+1

)]}
−

e,s∑
i

Et−1

{
Mt−1,tEt

(
Mt,t+1qi,t+1Ki,t+2

)}
+ ...

+

e,s∑
i

Et−1

{
Mt−1,t

(
[qit −GXi(t)− ωiJi ]Xi,t−Ji+1 −

Ji−1∑
j=1

ωijXi,t−j+1

)}

+

e,s∑
i

Et−1

{
Mt−1,tEtMt,t+1

(
[qi,t+1 −GXi(t+ 1)− ωiJi ]Xi,t+1−Ji+1 −

Ji−1∑
j=1

ωijXi,t+1−j+1

)}
+ ...

=

e,s∑
i

qi,t−1Kit +

e,s∑
i

Et−1

{
Mt−1,t

(
[qit −GXi(t)− ωiJi ]Xi,t−Ji+1 −

Ji−1∑
j=1

ωijXi,t−j+1

)}

+

e,s∑
i

Et−1

{
Mt−1,t+1

(
[qi,t+1 −GXi(t+ 1)− ωiJi ]Xi,t+1−Ji+1 −

Ji−1∑
j=1

ωijXi,t+1−j+1

)}
+ ...,

where Euler equations (3.7) are used in the derivation. In standard one-period TTB models, the

last two terms will vanish. And Pt−1 =
∑e,s

i qi,t−1Kit. Using the above equation, it follows

Et−Js+1(Mt−Js+1,tVt) = Et−Js+1 {Mt−Js+1,t−1Et−1[Mt−1,tVt]}

= Et−Js+1[Mt−Js+1,t−1(qe,t−1Ket + qs,t−1Kst)]

+ Et−Js+1

[
Mt−Js+1,t

(
[qst −GXs(t)− ωsJs ]Xs,t−Js+1 −

Js−1∑
j=1

ωsjXs,t−j+1

)]
+ ...

+ Et−Js+1

{
Mt−Js+1,t−Je+1Et−Je+1

[
Mt−Je+1,t

(
[qet −GXe(t)− ωeJe ]Xe,t−Je+1 −

Je−1∑
j=1

ωejXe,t−j+1

)]}
+ ...

= Et−Js+1[Mt−Js+1,t−1(qe,t−1Ket + qs,t−1Kst)]
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+ Et−Js+1

Xs,t−Js+1

Js−1∑
j=1

Mt−Js+1,t−Js+jω
s
j


+ Et−Js+1

Xs,t−Js+2

Js−2∑
j=1

Mt−Js+1,t−Js+j+1ω
s
j

+ ...+ Et−Js+1 (Xs,t−1Mt−Js+1,t−1ω
s
1)

+ Et−Js+1

Xe,t−Je+1

Je−1∑
j=1

Mt−Js+1,t−Je+jω
e
j


+ Et−Js+1

Xe,t−Je+2

Je−2∑
j=1

Mt−Js+1,t−Je+j+1ω
e
j

+ ...+ Et−Js+1 (Xe,t−1Mt−Js+1,t−1ω
e
1) ,

where marginal q equations (3.6) are used in the derivation. Finally, the expected stock price can

be derived as follows by shifting the above equation one period forward,

Et−Js+2(Mt−Js+2,tPt) = Et−Js+2[Mt−Js+2,tEt(Mt,t+1Vt+1)]

= Et−Js+2(Mt−Js+2,t+1Vt+1)

= Et−Js+2[(Mt−Js+2,t(qetKe,t+1 + qstKs,t+1)]

+ Et−Js+2(Xs,t−Js+2

Js−1∑
j=1

Mt−Js+2,t−Js+j+1ω
s
j ) + ...+ Et−Js+2(XstMt−Js+2,tω

s
1)

+ Et−Js+2(Xe,t−Je+2

Je−1∑
j=1

Mt−Js+2,t−Je+j+1ω
e
j ) + ...+ Et−Js+2(XetMt−Js+2,tω

e
1).

In my calibration, I assume Je = 1 and Js = 5. The price equation can be written as

Et−3(Mt−3,tPt)

= Et−3[(Mt−3,t(qetKe,t+1 + qstKs,t+1)]

+ Et−3(Xs,t−3

4∑
j=1

Mt−3,t−4+jω
s
j ) + Et−3(Xs,t−2

3∑
j=1

Mt−3,t−3+jω
s
j )

+ Et−3(Xs,t−1

2∑
j=1

Mt−3,t−2+jω
s
j ) + Et−3(XstMt−3,tω

s
1).

A.5 Additional Results

To better identify the effect of TFP on different types of investment, I estimate separately bivarate

VARs with TFP growth (ordered first) and different investment growth rates. Figure A1 shows

75



the impulse responses (IRFs) of nonresidential equipment investment growth and nonresidential

structures investment growth to innovations in TFP growth. When TFP growth increases 1%,

equipment investment growth has the largest response on impact, increasing about 1.3%. From

quarter 5, it begins to decline and reverts back to steady state in about 20 quarters. The response

pattern of structures investment growth is different in the first 4 quarters: It increases about 0.6%

percent on impact and persists for 4 quarters. This suggests longer TTB for equipment investment

than structures investment.

To complement the results shown in Table 4, Table A1 reports how components of gross private

fixed investment predict aggregate risk premium. The residential investment rate shows moderate

power for predicting returns. The IPP investment rate has little power to predict returns.

Table A2 reports how components of government gross investment predict aggregate risk pre-

mium. The construction of government investment rates is similar to the construction of private

investment rates, as shown in Section 2.1. I use real government investment from NIPA Table 3.9.5

(in nominal value) deflated by NIPA Table 3.9.4 (price indices). I calculate government capital

depreciation rates from the time series average of the ratio of real depreciation (FA Table 7.3 nom-

inal value in base year 2009 multiplied by FA Table 7.4 chained quantity indexes) to last-year-end

capital stock (FA Table 7.1 nominal value in base year 2009 multiplied by FA Table 7.2 chained

quantity indexes). With real investment series and depreciation rates, I use the perpetual inven-

tory method in equation (2.1) to calculate government investment rates. Government investment,

especially equipment investment, shows positive prediction for stock returns.
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Figure A1: Impulse Response Functions (IRFs) of Investment Growth to TFP
Growth Innovation. This figure shows the impulse responses of nonresidential equipment
investment growth (left panel) and nonresidential structures investment growth (right panel)
to innovations in TFP growth, generated by separately estimating bivariate VARs with TFP
growth (ordered first) and different investment growth rates. Shaded areas are one standard
error confidence bands from Kilian’s (1998) bootstrap-after-bootstrap. The sample period
is 1947Q1-2015Q4.
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Table A1: Return Predictability from Private Investment

This table reports in-sample and out-of-sample R2 (in percent) for OLS predictions of US aggregate
risk premium (from Kenneth French’s website) from 1947Q1 to 2015Q4 across various horizons (H)
ranging from 1 quarter to 20 quarters,

∑H
h=1Rt+h = a + b IKt + εt+H . Predictor variables are

US investment rates of nonresidential total (including intellectual property and products (IPP)),
nonresidential IPP, residential, and gross private fixed including both nonresidential and residential.
The out-of-sample procedure uses the first half of the sample as the training period, then recursively
tests and retrains in subsequent periods. b denotes the prediction slope coefficient. p(NW) denotes
in-sample p-values constructed as in Newey and West (1987). Out-of-sample R2 is calculated against
historical averages of the predicted variable. ENC-NEW denotes the New Encompassing out-of-
sample test statistic from Clark and McCracken (2001), following the construction methodology
described in Kelly and Pruitt (2013). Significance for ENC-NEW statistics: ∗ ∗ ∗ : p < 0.01, ∗ ∗ :
p < 0.05, ∗ : p < 0.1.

Investment Rates H
In Sample Out of Sample

R2% b p(NW ) R2% ENC-NEW

Nonresidential 1 3.76 -6.40 0.002 0.32 2.833∗∗

including IPP 4 11.04 -22.48 0.001 5.38 3.961∗∗∗

8 18.60 -39.84 0.000 14.97 4.815∗∗∗

12 29.76 -58.89 0.000 27.80 7.341∗∗∗

16 39.29 -75.32 0.000 36.12 9.877∗∗∗

20 41.21 -88.82 0.000 29.70 9.621∗∗∗

IPP 1 0.13 -0.59 0.548 -0.39 -0.235

4 0.74 -2.93 0.364 -0.41 -0.049

8 1.34 -5.44 0.423 -1.49 -0.157

12 3.27 -10.07 0.290 0.38 0.118

16 5.76 -15.10 0.178 4.01 0.517

20 6.43 -18.54 0.170 4.84 0.618

Residential 1 0.49 -2.35 0.250 -1.41 -0.167

4 2.54 -11.08 0.084 -5.46 0.353

8 6.14 -24.10 0.022 -0.92 1.822∗∗

12 11.40 -39.31 0.001 7.79 3.155∗∗

16 11.54 -45.67 0.001 19.03 3.245∗∗∗

20 11.78 -55.76 0.004 22.01 3.154∗∗

Gross Private 1 2.79 -6.84 0.009 -2.31 3.028∗∗

4 9.50 -26.05 0.001 -1.79 4.595∗∗∗

8 18.04 -49.58 0.000 8.46 6.415∗∗∗

12 31.07 -77.12 0.000 23.89 10.338∗∗∗

16 38.36 -97.31 0.000 40.03 15.220∗∗∗

20 41.29 -120.26 0.000 46.31 24.504∗∗∗
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Table A2: Return Predictability from Government Investment

This table reports in-sample R2 (in percent) for OLS predictions of US aggregate risk premium
(from Kenneth French’s website) across various horizons (H) ranging from 1 quarter to 20 quarters,∑H

h=1Rt+h = a + b IKt + εt+H . Predictor variables are US investment rates from government,
including gross investment and its components, equipment, structures, and IPP. The whole sample
is 1947Q1-2015Q4. The sample in Jones and Tuzel (2013b) is 1958Q1-2009Q4. b denotes the
prediction slope coefficient. p(NW) denotes in-sample p-values constructed as in Newey and West
(1987).

Investment Rates H
Sample: 1947Q1-2015Q4 Sample: 1958Q1-2009Q4

R2% b p(NW ) R2% b p(NW )

Gross 1 0.70 0.91 0.079 0.07 1.42 0.706

4 2.77 3.73 0.070 0.31 5.82 0.613

8 6.41 7.79 0.028 0.35 7.99 0.669

12 10.42 11.62 0.005 0.14 5.65 0.805

16 12.70 14.27 0.004 0.05 3.52 0.884

20 13.14 16.52 0.003 0.00 0.50 0.985

Equipment 1 0.65 0.36 0.078 0.33 0.67 0.472

4 3.09 1.62 0.080 1.62 2.96 0.311

8 9.20 3.80 0.038 4.35 6.33 0.174

12 18.40 6.25 0.000 6.34 8.65 0.103

16 23.60 7.83 0.000 10.76 11.98 0.016

20 24.14 8.96 0.000 14.31 15.45 0.002

Structures 1 0.56 1.03 0.127 0.09 -2.86 0.634

4 1.77 3.75 0.141 0.42 -12.22 0.536

8 3.22 6.95 0.129 2.10 -34.95 0.173

12 4.69 9.85 0.117 4.43 -57.12 0.032

16 5.79 12.22 0.139 9.04 -86.29 0.001

20 6.31 14.56 0.153 13.11 -115.95 0.000

IPP 1 0.09 0.26 0.581 0.01 0.11 0.901

4 0.25 0.90 0.563 0.00 0.07 0.979

8 0.51 1.76 0.492 0.02 -0.52 0.919

12 0.57 2.17 0.549 0.20 -1.89 0.788

16 0.58 2.44 0.590 0.57 -3.35 0.690

20 0.41 2.33 0.651 1.43 -5.91 0.503
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