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ABSTRACT

I study how the two major types of business investment, equipment investment and
structures investment, are differently linked to stock returns. I empirically show that
equipment investment has a significantly stronger predictive power for stock returns
than structures investment, both in-sample and out-of-sample, using US aggregate-, US
asset-, US industry-, and UK aggregate-level data. To explain this empirical finding, I
build a general equilibrium production model in which it takes a shorter time-to-build
for equipment investment than for structures investment to transform into productive
capital. In the model, equipment investment reacts to productivity shocks in a more
timely manner, and thus it reflects more of the information contained in stock prices.
In addition, the model provides theoretical support for previous empirical findings of

return predictability uncovered from planned investment.
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1 INTRODUCTION

Firms’ investment decisions are forward-looking and respond to changes in discount rates.
For example, firms tend to invest more when discount rates are low.! Consistent with this,
Cochrane (1991) finds that aggregate investment negatively predicts future stock market
returns. However, capital inputs are heterogeneous: A manufacturing plant is substantially
different from a machine in investment lag (e.g., delivery lag, planning lag, or construction
lag), depreciation rate, production use, and so on. Thus, different types of capital investment
could respond differently to changes in discount rates and show different patterns of time-
series return predictability.

In this paper, I ask whether the two major types of business investment, equipment (e.g.,
machines) and structures (e.g., factories), show different predictions for future stock market
returns. I find that the answer is yes: Equipment investment predicts market returns well
both in-sample and out-of-sample, while structures investment shows insignificant prediction.
To investigate the reasons behind, I build a general equilibrium production model to quantify
how each heterogeneity between equipment and structures contributes to the difference in
return predictability. I find that the heterogeneity in investment lag is the driver. It is
widely believed that structures investment requires a longer time to complete than equipment
investment: It takes about two years to plan and build a manufacturing plant, and only one
to two quarters to deliver industrial equipment. Due to the short investment lag, equipment
investment is sensitive to changes in fundamental economic conditions and discount rates.
Structures investment with the long investment lag, however, displays delayed responses to
those changes, leading to low return predictability.

I use the investment data from the US Bureau of Economic Analysis (BEA) to document
the novel empirical evidence on heterogeneous return predictability between equipment and
structures. I first show that at the aggregate level the investment rate of nonresidential
equipment predicts future stock market returns significantly better than the investment rate

of nonresidential structures, both in-sample and out-of-sample. The 20-quarter prediction

IFor surveys in investment, see Jorgenson (1971), Abel (1990b), Chirinko (1993), Caballero (1999), Bond
and Van Reenen (2007), etc.



R?, for equipment versus structures, is 39% versus 8% in-sample and 35% versus negative out-
of-sample. Also the prediction coefficient is significantly negative for equipment, and negative
but insignificant for structures. I provide further evidence on the stronger predictive power of
equipment by using disaggregated US asset- and industry-level data, and UK aggregate-level
data.

In addition to the heterogeneous associations with stock returns, I also find that equip-
ment investment and structures investment show different patterns of business cycle fluctu-
ations. Equipment investment comoves with total factor productivity (TFP), but structures
investment lags TFP for four quarters.? This suggests that equipment investment responds
to TFP changes more quickly than structures. Fluctuations in TFP are a key underlying
economic force for movements in discount rates. In good economic times, TFP is high and
aggregate risk is low, and vice versa.® Thus, the quicker response of equipment investment
to TFP changes could lead to equipment’s quicker response to discount rate changes and
higher predictability for future stock market returns.

Based on this intuition, I build a general equilibrium production model with TFP shock
as the driving force of the economic fluctuations to explain my empirical findings. I use
a time-to-build (TTB) specification (Kydland and Prescott (1982)) from macro literature
to capture investment lags. The key model assumption is that structures investment has
a longer TTB than equipment investment (5 quarters for structures versus 1 quarter for
equipment), with most resources required in later stages of investment projects or so-called
time-to-plan (T'TP; see Christiano and Todd (1996)). In the model, in addition to the hetero-
geneity in TTB, equipment is different from structures in several other respects. Equipment

depreciates faster,* has a higher factor share in aggregate production,” and has a potentially

2Structures investment also lags GDP more quarters than equipment investment does.

3In a strand of production-based asset pricing literature, the stochastic discount factor is assumed to be
exogenous and depend on TFP. See Zhang (2005).

4The slower depreciation of structures is positively related to its longer TTB, as stated in Prescott
(2016), as follows: “Stocks of capital lagged output, with the lag increasing with the durability of the
capital. Inventory stock was almost contemporaneous, producer durables stocks lagged a few quarters, and
structures lagged a couple of years”.

®See Valentinyi and Herrendorf (2008).



different adjustment cost.” The model can generate the comovement between equipment
investment and TFP and the lagging behavior of structures investment to TFP, as in the
data. Importantly, the model also produces the stronger power of equipment investment
than structures investment for predicting future stock market returns, consistent with this
paper’s main empirical finding. By considering how alternative models perform when each
heterogeneity is removed separately, I show that only heterogeneous TTB, among all of the
heterogeneities, is necessary for these model predictions.

The model works as follows. When a positive TFP shock hits the economy, equipment
investment and the stock price increase immediately, and the expected stock return falls.
But due to T'TB along with TTP, structures investment has small increases initially and big
rises in later periods. The delayed response of structures investment results in its lagging
behavior to TFP. It also causes its weaker performance for return prediction, because to-
day’s structures investment has not fully absorbed the good news already reflected in stock
markets.

The model produces satisfactory macro quantities and asset prices. Consumption is less
volatile than output, while investment fluctuates much more than output. The equity risk
premium is high and volatile (4.28% mean and 15.01% volatility for unlevered returns). To
achieve this good fit, I have followed Chen (2017) and introduced external habit preference
(Campbell and Cochrane (1999)) and high capital adjustment costs into the model. Since
external habit preference gives rise to large fluctuations in discount rates, a positive TFP
shock in the model acts, essentially, as a negative discount rate shock. When a positive TFP
shock hits the economy, the stock price and stock return rise on impact, but the dividend falls.
The future stock price has to fall to accommodate the fall in the dividend. To demonstrate

this mechanism more formally, I follow Campbell and Shiller (1988) and decompose the

6Israelsen (2010) uses GMM estimation and finds a higher adjustment cost curvature for equipment than
structures. The opposite is assumed in the calibration in Jermann (2010).

"There are other differences between equipment and structures that I do not model. Equipment invest-
ment has higher tax benefits (House and Shapiro (2008)); the relative price of equipment investment to
consumption has been declining, while the relative price of structures investment to consumption has been
increasing (Greenwood, Hercowitz, and Krusell (1997); Jones (2016)); equipment capital complements skilled
labor, which structures capital substitutes for (Krusell, Ohanian, Rios-Rull, and Violante (2000)); equipment
investment contributes to economic growth more (De Long and Summers (1991)); equipment can be either
purchased from abroad or produced domestically, while structures cannot be purchased from abroad (House,
Mocanu, and Shapiro (2017)).



dividend-price ratio into discount rates (long-run stock returns) and cash flows (long-run
dividend growth). By using vector autoregression (VAR) analysis, I find that discount rates
instead of cash flows drive almost all of the variation in the dividend-price ratio in the model
as in the data.

The model assumption of longer TTB in structures than equipment is consistent with
the empirical evidence. First, this assumption produces the right lead-lag relations between
investment and TFP, as in the data. The 5-quarter T'TB for structures gives rise to the 4-
quarter lag of structures investment to TFP, while the 1-quarter TTB for equipment causes
equipment investment to comove with TFP. Second, this assumption is consistent with the
direct evidence from economic surveys. Using the Census Bureau’s Survey of Manufacturers’
Shipments, Inventories, and Orders, Jones and Tuzel (2013a) show that the delivery lag
(approximated by the ratio of unfilled orders to shipments) is about 2-6 months for durable
equipment.® Based on the Census Bureau’s Survey of Construction Spending, also known
as the Value of Construction Put in Place Survey, Montgomery (1995) finds that the value-
weighted construction length of time for nonresidential structures projects is 16.7 months
over the period 1961-1991. I update this statistic and find that the construction length is
13.6 months over the sample 2001-2015.°

1.1 RELATED LITERATURE

The key contribution of this paper is that it shows how and why different types of investment
are linked to market returns differently in the time series. Cochrane (1991) studies the
relation between aggregate nonresidential investment and market returns. I look further

into the components of aggregate nonresidential investment, i.e., equipment investment and

8In detail, the delivery lags are 1.99, 2.44, 3.28, 2.93, and 6.22 months, respectively, for primary metal,
fabricated metal, industrial machinery, electronic equipment, and transportation equipment.

9For further evidence of TTB, Mayer (1960) finds that the average time for nonresidential structures is
7 quarters between the decision to undertake the project and the completion of construction. Jorgenson
and Stephenson (1967) find the investment lag to be 6 to 12 quarters for manufacturing industries. Koeva
(2000) uses Lexis-Nexis news data and finds that the plant construction time of Compustat firms is around
2 years in most industries. Lettau and Ludvigson (2002) find indirect evidence for investment lags from
the prediction patterns of risk premium proxies for investment growth across horizons. For further evidence
of longer TTB for structures than equipment, Abel and Blanchard (1988) find that it takes on average 1
year to build an industrial structure, while it takes about 6 months to receive equipment. Boca, Galeotti,
Himmelberg, and Rota (2008) use a panel of Italian firms to estimate a structural heterogeneous TTB model
and find that TTB for equipment is 4 quarters, while TTB for structures is 2 to 3 years.



structure investment.!°

One contribution of this paper is that it provides theoretical support for previous em-
pirical findings of return predictability uncovered from planned investment, as in Lamont
(2000) and Jones and Tuzel (2013b)."* In my model, although the structures investment ex-
penditure does not predict returns, the structures investment decision or planned structures
investment does predict. Consistent with Lamont (2000), both the growth of planned struc-
tures investment and the planned structures investment rate negatively predict future market
returns. I also construct the ratio of planned structures investment to structures investment
expenditure analogous to Jones and Tuzel (2013b)’s ratio of nonresidential building starts
to structures investment expenditure (Starts/SI). I find that my ratio shows the highest pre-
dicting R? for annual market returns. However, Starts/SI displays large predicting power at
long horizons from 5 to 7 years. This difference could be due to the inclusion of government
structures investment in Starts/SI. Belo and Yu (2013) show that government investment is
negatively correlated with private investment and positively predicts future market returns.
Further decomposition of government investment into equipment and structures shows that
equipment predicts returns positively at all horizons, while structures predicts negatively
at long horizons. Thus, it is possible that government structures counteracts the negative
prediction of private structures at short horizons, but reinforces it at long horizons.!?

This paper contributes to the asset pricing literature that studies the heterogeneities be-
tween equipment and structures. Tuzel (2010) emphasizes the slower depreciation of struc-
tures than equipment and shows that firms with more real estate holdings suffer more from
bad productivity shocks and are riskier on average. Her paper focuses on cross-sectional
return predictability, while this paper focuses on time-series return predictability. Jermann

(2010) and Israelsen (2010) model equipment and structures as two types of capital with

10Tn the appendix, I show that intangible investment has only mild predictability for market returns. This
is consistent with the main finding that TTB decreases return predictability, since intangible investment,
such as R&D, usually takes years to complete. For example, xx shows that it takes eight years on average
for developing a drug. I didn’t include it in the main analysis for simplicity, because both equipment and
structures are tangibles.

A recent paper by Li, Wang, and Yu (2017) shows that a bottom-up measure of aggregate investment
plans also predicts future stock market returns.

12Tn addition, the strong positive prediction of government equipment for returns could also contaminate
Jones and Tuzel (2013b)’s new orders to shipment ratio (NO/S), which shows predictability only at short
horizons up to 1 year.



different prices, adjustment costs, and depreciation rates, and investigate asset valuations
from the producer’s first-order conditions. This paper concentrates on another dimension of
heterogeneity, i.e., TTB, and studies its implications for asset prices and economic fluctua-
tions. In particular, I find that TTB reduces the elasticity of structures-capital supply and
dampens the fluctuation in structures investment. Thus, we do not necessarily need a higher
capital adjustment cost for structures, as in Tuzel (2010), to match the lower volatility of
structures investment, compared to equipment. In fact, equipment and structures have the
same adjustment cost in my benchmark calibration, while their volatilities are well matched
to the data.

This paper contributes to the literature on the implications of TTB for macro quantities
and asset prices. Kydland and Prescott (1982) is the first to show that TTB plays an
important role in shaping business cycle fluctuations. Altug (1993) shows that when there

13 A closely

is TTB, the marginal investment ¢ does not equal the average investment gq.
related paper is Kuehn (2009). Kuehn brings TTB to asset pricing and demonstrates that
TTB can explain the negative correlation between investment growth and stock returns as
found in the data.'* In Kuehn’s model, there is a single type of capital with two-period
TTB, and utility is constant relative risk aversion (CRRA), which does not generate a large
enough risk premium. My model is more complex with two types of capital, more periods of
TTB, and external habit preference, generating realistic asset prices. In addition, as noted in
Rouwenhorst (1991), the impulse responses to TFP shocks oscillate for a TTB model with
a single type of capital and no adjustment costs. This is inconsistent with the empirical
evidence. Kuehn shows that adding investment adjustment cost can make the impulse
responses become smooth, but adding capital adjustment cost does not work. However, in

my model, even when there is no adjustment cost, the impulse responses are smooth due

to the assumption of two types of capital. Equipment with the standard 1-quarter TTB

13For other TTB implications in macro literature, see Altug (1989), Rouwenhorst (1991), Christiano and
Todd (1996), Wen (1998), Zhou (2000), Gomme, Kydland, and Rupert (2001), Christiano and Vigfusson
(2003), Millar (2005), Casares (2006), Edge (2007), Lucca (2007), Kalouptsidi (2014), Bornstein, Krusell,
and Rebelo (2017), among others.

14Tn addition, Chen (2016) demonstrates that TTB generates procyclical dividends and increases the risk
premium. TTB has also been applied to studies of capital structure and investment-cash flow sensitivity.
Tsyplakov (2008) finds that smaller firms have longer TTB and may explain the leverage differences between
small and large firms. Tsoukalas (2011) shows that TTB helps to explain investment-cash flow sensitivity.



can absorb TFP shocks upfront. The supply of overall capital (equipment plus structures) is
elastic in the short run, although the supply of structures capital is not. The assumption of a
single type of capital also leads to a counterfactual negative correlation between consumption
growth and investment growth when TTP is strong in Kuehn’s model. However, my model
still produces a positive correlation as in the data, since equipment investment comoves with
consumption.

This paper also contributes to the literature that links investment to stock returns (see
Kogan and Papanikolaou (2012) and Zhang (2017) for an overview). Cochrane (1991) shows
that the stock return should equal the investment return (see also Restoy and Rockinger
(1994)) and finds empirical support in aggregate time-series data. Cochrane (1996) tests
aggregate investment growth as a risk factor for the cross section of stock returns. Liu,
Whited, and Zhang (2009) extend Cochrane (1991) to test the equivalence between the stock
return and the investment return at the level of individual firms, and find some supporting
evidence. The literature of cross sectional asset pricing has shown that firms with high
investment today have lower subsequent average stock returns (see portfolio sorts on growth
in investment-sales ratio in Titman, Wei, and Xie (2004), on investment growth in Anderson
and Garcia-Feijéo (2006), on investment rate in Xing (2007), on asset growth in Cooper,
Gulen, and Schill (2008), on inventory growth in Belo and Lin (2011), and on investment
rate in brand capital in Belo, Lin, and Vitorino (2014)).> More recently, Hou, Xue, and
Zhang (2015) and Fama and French (2016) include an investment factor in their four-factor
and five-factor asset pricing models, respectively, to explain the wide range of cross-sectional
asset pricing anomalies.

In addition, a strand of literature on production-based asset pricing models—in either
general-equilibrium approach or partial-equilibrium approach with an exogenously specified
stochastic discount factor—studies how firms’ investment decisions affect the cross-section
of stock returns. An incomplete list of contributions include Berk, Green, and Naik (1999),
Kogan (2001), Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004),
Kogan (2004), Zhang (2005), Cooper (2006), Ai and Kiku (2013), Kogan and Papanikolaou

15Relatedly, firms’ hiring is like investment when there are labor adjustment costs. Belo, Lin, and Baz-
dresch (2014) show that firms with higher hiring rates also have lower average future stock returns.



(2013), and Kogan and Papanikolaou (2014). Also, several papers, namely Cochrane (1988),
Cochrane (1993), Belo (2010), and Jermann (2010), develop alternative production tech-
nologies to recover the stochastic discount factor from the marginal rates of transformation
inferred from producers’ first-order conditions, to directly link investment to stock returns
without consumption. Fitted in this broad investment asset pricing literature, this paper
shows that T'TB breaks the equivalence between the investment return and the stock return,
leading to weak linkage between investment types with long TTB and the stock return.
This paper is related to the asset pricing literature studying general equilibrium pro-
duction models. This literature demonstrates that it is difficult for standard production
models to simultaneously match business cycle and asset pricing statistics (see Jermann
(1998) and Boldrin, Christiano, and Fisher (2001), who use internal habit preferences (e.g.,
Abel (1990a); Constantinides (1990))). Chen (2017) improves over the previous models by
introducing external habit preference (Campbell and Cochrane (1999)) to the standard pro-
duction model and shows that a low intertemporal elasticity of substitution paired with large
capital adjustment cost can generate a high equity premium and a high investment volatility
while giving a low volatility of the risk-free rate.'® Chen (2017) also shows that the invest-
ment rate can predict stock returns in his model as in the data. I introduce two types of
capital—equipment and structures with heterogeneous T'TB—into his single-capital model.
I find that TTB dampens the volatility of structures investment, delays the responses of
structures investment to productivity shocks, and weakens the predicting power of structures
investment for stock returns. My TTB model shares some similarities with the two-sector
model with factor immobilities in Boldrin, Christiano, and Fisher (2001). In both models,

capital supply is inelastic in the short run.!” This leads to consumption overshooting and the

6For other theories besides habit formation, see Kogan and Papanikolaou (2012) for an overview of the
general equilibrium asset pricing literature. See the seminal Mehra and Prescott (1985); the early Tallarini
(2000); papers related to long-run consumption risk & la Bansal and Yaron (2004): Kaltenbrunner and
Lochstoer (2010), Campanale, Castro, and Clementi (2010), Ai, Croce, and Li (2013), Croce (2014), Kung
and Schmid (2015), Ai, Croce, Diercks, and Li (2017); papers related to rare disasters a la Barro (2006):
Gourio (2012); papers related to investment shocks: Papanikolaou (2011), Garlappi and Song (2017); papers
related to labor frictions: Danthine and Donaldson (2002), Favilukis and Lin (2015), and Petrosky-Nadeau,
Zhang, and Kuehn (2017); and papers related to technology innovation and competition: Garleanu, Kogan,
and Panageas (2012), Garleanu, Panageas, and Yu (2012), Bena, Garlappi, and Griining (2016), Garleanu,
Panageas, Papanikolaou, and Yu (2016), Corhay, Kung, and Schmid (2017), Gofman, Segal, and Wu (2017),
and Kogan, Papanikolaou, and Stoffman (2017); among others.

"Tn my model, the supply of structures capital is inelastic in the short run due to TTB, but the supply



“inverted leading-indicator property of interest rates” as in the data. Consumption volatility
is usually too high in this type of models featuring inelastic short-run capital supply. But
because there are two types of capital in my model, equipment investment in addition to
consumption absorbs the productivity shocks on impact. Thus my model delivers a realistic
consumption volatility.

This paper is also related to the vast literature on time-series return predictability (see
Lettau and Ludvigson (2010) and Koijen and Van Nieuwerburgh (2011) for an overview), and
in particular the predictability of macro quantities (such as output, consumption, investment,
and labor) for stock returns. Cochrane (1991) and Lamont (2000) show that investment
predicts stock returns. I show that equipment investment is more tightly linked to stock
returns than structures investment. Other macro predictors include the consumption-wealth
ratio (CAY; Lettau and Ludvigson (2001)), the consumption-labor income ratio (Santos and
Veronesi (2006)), the output gap (Cooper and Priestley (2009)), the employment growth
(Chen and Zhang (2011); Belo, Donangelo, Lin, and Luo (2017)), the ratio of new orders to
shipments of durable goods (Jones and Tuzel (2013b)), the expected investment growth (Li,
Wang, and Yu (2017)), and the government debt-output ratio (Liu (2017)), etc.

This paper is structured as follows. Section 2 describes the data, defines the variables
used, presents summary statistics, and shows the empirical specifications and results. Section
3 sets up the model and derives theoretical implications. Section 4 presents calibration and

quantitative predictions, and Section 5 concludes.

2 EMPIRICAL EVIDENCE

In this section, I first describe the data dealings and constructions for the main variables—
the investment rates of equipment and structures—at aggregate level, asset level, industry
level, and international level. I then present the summary statistics. Next, I provide evidence
of longer T'TB for structures than for equipment. Last, I specify the predictive regressions
of investment rates for risk premia and present the empirical results and note in particular

that the investment rates of equipment predict risk premia better than the investment rates

of equipment capital is partially elastic under adjustment costs.

10



of structures.

2.1 DATA

I follow Cochrane (1991) and construct the time series of the investment-capital ratio or
investment rate (IK) using the following recursion derived from the perpetual inventory

method:
1, 1K,

IK, = .
YL 1—-0+ 1K,

(2.1)

The initial value of the investment rate is set to be the steady-state level, i.e., the depreciation
rate plus the average investment growth rate, Ky = 0 + E(I;/I;_1). Given the initial value,
the whole time series of the investment rate can be derived from the above recursion.

I use quarterly investment data from BEA National Income Product Accounts (NIPA)
tables and annual depreciation rates implied from BEA Fixed Assets (FA) tables. I use
one-fourth of annual depreciation rates as quarterly rates. The sample period is from 1947
quarter 1 to 2015 quarter 4. Quarterly private nonresidential real equipment and structures
investment is from nominal values in NIPA Table 1.1.5 line 11 (equipment) and line 10
(structures) deflated by corresponding price indexes in NIPA Table 1.1.4. In NIPA, total
private nonresidential investment includes equipment, structures, and intellectual property
and products (IPP). Since this paper focuses on equipment and structures, I exclude IPP for
convenience and consistency.'® To construct a series for real total nonresidential investment
without IPP, I apply the Fisher formula to equipment and structures.®

I calculate annual depreciation rates as the time-series averages of the ratio of real de-
preciation to last yearend real capital stock. The real capital stock series for equipment and
structures are the nominal capital stocks of base year 2009 in FA Table 1.1 line 5 (equipment)
and line 6 (structures) multiplied by the corresponding chain-type quantity indices in FA
Table 1.2 and scaled by 100. The real depreciation series for equipment and structures are

constructed similarly with nominal stocks in FA Table 1.3 and chain-type quantity indexes

BIncluding IPP has little effect on empirical results; see Appendix A.5.
9The Fisher formula for the growth rate of nonresidential total from time t — 1 to t is

Do pt—1qt % Do peqt
2oPt—1Gi—1 3 Prdi-1
tures. See Bureau of Economic Analysis (2016) for how BEA constructs aggregate estimates from detailed

components.

, where p’s and ¢’s represent price indices and real quantities of equipment and struc-

11



in FA Table 1.4. 1 apply the Fisher formula again to obtain the real capital stock and real
depreciation of total nonresidential capital without IPP. Annual estimates for depreciation
rates of nonresidential total, equipment, and structures are, respectively, 5.04%, 10.90%, and
3.17%.2

I construct quarterly disaggregated nonresidential equipment and structures investment
rates at asset level. BEA disaggregates nonresidential equipment into information process-
ing equipment, industrial equipment, transportation equipment, and other equipment, and
nonresidential structures into commercial and health care; manufacturing; power and com-
munication; mining exploration, shafts and wells; and other structures. I apply the same
perpetual inventory method in equation (2.1). I use investment data from NIPA Table 5.5./
and 5.5.5, and calculate implied depreciation rates from FA Table 2.1, 2.2, 2.}, and 2.5. The
data sample is from 1947Q1 to 2015Q4 for equipment assets and from 1959Q1 to 2015Q4
for structures assets, due to the absence of data for early years.

I also construct annual disaggregated equipment and structures investment rates at in-
dustry level.?! T use BEA 19 industries classified by the three-digit 2012 North American
Industry Classification System (NAICS). I apply the same perpetual inventory method as
in equation (2.1). I use investment data from FA Table 3.7E, 3.7S, 3.8E, and 3.8S, and
calculate implied depreciation rates from FA Table 3.1F, 3.1S, 3.2F, 3.2S, 3.4E, 3.4S, 3.5E,
and 3.5S. At the industry level, BEA reports only total investment of nonresidential and
residential, and does not report them separately. This data limitation introduces the effect
of residential investment to the industry-level analysis. However, residential investment is
mostly reflected in the real estate sector and has little effect on other sectors. To mitigate
the effect of residential investment, I drop the real estate industry. I also drop finance and
utilities, following the standard practice in the literature. In addition, I drop two industries—

management of companies and enterprises and educational services—due to limited data on

2ONote that directly using current-cost measures will generate a higher depreciation rate for equipment
and a slightly lower depreciation rate for structures as the relative price of equipment has been declining
over the sample and the relative price of structures has increased a little. Current cost measures capture
both physical wear and economic obsolescence, while real cost measures account for only physical wear. See
Jermann (2010), who estimates depreciation rates in current cost measures over the sample 1947-2002 for
equipment and structures to be 13.06% and 2.7%, respectively. After adjusting prices, he obtains 11.2% and
3.1%.

2ndustry-level data are not available at quarterly frequency.

12



stock returns. This leaves 14 industries for analysis.

The data for total factor productivity (TFP) is from John Fernald’s website, “dtfp”. Real
gross domestic product (GDP) is the nominal value in NIPA Table 1.1.5 line 1 deflated by
the corresponding price index in NIPA Table 1.1.4. The data for nominal aggregate stock
market returns and the risk-free rate is from Kenneth French’s website. Real returns are
nominal returns deflated by seasonally adjusted consumer price index for all urban consumers
from the Bureau of Labor Statistics.

Industry-level returns are calculated from the Center for Research in Security Prices
(CRSP) and Compustat. I use monthly stock returns from CRSP, and correct the delist-
ing bias following the approach in Shumway (1997). I include firms with common shares
(shred=10 and 11) and firms traded on the NYSE, AMEX