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Abstract

This paper analyzes firm growth in two margins: extensive margin (adding more establish-

ments) and intensive margin (adding more workers per establishment). Utilizing the Quarterly

Census of Employment and Wages dataset, we document how both margins are related to

changes in firm size in the U.S. economy. Between 1990 and 2014, the average size of firms

has increased significantly. It is shown that this increase in firm size is driven primarily by an

expansion along the extensive margin, particularly in large firms. We build a tractable general

equilibrium model of endogenous innovation and firm growth that feature both margins. The

model is quantitatively compared to the data facts. We investigate the cause of time-series

changes in the data through the lens of our model, in particular the implications of changing

the costs for innovations that lead to extensive margin expansions.
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1 Introduction

Understanding the process of firm growth is essential in the analysis of macroeconomic performance.

Firms that innovate and expand are the driving force of output and productivity growth. Recent

analysis of macroeconomic productivity emphasizes the role of innovation and reallocation at the

firm level, both from theoretical and empirical standpoint.

In this paper, we focus on a particular aspect of firm growth: growth through adding new

establishments. In general, a firm can increase its size, measured in employment, along two margins.

It can add more workers for given establishments, or build new establishments. We call the former

the intensive margin and the latter the extensive margin. This distinction is important because

these margins typically imply different reasons for expansion. In the context of manufacturing, a

new plant often is built to produce a new product. In the service sector, building a new store or a

new restaurant imply venturing into a new market. In both contexts, creating a new establishment

requires a significant investment.

Given the importance of this distinction, it is surprising that very little is known about how

firms grow through building establishments. With the exception of a few papers, the literature

separately treats firms and establishments without linking the two. Our first goal is to establish

stylized facts about how firms and establishments are linked. We then interpret the facts through

the lens of a macroeconomic model of endogenous innovation and firm dynamics.

In the literature on firm dynamics, firms and establishments are often treated as interchangeable.

One justification for this indifference is the fact that the majority of firms are single-establishment

firms. While this assumption is justifiable in some situations, it is misleading in many macroe-

conomic contexts. In the U.S. economy, while 95% of firms are single-establishment firms, their

share in total employment is less than half (45%).1 Furthermore, the firm size distribution exhibits

a Pareto tail, which implies that a large firm with many establishments has a disproportionately

large impact on macroeconomic performance (Gabaix, 2011). Thus, understanding how these large

firms are created is an important research question.

We find that the average firm size has grown in recent years, and it is largely driven by the firms

in the right tail of the size distribution. This result echoes the recent emphasis on the emergence of

superstar firms (Autor et al., 2017) and also consistent with the increase in concentration measured

by the markup (De Loecker and Eeckhout, 2017). These studies suggest that this increase in size

has had important implications on other changes in macroeconomic variables, such as the decline

in labor share. What is novel about our empirical analysis is that we show that this expansion is

driven by extensive margin growth.2

In order to investigate what changes in the economic environment have contributed to this

1The numbers are taken from 2015 Q1 Business Employment Dynamics (which is drawn from the Quarterly
Census of Employment and Wages, explained in Section 2.1): https://www.bls.gov/bdm/sizeclassqanda.htm. In
the manufacturing sector, single-plant firms own 72% of plants, they produce only 22% of the value added (Kehrig
and Vincent, 2017).

2Choi and Spletzer (2012) and Hathaway and Litan (2014) also note the discrepancy in the recent trend between
firm size and establishment size.
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phenomenon, we build a macroeconomic model of endogenous firm growth. Our model extends

previous work by Klette and Kortum (2004) and Luttmer (2011). In Klette and Kortum (2004)

and Luttmer (2011), each individual firm grows by adding production units (external innovations

in our terminology), “product lines” in Klette and Kortum’s (2004) terminology and “blueprints”

in Luttmer’s (2011) terminology. A natural interpretation of such a production unit, as is explicit

in Luttmer (2011), is an establishment. Thus, this type of framework provides a perfect vehicle for

analyzing firm growth through new establishments. The major departure of our model, compared

to Klette and Kortum (2004) and Luttmer (2011), is the recognition that each establishment can

grow. In fact, the critique of Klette and Kortum (2004) by Acemoglu and Cao (2015) points out the

lack of such growth that we observe in the data. We introduce this technological improvement at

the establishment level (we call it internal innovation), and explicitly compare our model outcomes

to the data on establishments.

The model constructed by Akcigit and Kerr (2016) has similar features to that in this paper.

They also consider innovations that are internal to the establishments (“products” in their ter-

minology) that the firm already produces and external innovations that increases the number of

establishments that the firm operates. At the same time, many of their model assumptions are

different from ours.3 The differences in assumptions mainly stem from the difference in the purpose.

Our main purpose is to map the model to the data on firm and establishment sizes, measured by

employment. Akcigit and Kerr (2016) primarily use patent data and therefore consider “products”

instead of “establishments.” Our model is very tractable, and it allows for analytical characteriza-

tions of Pareto tails in the firm size, the establishment size, and the number of establishments per

firm. Our model is tailored to the question we ask: what is behind the increase in firm size over

the recent years? We, in particular, focus on the role of the changes in costs for innovations that

allow firms to expand in extensive margin.

Lentz and Mortensen (2008) extends Klette and Kortum’s (2004) model and estimates it using

Danish data. While their main focus is on productivity and reallocation, this paper mainly targets

labor market facts. We directly exploit establishment-level information in analyzing firm dynamics.

Furthermore, the empirical phenomenon we highlight mainly concerns large firms, and the model

is tailored to fit the right tail of the firm size distribution.

The paper is organized as follows. Section 2 describes the empirical patterns of firm growth

we find using our dataset. Section 3 sets up and characterizes the theoretical model. Section 4

estimates the model and conduct counterfactual experiments. Section 5 concludes.

3For example, in Akcigit and Kerr (2016) an external innovation improves a product that is already produced by
another firm, while in our model it creates a new establishment whose quality is the same as the other establishments
in the firm. Our assumption seems more appropriate especially in the context of service sector innovations. For
example, when a retail firm opens a new store after researching the placement of a new location, the quality of the
new store would more likely be associated with the firm itself than the existing stores in that location.
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2 Empirical facts

2.1 Data

Our data set is the Quarterly Census of Employment and Wages (QCEW). The microdata in the

QCEW is collected for the official administration of state unemployment insurance programs, and

therefore contains a near census of establishments in the United States. The QCEW reports payroll

information on the number of workers and total wage bill by establishment and month between

the years 1990-2016. Each establishment in the QCEW has an employer identification number

(EIN) and a 6-digit NAICS code associated with its self-reported primary industry. This paper

contains calculations from a sample of 38 states (including the District of Columbia, Puerto Rico

and the U.S. Virgin Islands) that allow access to their confidential data through the Bureau of

Labor Statistics’ visiting researcher program.4

We use the employer identification numbers (EINs) as the definition of the firm. This is the

level at which companies file their tax returns, and is often considered as the boundary of the firm

in recent studies. As is frequently discussed, EINs can be different from the ultimate ownership,

especially for large firms. Song et al. (2015) discusses this at length in their study of inequality.

They state that for 4,233 New York Stock Exchange publicly listed firms in the Dunn & Brad-

street database, 13,377 EINs are reported. For example, Walmart operates with separate EINs

for “Walmart Stores,” the Supercenter, Neighborhood Market, Sam’s Club, and On-line divisions.

Stanford University has separate EINs for the university, the bookstore, the main hospital, and

children’s hospitals. We view the EIN as a reasonable definition of a firm for our analysis, given

that it is an economically meaningful unit (especially from the accounting perspective), and that

typically the EINs for these large firms with multiple EINs are still substantially more aggregated

than establishments.5 Further details of the dataset are described in Appendix A.

2.2 Cross-sectional characteristics

We start from the cross-sectional properties of firms and establishments. Although publicly-

available datasets such as Business Dynamics Statistics of the U.S. Census Bureau contain size

distribution of establishments and firms separately, it has not been documented how these are

linked.

The particular interest of this paper is how firms grow in two margins, the intensive margin

and the extensive margin. It is therefore useful as a first step to describe the distributions of the

firm size, the establishment size, and the number of establishment per firm.

4Further details of the dataset are described in Appendix A, as well as previous work that uses the QCEW such
as Ratner (2013), Siemer (2014), Chodorow-Reich (2014), and Chodorow-Reich and Wieland (2017).

5For example, as of October 31 2017, Walmart has 402 Discount Stores, 3552 Supercenters, 702 Neighborhood
Markets, 660 Sam’s Clubs, and 97 Small Formats including E-Commerce Acquisition/C-stores (numbers are taken
from https://corporate.walmart.com/our-story/locations/united-states). Sorkin (2018) (footnote 7) quotes
a communication with a Census employee and state that the occurrences of firms multiple SEINs (State EINs) are
rare.

4



[We are awaiting data disclosure for the results.]

Denoting the firm size by Z, the number of establishment per firm as X, and the average

establishment size for each firm as Y , one can decompose the firm size into extensive and intensive

margin:

log(Z) = log(E[X|XY = Z]) + log(E[Y |XY = Z]) + Ω, (1)

where Ω ≤ 0 and it is equal to zero if and only if var[X|XY = Z] = 0.6

[We are awaiting data disclosure for the results.]

2.3 Firm life cycle

It is well known that the firm growth exhibits a strong life cycle pattern. Thus it is useful to

document the difference of growth pattern in terms of extensive and intensive margins for young

and old firms.

[We are awaiting data disclosure for the results.]

2.4 Changes of cross-sectional characteristics: 1990–2014

There have been notable changes in firm characteristics over our sample period. Figure 1 plots

average firm size, measured by the number of workers within a firm. Over our sample period, the

average firm size has increased from about 23 employees to over 25 employees. This fact accords

well with the rise in concentration in the U.S. economy documented by, for example, Autor et al.

(2017).

6The derivation of (1) is in Appendix B.
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Figure 1: Average firm size (number of workers)
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Figure 2: Average establishment size (number of workers)
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Figure 3: Average number of establishment per firm
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Figures 2 and 3 present the novel fact that we focus on in this paper.7 Figure 2 plots the average

establishment size measured by employment. It shows that, despite the increase in the firm size

over our sample period, the establishment size remains stationary. In contrast, the average number

of establishments per firm, shown in Figure 3, exhibits a strong upward trend. The average number

of establishments per firm starts from 1.2 in 1990 and increases to over 1.5 in 2014. This contrasting

behavior implies that different forces are at work for these different components of firm growth.

To further investigate the changes in firm size, Figure 4 calculates the average size within size

bins. There is a pattern of spreading out: very small firms with 1 to 4 employees have tended to

become smaller, while the average size of larger firms with 100 employees has increased over time.

If we examine the very right tail of firms with 5000 workers or more, firm size has been increasing

over time since 1997, with a similar increase to firms that have 100 employees or more.

Figure 5 looks at this for establishment size, and here we do not see an obvious pattern. None

of the series have an increasing trend, and in fact, the overall time-series pattern looks similar

between very small firms (1 to 4 employees) and very large firms (5000 or more employees) except

for a spike for very large firms in early 2000s.

In contrast, the average number of establishment per firm, shown in Figure 6, reveals different

trends for different firm sizes. Very small firms are predominantly single-establishment firms over

the entire sample period. Medium-size firms with 5 to 99 employees have had a modest increase

in the number of establishments. Larger firms have had a startling increase in the number of

establishments. On average, the firms in 5000 or more employees category have about 4 times more

establishments in 2014 compared to 1990. Thus, we conclude that a key mechanism that generated

the increase in firm size in recent years is expansion through the number of establishments in very

large firms.

3 Model

In this section, we construct a model of firm dynamics which can be mapped to our data observa-

tions. The heart of the model is the endogenous productivity improvements by intermediate-good

firms, which allows us to analyze the fundamental causes of the recent changes in firm characteris-

tics, which we described in Section 2 above.

3.1 Model setting

Time is continuous. The representative consumer provides labor and consumes the final good. The

final good is produced from differentiated intermediate goods.

7Choi and Spletzer (2012) and Hathaway and Litan (2014) also document trends in firm size and establishment
size, but do not analyze the number of establishments per firm, which is central to our analysis.
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3.1.1 Consumer

The consumer side is intentionally kept simple, as we focus mainly on firm growth. The utility

function of the representative households is

U =

∫ ∞
0

e−ρtL(t)
(C(t)/L(t))1−σ

1− σ
dt.
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The consumer consumes, owns firms, and supplies labor. The labor supply is given exogenously

and grows at the rate γ ≥ 0. Letting the real interest rate r, the Euler equation for the consumer

is
Ċ(t)

C(t)
=
r − ρ
σ

. (2)

The final goods are used for consumption, R&D activities, and fixed costs for operation and entry.

Thus

Y (t) = C(t) +R(t) +K(t),

where Y (t) is the final goods output, R(t) is total R&D of the incumbents, and K(t) is the total

entry cost.

3.1.2 Final good producers

There is a perfectly competitive final good sector. The final good is produced from differentiated

intermediate goods. Intermediate goods have different qualities, and a high-quality intermediate

good contributes more to the final good production. The production function for the final good is

Y (t) =

(∫
N (t)

qj(t)
βxj(t)

1−βdj

) 1
1−β

, (3)

where xj(t) is the quantity of intermediate good j, and qj(t) is its quality. N (t) is the set of

actively-produced intermediate goods and N(t) = |N (t)| denote the number of actively-produced

intermediate goods. We assume that β ∈ (0, 1).

With the maximization problem

max
xj(t)

(∫
N (t)

qj(t)
βxj(t)

1−βdj

) 1
1−β

−
∫
N (t)

pj(t)xj(t)dj,

the inverse demand function for the intermediate good j is

pj(t) = Y (t)β
(
qj(t)

xj(t)

)β
.

Let

Q(t) ≡ 1

N(t)

∫
N (t)

qj(t)dj

be the average quality of intermediate goods.

3.1.3 Intermediate good producers

The intermediate good sector is monopolistically competitive. Each intermediate good is produced

by one firm. A firm can potentially produce many intermediate goods. A firm can add a new
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intermediate good to its portfolio by investing in R&D (external innovation). It can also increase

the quality of the intermediate goods that it already produces by investing in R&D (internal

innovation). A new firm can enter by coming up with its first product by innovation. Later we

map one intermediate good to one establishment in the data.

We assume that the intermediate goods are produced only by labor. This is the only process in

the entire economy that uses labor as an input. This allows us to map the employment dynamics

of the intermediate good sector to our data analysis in Section 2.8 The production function for

intermediate good j is

xj(t) = Z(t)`j(t), (4)

where Z(t) is the labor productivity. Here, we allow a geometric weighted average of exogenous

factor, at rate θ and endogenous factor, Q(t):

Z(t) = (eθt)αQ(t)1−α. (5)

The optimization for the intermediate goods producer results in the usual mark-up rule:

pj(t) =
1

1− β
wt
Z(t)

.

The resulting intermediate goods production is

xj(t) = (1− β)
1
β

(
w(t)

Z(t)

)− 1
β

Y (t)qj(t). (6)

Thus (4) and (6) imply that the labor demand is proportional to qj(t) given the aggregate variables:

`j(t) =

(
w(t)

(1− β)Z(t)

)− 1
β qj(t)Y (t)

Z(t)
. (7)

The firms (and establishments) are different only in qj(t) here. Thus the employment per estab-

lishment varies proportionally to qj(t) in cross section. The profit is also proportional to qj(t):

πj(t) = π̄(t)qj(t),

where

π̄(t) = β(1− β)
1
β
−1
(
w(t)

Z(t)

)1− 1
β

Y (t) = β(1− β)
1
β
−1
w̄(t)

1− 1
β , (8)

where

w̄(t) ≡ w(t)

Z(t)Y (t)
β

1−β
.

Innovations are carried out through R&D activity. The input for R&D is in final goods. For

8A similar idea of mapping the employment process to the productivity process is employed by Hopenhayn and
Rogerson (1993), Garcia-Macia et al. (2016), and Mukoyama and Osotimehin (2018).
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an existing intermediate-good firm, there are two kinds of innovations: internal innovation and

external innovation.

Internal innovation raises the quality of the goods that they already produce. The total in-

tensity of internal innovation is denoted by ZI,j(t). The innovation intensity per good is zI,j(t) ≡
ZI,j(t)/nj(t), where nj(t) is the number of goods firm j produces. Then the quality improves

following
dqj(t)

dt
= zI,j(t)qj(t).

Here we index q only by j, because with the assumption we will make on external innovation, the

qualities of all goods produced by firm j is always the same within the firm.

We assume that different firms can have different costs for innovation. In particular, we partition

firms into different (finite) types, and assume that different types have different costs for innovation.

We will detail later how types evolve over time. We denote the number of types by T and index

the types by τ . The R&D cost for internal innovation is assumed to be Rτ
I (ZI,j(t), nj(t), qj(t)).

As in Klette and Kortum (2004), we assume that the R&D cost function Rτ
I (ZI,j(t), nj(t), qj(t))

exhibits constant returns to scale with respect to ZI,j(t) and nj(t). Then the R&D cost per good

can be denoted as

RτI (zI,j(t), qj(t)) ≡ Rτ
I (zI,j(t), 1, qj(t)) =

Rτ
I (ZI,j(t), nj(t), qj(t))

nj(t)
.

We further assume that

RτI (zI,j(t), qj(t)) = hτI (zI,j(t))qj(t)

for a strictly convex function hτI (·).
External innovation adds brand-new intermediate goods to the production portfolio of the

firm. We assume that the new good has the same quality as the average quality of the goods

produced by that firm. Thus, the quality of all products that firm j produces always have the

same quality. The total intensity of external innovation is denoted by ZX,j(t). The innovation

intensity per good is zX,j(t) ≡ ZX,j(t)/nj(t). The R&D cost for external innovation is assumed

to be Rτ
X(ZX,j(t), nj(t), qj(t)), which is assumed to be constant returns to scale with respect to

ZX,j(t) and nj(t). Once again, we can denote the cost per good as

RτX(zX,j(t), qj(t)) ≡ Rτ
X(zX,j(t), 1, qj(t)) =

Rτ
X(ZX,j(t), nj(t), qj(t))

nj(t)
,

and we assume that

RτX(zX,j(t), qj(t)) = hτX(zX,j(t))qj(t)

for a strictly convex function hτX(·).
A major departure from Luttmer (2011) is that we allow for internal innovation. Internal

innovation allows us to capture the characteristics of intensive margin growth; we have shown in

Section 2 that the size of establishments grow over time as firms age.
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We assume that firms transition between different types from τ to τ ′ with Poisson transition

rates λττ ′ . Each establishment depreciates (is forced to exit) with the Poisson rate δτ . We also

impose an exogenous exit shock at the firm level. Let dτ be the Poisson rate of the firm exit shock

for a type-τ firm.

As in Klette and Kortum, the Hamilton-Jacobi-Bellman (HJB) equation for the firm can be

written separately for each establishment. The establishment-level HJB equation of a type-τ firm

is

rVτ (q)− V̇τ (q) = max
zI ,zX

[
π(q)−RτI (zI , q)−RτX(zX , q) + zI

∂Vτ (q)
∂q q

+zXVτ (q)− (δτ + dτ )Vτ (q) +
∑

τ ′ λττ ′(Vτ ′(q)− Vτ (q))

]
,

where Vτ (q) is the value of type-τ establishment with quality q and V̇τ (q) is the time derivative

of Vτ (q) function. We omit the time notation here, because all variables and functions here are

constant over time along the balanced-growth path.

As in Mukoyama and Osotimehin (2018), Vτ (q) can be shown to be linearly homogeneous in q

along the balanced-growth path. That is, Vτ (q) = vτq for a constant vτ . The HJB equation above

can be normalized to

rvτ = max
zI ,zX

[
π̄ − hτI (zI)− hτX(zX) + (zI + zX − δτ − dτ )vτ +

∑
τ ′

λττ ′(vτ ′ − vτ )

]
. (9)

Here, π̄ is given by (8). We assume that r − zI − zX + δτ + dτ > 0.

The HJB equation (9) implies that the choice of innovation intensities (zI , zX) is a function of

the firm type only. We denote the decision rules as (zτI , z
τ
X). Recall that, from (8), π̄ is a function

of w̄ only. Thus, given r and w̄, the equation (9) and the first-order conditions can solve for vτ , zτI ,

and zτX .

3.1.4 Entry

A firm can enter by creating a new product. A new firm draws its type from an exogenous

distribution. Let the probability that an entrant draws the type τ be mτ . Given the type τ , the

entrant draws the relative quality q̂, which is equal to q(t)/Q(t), from a distribution Φτ (q̂). The

value for entry V e(t) is thus

V e(t) =
∑
τ

mτ

∫
Vτ (q̂Q(t))dΦτ (q̂).

Let ve ≡ V e(t)/Q(t). Then

ve =
∑
τ

vτmτ

∫
q̂dΦτ (q̂) (10)

holds.

We assume that anyone can enter by paying the cost φQ(t) in final goods. Then the free-entry
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condition is

V e(t) = φQ(t),

and therefore

ve = φ. (11)

Note that once r is given, we can find a value of w̄ that satisfies the free entry condition (11), where

ve is given by (10). Let the number of entrants at time t be µeN(t), where µe is a constant along

the balanced-growth path.

3.1.5 Labor market

Before going into the general equilibrium, it is useful to summarize the equilibrium in the labor

market. The total labor demand can be calculated from (7), and the equilibrium condition is

∫
N (t)

(
w(t)

(1− β)Z(t)

)− 1
β qj(t)Y (t)

Z(t)
dj =

(
w(t)

(1− β)Z(t)

)− 1
β Y (t)N(t)Q(t)

Z(t)
= L(t). (12)

Thus, from the definition of w̄(t),

w̄(t) = (1− β)

(
N(t)Q(t)

L(t)Z(t)Y (t)
β

1−β

)β
(13)

holds. Later we will see that w̄(t) is determined in general equilibrium. Because N(0), Q(0), L(0),

and Z(0) are given by initial conditions (assuming that the economy is in a balanced-growth path

at time 0), the equation (13) has to be viewed as the equation to pin down the level of Y (0) when

w̄(0) is determined in general equilibrium.

3.1.6 General equilibrium on a balanced growth path

Let us first go over the properties of a balanced growth path of this economy. Assume that the

population L(t) grows at an exogenous rate γ. Let the growth rate of Q(t) along the balanced-

growth path by ζ and the growth rate of N(t) as η. Denote the growth rate of output Y (t) by g.

From the Euler equation (2),

g =
r − ρ
σ

has to hold, because C(t) grows at the same rate as Y (t). This implies that once we know g, we

can calculate r. From the argument in Section 3.1.4, we can characterize the firm behaviour once

g is known.

Along the balanced-growth path, the normalized profit π̄(t) in (8) is constant. This implies that

the growth rate of w(t)/Z(t) is βg/(1− β). Because the growth rate of Z(t) is αθ + (1− α)ζ from

(5), w(t) has to grow at the rate βg/(1−β)+αθ+(1−α)ζ. The labor income of the representative

consumer w(t)L(t) has to grow at the rate βg/(1 − β) + αθ + (1 − α)ζ + γ. This has to be equal
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to the growth rate of Y (t), C(t), R(t), and K(t). Thus

g = γ + αθ + (1− α)ζ +
β

1− β
g (14)

holds. Note that in (13), w̄(t) has to be constant along the balanced-growth path. Therefore,

η + ζ = γ + αθ + (1− α)ζ +
β

1− β
g

holds and thus

g = η + ζ. (15)

The growth of aggregate output is driven by two factors: the growth of the number of establishments

N(t) and the growth of the average quality of products Q(t).

Rewriting (14), we can obtain an explicit formula for ζ given g:

ζ =
1

1− α

(
1− 2β

1− β
g − γ − αθ

)
.

Because η = g − ζ,

η = g − 1

1− α

(
1− 2β

1− β
g − γ − αθ

)
(16)

holds.

Note that the total number of establishments at each type (denote it as Nτ (t) for type τ) has

to grow at the same rate, η. In other words, Nτ (t) = MτN(t) has to hold for a constant Mτ that

satisfies Mτ ∈ [0, 1] for all τ and ∑
τ

Mτ = 1. (17)

The law of motion for Nτ (t) is

Ṅτ (t) = zτXNτ (t)− (δτ + dτ )Nτ (t) + µemτN(t)−
∑
τ ′ 6=τ

λττ ′Nτ (t) +
∑
τ ′ 6=τ

λτ ′τNτ ′(t).

The first term is the increase in products due to external innovation, the second term is the exit,

the third term is the entry, and the fourth and fifth terms are the changes in firm types. The

growth rate of Nτ (t) has to be the common value η. Thus this equation can be rewritten as

η = zτX − (δτ + dτ ) + µe
mτ

Mτ
−
∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ
. (18)

A simpler expression for η can be found by multiplying Mτ to both sides of (18) and adding up:

η =
∑
τ

Mτ [zτX − (δτ + dτ )] + µe.
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Note that using (16), (18) can be rewritten as

g − 1

1− α

(
1− 2β

1− β
g − γ − αθ

)
= zτX − (δτ + dτ ) + µe

mτ

Mτ
−
∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ
. (19)

For notational convenience, define

Qτ (t) ≡ 1

Nτ (t)

∫
Nτ (t)

qj(t)dj,

where Nτ (t) is the set of actively produced goods by type-τ firms. Balanced growth implies that

Qτ (t) has to grow at the same rate as Q(t). Also define

sτ ≡MτQτ (t)/Q(t). (20)

Note that sτ is constant along the balanced-growth path and it satisfies∑
τ

sτ = 1. (21)

Using these notations, we can show that for any τ , g satisfies

g = zτI + zτX − (δτ + dτ ) + µe
mτ

sτ

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
sτ ′

sτ
. (22)

The derivation is in Appendix B. A simpler expression for g can be found by multiplying sτ on

both sides of (22) and summing across τ :

g =
∑
τ

sτ [zτI + zτX − (δτ + dτ )] + µe

∫
q̂dΦ(q̂).

The first term is the incumbent firms’ contribution to g and the second term comes from entrants.

In sum, we can proceed the computation as follows. First, make a guess on g. Once g is known,

we can compute r by r = ρ + σg and look for w̄ that satisfies the free-entry condition (11) by

solving (9) for given r and w̄. Then, we compare the initial guess with the g calculated from the

general equilibrium. In particular, the set of equations (17), (19), (21), and (22) can be used for

pinning down µe, g, Mτ , and sτ (2T + 2 equations and 2T + 2 unknowns). If this g is different from

the initial guess, adjust g until we find the fixed point.

When α = 1, the algorithm is slightly different. Because we can solve for g from (14) as a

function of parameters (exogenous growth), we can obtain r without making any guess. After

solving the HJB equations and finding w̄ that satisfies free-entry condition, we can use (21) and

(22) to obtain µe and sτ . Given these, η and Mτ can be solved from (17) and (18).
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3.1.7 Accounting for aggregate resources

In this subsection, we decompose Y (t) into C(t), R(t), and K(t). This decomposition will be used

in the estimation of the model later on.

Plugging the optimal choice for xj(t), (6), in the aggregate production function (3), we obtain

Y (t) =
(∫
N (t) qj(t)

βxj(t)
1−βdj

) 1
1−β

=

(∫
N (t) qj(t)

β

[
(1− β)

1
β

(
w(t)
Z(t)

)− 1
β
Y (t)qj(t)

]1−β
dj

) 1
1−β

= (1− β)
1
β

(
w(t)
Z(t)

)− 1
β
Y (t)

(∫
N (t) qj(t)dj

) 1
1−β

=
(

w(t)
(1−β)Z(t)

)− 1
β
Y (t) (N(t)Q(t))

1
1−β ,

where the last equality uses the definition of Q(t). Simplifying Y (t) from both sides, we arrive at:

1 =

(
w(t)

(1− β)Z(t)

)− 1
β

(N(t)Q(t))
1

1−β .

Combining this identity with the labor market clearing condition (13) yields

Y (t) = L(t)Z(t) (N(t)Q(t))
β

1−β .

We then use (13) to replace L(t)Z(t) with
(
w̄(t)
1−β

)− 1
β
N(t)Q(t)Y (t)

− β
1−β . Thus

Y (t) =

(
w̄(t)

1− β

)− 1−β
β

N(t)Q(t).

On a balanced-growth path, K(t) = µeN(t)φQ(t). Therefore

K(t)

Y (t)
= µeφ

(
w̄(t)

1− β

) 1−β
β

.

The aggregate cost of intensive and extensive margin investment is given by:

R(t) =
∑

τ (hτX(zτX) + hτI (zτI ))
∫
Nτ (t) qj(t)dj

=
∑

τ (hτX(zτX) + hτI (zτI ))Nτ (t)Qτ (t)

= N(t)Q(t)
∑

τ (hτX(zτX) + hτI (zτI )) sτ ,

where sτ is defined in (20). As a result

R(t)

Y (t)
=

(∑
τ

(hτX(zτX) + hτI (zτI )) sτ

)(
w̄(t)

1− β

) 1−β
β

.
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Combining the expressions for the ratios K/Y and R/Y , we obtain the fraction of total investment

over output:

K(t) +R(t)

Y (t)
=

(
µeφ+

∑
τ

(hτX(zτX) + hτI (zτI )) sτ

)(
w̄(t)

1− β

) 1−β
β

. (23)

In the estimation of the model below, we use this fraction as a target.

3.2 Model properties

Before evaluating the model quantitatively, it is useful to establish some general properties of the

model. First we look at the partial-equilibrium properties of the general model. Then we obtain

sharper characterizations for the case with a single type.

3.2.1 Partial-equilibrium properties of the general model

First, we establish some partial-equilibrium properties of the HJB equation (9). It can be shown

that vτ moves monotonically with π̄ for all types.

Lemma 1 When r is fixed, ∂vτ/∂π̄ ≥ 0 for all τ , with strict inequality for at least one τ .

Proof. Suppose not. It is straightforward to see that ∂vτ/∂π̄ = 0 for all τ would not satisfy the

HJB equation (9). The equation (9) can be rewritten as

(r − zτI − zτX + δτ + dτ )vτ = π̄ − hτI (zτI )− hτX(zτX) +
∑
τ ′

λττ ′(vτ ′ − vτ ). (24)

Choose τ that provides the minimum value of ∂vτ/∂π̄. Then, from the supposition, ∂vτ/∂π̄ < 0.

For this τ , ∂(vτ ′ − vτ )/∂π̄ ≥ 0 has to hold for all τ ′. We can ignore the effect through endogenous

zτI and zτX because of the envelope theorem. Then, when π̄ increases, the left-hand side of (24)

strictly decreases while the right-hand side has to increase. Contradiction.

A similar logic can be used for analyzing the change in r.

Lemma 2 When π̄ is fixed, ∂vτ/∂r ≤ 0 for all τ , with strict inequality for at least one τ .

Proof. Suppose not. Choose τ that provides the maximum value of ∂vτ/∂r. Then, from the sup-

position, ∂vτ/∂r > 0. For this τ , ∂(vτ ′ − vτ )/∂π̄ ≤ 0 has to hold for all τ ′. We can ignore the effect

through endogenous zτI and zτX because of the envelope theorem. When r increases, for this τ , the

left-hand side of (24) strictly increases while the right-hand side has to decrease. Contradiction.

Lemma 1 and Lemma 2 imply that π̄ and r have opposite influences on vτ . Since the first-order

conditions for the innovation decision

hτ ′I (zτI ) = vτ

and

hτ ′X(zτX) = vτ
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crucially depend on the value of vτ , these results provide information on how innovations react to

the external environment.

In general equilibrium, the fact that the free-entry condition (11) has to hold imposes how

equilibrium objects react to the external changes.

Proposition 1 Suppose that φ, mτ , Φτ (·), δτ , dτ , λττ ′, h
τ
I (·) and hτX(·) are kept constant. Then

a change in a parameter moves r and π̄ in the same direction.

Proof. Suppose not, and consider the case where r goes up and π̄ goes down. Because δτ , dτ ,

λττ ′ , h
τ
I (·) and hτX(·) are kept constant, the HJB equation (9) remains the same. Therefore, from

Lemma 1 and Lemma 2, vτ goes down for all τ . This contradicts to the free-entry condition (11)

because (10) implies that ve has to go down. The opposite case leads to a contradiction with the

same steps.

The result of this proposition applies to the comparative statics on the parameters such as β,

α, and θ. Because π̄ is negatively linked to w̄ through (8) and r is positively linked to g through

r = ρ+ σg, this proposition imply a negative relationship between w̄ and g.

3.2.2 Properties of the model with one type

Although the quantitative exercise below features multiple types, the case with one type allows us

sharper characterizations of the general equilibrium and help us develop intuitions. We omit the

subscripts and superscripts τ as there is only one type.

Recall the output growth rate g can be decomposed into the growth of Q(t) and the growth

of N(t) with the formula (15). The separate formula for ζ and η are particularly simple for the

single-type case:

ζ = zI + µe

(∫
q̂dΦ(q̂)− 1

)
(25)

and

η = zX − δ − d+ µe.

The sum, g, is

g = zI + zX − δ − d+ µe

∫
q̂dΦ(q̂). (26)

The single-type case is particularly convenient as it has the recursive structure in solution. The

free-entry condition (11) and (10) imply that

v = ve = φ.

From the first-order condition for innovations, this imply that zI and zX are determined only by φ

and the innovation cost functions hI(·) and hX(·). Then the only endogenous variable to determine

ζ and g in (25) and (26) is µe. Plugging (25) and (26) into (14) yields an equation with one unknown
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µe. With some algebra, this equation becomes[(
1− 2β

1− β
− (1− α)

)∫
q̂dΦ(q̂) + 1− α

]
µe+

[
1− 2β

1− β
− (1− α)

]
zI +

1− 2β

1− β
(zX−δ−d) = γ+αθ.

We assume that β and α are sufficiently small so that the coefficients of µe, zI , and (zX − δ − d)

on the left-hand side are all positive. Then the above steps solve out µe, ζ, g, η, zI , zX , and v as

functions of parameters. The only equilibrium object left here is w̄, which can be solved by the

HJB equation

(ρ+ σg)v = π̄ − hI(zI)− hX(zX) + (zI + zX − δ − d)v

and the relationship (8).

The following propositions are straightforward and therefore presented without proof.

Proposition 2 An increase in the entry cost, φ, increases zI and zX , while reducing µe. When

α = 1 (exogenous growth), these effects exactly offset and g stays constant. When α < 1 and∫
q̂dΦ(q̂) ≤ 1, g increases.

Proposition 3 Suppose that the innovation cost functions take the form

hi(zi) = χiz
ψ
i ,

where i = I,X. The parameters satisfy χi > 0 and ψ > 1. Then a decrease in χI increases zI but

keeps zX the same. The entry rate µe decreases, and when α < 1, the overall growth rate increases.

A decrease in χX increases zX but keeps zI the same. The entry rate µe decreases, and when α < 1

and
∫
q̂dΦ(q̂) ≤ 1, g increases.

In above Propositions, the direct effect through the changes in zI and zX have stronger impact on

growth than the (offsetting) effect of µe, unless
∫
q̂dΦ(q̂) > 1.

Proposition 4 An increase in δ, d, γ, or θ keeps zI and zX constant, while increasing g through

an increase in µe. Changes in α and β do not affect zI and zX either, although they influence g

through the change in µe.

Proposition 5 Changes in the preference parameters σ and ρ do not have any effects on zI , zX ,

and g.

From above analysis, we can suspect that the increase in the number of establishments per firm,

which is likely be driven by an increase in zX , can be explained by the decrease in χX . Other

changes in parameters either move zI and zX together or move only µe without affecting zX . The

slowdown in overall growth cannot be accounted for by the change χX . Additional change in other

technology parameters, such as δ, d, γ, or θ, can account for the overall growth slowdown.
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3.3 Distributions of firms and establishments

The properties of our model allow us to analyze the firm size distribution from two different margins.

In one margin, the number of establishments per firm evolves through the external innovation

and exit shock. In the other margin, the size of each establishment evolves through the internal

innovation. Note that the existence of these two margins is the major departure from Luttmer

(2011). In Luttmer (2011) establishments are homogeneous and each establishment does not grow,

so that the only relevant innovation is the external one.

Before analyzing the details, first note one general property of the model. The model as-

sumptions imply that the establishments are homogeneous within a firm. A firm starts with one

establishment, and whenever it expands the number of establishments, a new establishment in-

herits the same quality as the existing establishments. The intensity of the internal innovation,

zI , is common across establishments, while it may change over time. These two facts mean that

establishments share common quality within a firm at any point in time. This also imply that the

establishment sizes are also common within a firm. Although in reality establishment sizes are not

the same within a firm, we view this as a useful simplification. In a balanced-growth equilibrium,

the number of firms grow at the same rate as N(t). The distribution of the number of establish-

ments per firm, n(t), is stationary, and the average quality of each establishment, q(t), grows at

the same rate as Q(t) from the definition of Q(t).

3.3.1 Distributions for one-type economy

When there is only one firm type, firm growth is governed by three endogenous numbers: zI , zX ,

and µe. Note that, in this case, our model assumptions imply that for a given firm, the quality (and

therefore the size) of each establishment grows at a deterministic rate zI that is common across

all firms. The average quality Q(t) grows at the rate ζ given in (25). Thus, the quality of the

establishments in a firm who started at time t0 and whose initial draw of the normalized quality is

q̂Q(t0) can be represented as (denoting it by qt0(t))

qt0(t) = q̂Q(t0)ezI(t−t0) = q̂Q(t)e(zI−ζ)(t−t0).

From the labor demand (7) and the labor market equilibrium condition (12), it is straightforward

to show that along the balanced-growth equilibrium, the relative labor demand `(t)/L(t) of a

particular establishment with quality qt0(t) is equal to qt0(t)/(N(t)Q(t)). Therefore, the cross-

sectional distribution of establishment size at a given time t is the same as the distribution of

q̂e(zI−ζ)(t−t0). Denoting the time-t number of establishments for a firm that starts at time t0 as

nt0(t) (note that nt0(t) is stochastic as the external innovation is random), the (relative) firm size

distribution follows the distribution of nt0(t)q̂e(zI−ζ)(t−t0)/N(t).

In a special case where the initial draw satisfies
∫
q̂dΦ(q̂) = 1, (25) implies that zI = ζ holds, and

thus the establishment size distribution is identical to the distribution of q̂. Furthermore, in this

case, the distribution of q̂ for a given n(t) follows the identical distribution Φ(q̂). The distribution
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of n(t) evolves with the standard birth-death process, as in Klette and Kortum (2004) and Luttmer

(2011). Let the number of firms with n(t) = n in the balanced-growth path be M̄(n)N(t).9

The N(t)-normalized measure of firms with n(t) = n and q(t) ≥ q̂Q(t), M(n, q̂), is

M(n, q̂) = M̄(n)(1− Φ(q̂)).

Once we have M(n, q̂), the firm size distribution can be computed easily. The fraction of firms

with size l(t) ≥ l̂L(t), denoted by M(̂l), can be computed as

M(̂l) =

∑
nM(n, l̂/n)∑
n M̄(n)

.

In a general case where
∫
q̂dΦ(q̂) may not be equal to one,M(n, q̂) can be characterized by the

following forward Kolmogorov equations:

(zI − ζ)q̂
∂

∂q̂
M(1, q̂) = −(zX + δ + d+ η)M(1, q̂) + 2δM(2, q̂) + µe(1− Φ(q̂))

and

(zI − ζ)q̂
∂

∂q̂
M(n, q̂) = −(n(zX + δ) + d+ η)M(n, q̂) + (n+ 1)δM(n+ 1, q̂) + (n− 1)zXM(n− 1, q̂)

for n > 1. Note that δ is the establishment-level exit shock and d is the firm-level exit shock.

3.3.2 Distributions for multiple-type economy

When there are multiple types, it is substantially more complex to characterize the joint distri-

bution of (n, q̂) for each types (let Mτ (n, q̂) be the normalized measure of type-τ firms withe n

establishments and q(t) ≤ q̂Q(t)). Our approach here is to look at two separate margins: the dis-

tribution of the number of establishments per firm, where we denote the N(t)-normalized measure

of type-τ firms with n(t) = n as M̄τ (n), and the distribution of establishment quality, where we

denote the fraction of type-τ establishments with q(t) ≥ q̂Q(t) as H̄τ (q̂).

The first margin, M̄τ (n), can be characterized by the following equations:

0 = −(zτX + δτ + dτ + η)M̄τ (1) + 2δτM̄τ (2) + µemτ −
∑
τ ′ 6=τ

λττ ′M̄τ (1) +
∑
τ ′ 6=τ

λτ ′τM̄τ ′(1)

and

0 = −(n(zτX + δτ ) + dτ + η)M̄τ (n) + (n+ 1)δτM̄τ (n+ 1) + (n− 1)zτXM̄τ (n− 1)

−
∑
τ ′ 6=τ

λττ ′M̄τ (n) +
∑
τ ′ 6=τ

λτ ′τM̄τ ′(n)

9Note that below we normalize all measures of firms, such as M̄(n), by N(t). This is because the number of firms
grows at the same rate as N(t) does. Normalizing by N(t) implies that

∑
n nM̄(n) = 1 and the fraction of firms

with n(t) = n can be obtained by calculating M̄(n)/
∑
n M̄(n).
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for n > 1. The second margin, H̄τ (q̂), is governed by the following Kolmogorov forward equation:

(zI−ζ)q̂
∂

∂q̂
H̄τ (q̂) = −(δτ +dτ +η)H̄τ (q̂)+µe

mτ

Mτ
(1−Φτ (q̂))−

∑
τ ′ 6=τ

λττ ′H̄τ (q̂)+
∑
τ ′ 6=τ

λτ ′τ
Mτ ′

Mτ
H̄τ ′(q̂).

4 Estimation and quantitative experiments

We first present the estimation procedure and the estimates. Then we use the estimated model to

carry out counter-factual exercises. An important difference from the previous studies that estimate

the model of innovation, such as Lentz and Mortensen (2008) and Akcigit and Kerr (2016), is that

we exploit establishment-level information in analyzing firm dynamics.

4.1 Estimation of the model

We first estimate a simple version of the model with two-types: Γ = {H,L}. H-type firms have a

lower cost of external investment and expand their number of establishments faster. H-type firms

transition to L-type firms at the rate λHL > 0 while L-type firms do not transition to H-type firms,

i.e. λLH = 0. These are the assumptions made in Luttmer (2011) (but without differentiating the

extensive versus intensive margins as we do here). The assumptions give closed-form solutions for

the distribution of the number of establishments per firm and we use the closed-form solutions to

estimate the model. To simplify the estimation, we fix dH , dL at 0%, 2% respectively and δH , δL at

10% because these parameters can potentially be directly estimated from the data.

We estimate the model in two steps. In Step 1, we estimate (Step 1a)

zHX , z
L
X , λHL, µe,mH ,mL,

using the moments related to the number of establishments per firm; and (Step 1b)

zHI , z
L
I ,Φ(.)

using the moments related to the number of employees per establishments. In Step 2, we assume

functional forms for the cost functions hX , hI and estimate the parameters of these functions using

the estimates from Step 1.

Step 1a In this step, we target distribution of establishments per firm, in addition to the growth

rate of the number of the establishments.

[We are awaiting data disclosure for the inputs of the estimation.]
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Step 1b In this step, we target the distribution of the number of employees per establishments

as well as the average growth rate of establishment sizes.

[We are awaiting data disclosure for the inputs of the estimation.]

The estimates in Step 1a and Step 1b imply the stationary distribution of firm sizes.

Step 2 In this step we use the estimates from Step 1a and Step 1b, including zτi , τ ∈ {H,L}, i ∈
{X, I}, to estimate the original model. To simplify the estimation, we assume that α = 1, and fix

several parameters at standard values:10

β = 1− 1

1.30
;σ = 1; γ = 0.01; ρ = 0.01.

In addition, we assume that the innovation cost functions are iso-elastic:

hτi (z) ≡ χτi zψ,

for τ ∈ Γ and i ∈ {X, I}, with ψ = 2.

The first order condition in (9) implies ψχτi (zτi )ψ−1 = vτ , and hence

−hτi (zτi ) + zτi vτ =

(
1− 1

ψ

)
zτi vτ .

Substituting this expression in (9) and re-arranging, we arrive at:

A

[
vH

vL

]
= π̄

[
1

1

]
where

A =

[
r − (1− 1

ψ )(zHX + zHI ) + δH + dH + λHL −λHL
0 r − (1− 1

ψ )(zLX + zLI ) + δL + dL + λHL

]

From the estimates in Step 1a and Step 1b, all the elements of matrix A are known, including

r = ρ+ σg = ρ+ σ(η + ζ).

10The value of β implies a markup of 30% in light of the estimate for average markup in 1990 in De Loecker and
Eeckhout (2017).
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We can then solve for vH , vL as functions of π̄:[
vH

vL

]
= π̄A−1

[
1

1

]
Now, combining this result with equations (10) and (11), we obtain

φ = π̄

[
mH

mL

]′
A−1

[
1

1

]
exp(−%+

ς2

2
).

In other words, π̄ is uniquely determined as a function of φ. Lastly, we use (23) to choose φ such

that the total investment is 10% of total output.

[We are awaiting data disclosure for the inputs of the estimation.]

4.2 Quantitative experiments

In this section, we carry out quantitative experiments utilizing the estimated model in the previ-

ous section. In particular, our interest is to explain the mechanism of the increase in firm sizes,

documented in Section 2. First, we analyze an effect of the change in a cost parameter for external

innovation, χX . the upper panel in Figure 7 shows how the Pareto tail index of the distribution of

number of establishments per firm vary if we change the cost of external innovation from χHX to χ̃HX :

as the cost of external innovation decreases slightly (by less than 5%), the tail of the distribution

of number of establishments per firm becomes significantly fatter (lower tail index corresponds to

fatter tail, with tail index of 1 corresponds to Zipf’s law distribution which has infinite mean). The

lower panel shows how the tail index of the establishment size distribution changes: the tail of the

distribution becomes thinner but with much less sensitivity compared to the upper panel. These

features are broadly consistent with the facts documented in Figure 5 and Figure 6.

[We are awaiting data disclosure for the inputs of the estimation.]
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Figure 7: Distributions of number of establishment per firm and establishment size as χHX changes

5 Conclusion

[To be concluded, once the data disclosure goes through.]
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Appendix

A Data

This data appendix describes the Quarterly Census of Employment and Wages (QCEW) and draws

heavily from the BLS Handbook of Methods.11

A.1 Definitions

The Quarterly Census of Employment and Wages (QCEW) is a count of employment and wages

obtained from quarterly reports filed by almost every employer in the U.S., Puerto Rico and the U.S.

Virgin Islands, for the purpose of administering state unemployment insurance programs. These

reports are compiled by the Bureau of Labor Statistics (BLS) and supplemented with the Annual

Refiling Survey and the Multiple Worksite Report for the purpose of validation and accuracy.

The reports include an establishment’s monthly employment level upon the twelfth of each month

and counts any employed worker, whether their position is full time, part time, permanent or

temporary. Counted employees include most corporate officials, all executives, all supervisory

personnel, all professionals, all clerical workers, many farmworkers, all wage earners and all piece

workers. Employees are counted if on paid sick leave, paid holiday or paid vacation. Employees

are not counted if they did not earn wages during the pay period covering the 12th of the month,

because of work stoppages, temporary layoffs, illness, or unpaid vacations. The QCEW does not

count proprietors, the unincorporated self-employed, unpaid family members, certain farm and

domestic workers that are exempt from reporting employment data, railroad workers covered by

the railroad unemployment insurance system, all members of the Armed Forces, and most student

workers at schools. If a worker holds multiple jobs across multiple firms, then that worker may be

counted more than once in the QCEW.

A.2 Sample

Our sample includes each month from 1990 to 2016 and covers 38 states: Alaska, Alabama,

Arkansas, Arizona, California, Colorado, Connecticut, Delaware, Georgia, Hawaii, Iowa, Idaho,

Indiana, Kansas, Louisiana, Maryland, Maine, Minnesota, Montana, North Dakota, New Jersey,

New Mexico, Nevada, Ohio, Oklahoma, Rhode Island, South Carolina, South Dakota, Tennessee,

Texas, Utah, Virginia, Vermont, Washington, West Virginia, as well as the District of Columbia,

Puerto Rico and the U.S. Virgin Islands.

A.3 Data Cleaning and Variable Construction

To conform to official statistics, we clean the data in accordance with BLS procedure. First, while

the QCEW contains monthly data as of the 12th of each month, we follow BLS convention by

11See https://www.bls.gov/opub/hom/cew/home.htm for the complete BLS Handbook of Methods.
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only using data from the final month within a quarter. As a result, our sample does not capture

establishments that enter and exit within the same quarter. We additionally exclude firms from

calculations in a given quarter if the absolute change in employment from the previous quarter

exceeds 10 times the average employment between the two quarters. Statistics within this paper

are not sensitive to the choice of multiple being 10.

We construct firms as the summation over employment identification numbers (EINs). Firm-

level employment is the sum of all employment in establishments associated with the same EIN

and the number of establishments within a firm as the number of establishments that report using

a common EIN. To classify a firm’s industry, we assign to a firm the average self-reported, 6-digit

NAICS code of its establishments so that the firm is classified in the same way as its establishments

are on average.

A firm’s entry date is measured as the date at which the QCEW records a non-zero number of

workers associated with a particular EIN after four consecutive quarters of recording zero workers.

A firm’s exit date is measured as the last date at which the QCEW records a non-zero number

of workers associated with a particular EIN prior to four consecutive quarters of recording zero

workers. A firm’s age is measured by tracking firms after entering. Upon entry, the firm is assigned

an age of 1 quarter and the firm’s age is incremented by 1 quarter for each period that it does not

exit.

B Some derivations

B.1 Derivation of (1)

log(Z) = log(E[XY |XY = Z])

= log(E[X|XY = Z]) + log(E[Y |XY = Z]) + log

(
E[XY |XY = Z]

E[X|XY = Z]E[Y |XY = Z]

)
.

Call the final term as Ω. Because E[XY |XY = Z] = Z and E[X|XY = Z]E[Y |XY = Z] =

E[X|XY = Z]E[Z/X|XY = Z] = E[X|XY = Z]E[1/X|XY = Z]Z. From Jensen’s inequality,

E[X|XY = Z]E

[
1

X

∣∣∣∣XY = Z

]
≥ E[X|XY = Z]

1

E[X|XY = Z]
= 1,

and thus Ω ≤ 0 and the equality holds when var[X|XY = Z] = 0.

B.2 Derivation of (22)

From the definition of Qτ (t),

Q̇τ (t)

Qτ (t)
= −Ṅτ (t)

Nτ (t)
+
d
∫
Nτ (t) qj(t)dj/dt∫
Nτ (t) qj(t)dj

. (27)
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The first term of the right-hand side is −η. To compute the second term, consider a discrete time

interval ∆t > 0, compute (
∫
Nτ (t+∆t) qj(t + ∆t)dj −

∫
Nτ (t) qj(t)dj)/∆t and set ∆t → 0. Note that

the denominator of the second term is equal to Q(t)N(t). Because∫
Nτ (t+∆t)

qj(t+ ∆t)dj −
∫
Nτ (t)

qj(t)dj

= [zτI + zτX ]∆tQτ (t)Nτ (t)− (δτ + dτ )∆tQτ (t)Nτ (t) + µe∆tmτQ(t)N(t)

∫
q̂dΦ(q̂)

−
∑
τ ′ 6=τ

λττ ′∆tQτ (t)Nτ (t) +
∑
τ ′ 6=τ

λτ ′τ∆tQτ ′(t)Nτ ′(t) + o(∆t),

where the first term is the additional quality by internal and external innovation, the second term

is the lost quality by exit, the third term is the gain from entry, and the fourth and the fifth terms

are the loss and gain from the transitions of firm types. (The higher-order terms are omitted as

o(∆t).) Dividing by ∆t and taking ∆t→ 0,

d
∫
Nτ (t) qj(t)dj

dt

= Qτ (t)Nτ (t)

zτI + zτX − (δτ + dτ ) + µemτ
Q(t)N(t)

Qτ (t)Nτ (t)

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Qτ ′(t)Nτ ′(t)

Qτ (t)Nτ (t)

 .

Therefore, (27) can be rewritten as

ζ = −η + zτI + zτX − (δτ + dτ ) + µe
mτ

Mτ

Q(t)

Qτ (t)

∫
q̂dΦ(q̂)−

∑
τ ′ 6=τ

λττ ′ +
∑
τ ′ 6=τ

λτ ′τ
Qτ ′(t)Mτ ′

Qτ (t)Mτ

Using the definition of sτ and g = η + ζ, we can obtain (22).
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