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Abstract

Predicted TFP gains under Hsieh and Klenow (2009)’s framework are sensitive to de-

mand elasticities and returns to scale, but simultaneously estimating them is difficult.

We solve this problem by developing a framework allowing for an arbitrary distribution

of firm-level markups and use microdata to estimate industry-specific production elas-

ticities, within-industry type-specific demand elasticities when types are not observed,

and firm-specific distortions. We apply our model to 2005 Chinese firm-level data and

find that the predicted Total Factor Productivity (TFP) gains are 44% which is half of
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1 Introduction

Standard competitive-market theory predicts that equalizing the marginal revenue of pro-

duction factors across firms brings efficiency gains (Melitz (2003), Restuccia and Rogerson

(2008)). This implies that the large variation in marginal revenues in developing countries is

an important source of their lower economic performance compared to developed countries

(Hsieh and Klenow (2009)). However, recent trends of rising wage inequality and rising

aggregate markups raise concerns over whether equalizing marginal revenues will hurt av-

erage working people. When all the firms have the same markups, reallocating capital and

labor from high- to low-marginal-revenue firms brings efficiency gains and raises the labor

income share. However, when firms have heterogeneous markups, the labor income share

may not increase as much or even decrease if the majority of production factors are reallo-

cated to high-markup firms. Besides, firms’ returns to scale affect the predicted gains. Apart

from some recent studies, many existing misallocation models assume constant returns to

scale. A growing literature finds empirical evidence for large variation in the returns to scale

(Chirinko and Fazzari (1994), Basu and Fernald (1997), Gao and Kehrig (2016), Lafortune

et al. (2021)). Unfortunately, it is not clear whether and how the constant-returns-to-scale

assumption affects predicted efficiency gains.

Our paper demonstrates that predicted total factor productivity (TFP) gains under Hsieh

and Klenow (2009)’s framework (hereafter HK) are highly sensitive to demand elasticities

and returns to scale. Simultaneously estimating them is difficult. Our primary contribution

is to develop an empirical framework allowing for an arbitrary distribution of firm-level

markups and use microdata to estimate industry-specific production elasticities, within-

industry type-specific demand elasticities when types are not observed, and firm-specific

distortions. In our model, distortions cause the variation of the marginal revenues of capital

and labor. Our framework does not impose constant returns to scale and is able to fit the

large variation in firm-level markups. Therefore, it is robust to errors in the measurement of

distortions caused by heterogeneous demand elasticities and is robust to biases in predicted

efficiency gains that appear when efficiency gains are from equalizing revenue-based total

factor productivity, i.e. TFPR (HK). This equalizing-TFPR approach is valid only under

constant returns to scale and constant demand elasticities which, however, are often violated

in empirical work. Moreover, the predicted changes in the labor income share using our

framework can offer insights into the welfare impact of heterogeneous markups on labor.

Directly measuring the source of misallocation is difficult and sometimes impossible when

the source is unclear or when multiple sources are at work. Following HK’s idea of identifying

the effect of misallocation without specifying the underlying sources, we use dispersion in
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the marginal revenues of labor and capital to measure misallocation. A key feature of our

model is that we do not rely on production elasticities of firms in other countries. HK

uses American firms’ production elasticities as the production elasticities of Chinese and

Indian firms when estimating firm-specific distortions. Instead, we simultaneously estimate

production elasticities and distortions using data on the labor and capital shares under a

flexible distribution of distortions.

The difficulty in estimating production elasticities is that observed capital and labor

income shares are affected by demand elasticities, distortions, and production elasticities.

While demand elasticities are estimated in a separate step beforehand, we still need to

estimate production elasticities and distortions. Without any parametric restrictions, this

model is not identified. We disentangle production elasticities from distortions by allowing

a flexible distribution of distortions and imposing constant production elasticities within

industries.1 When production elasticities are the same within an industry, variation in

observed firm-level capital and labor income shares reflects distortions after controlling for

differences in markups. Some firms may hire too much capital or labor so that the marginal

revenue is lower than the rental rate of capital and labor, which indicates negative distortions.

In contrast, other firms may hire too little capital or labor, exhibiting higher marginal

revenues and positive distortions. Intuitively, positive distortions happen when firms face

obstacles in acquiring labor or capital, and negative distortions take place when firms enjoy

subsidies or favorable access to financial and labor markets. This idea of negative and positive

distortions is also used by Restuccia and Rogerson (2008) to model misallocation. The

advantage of our flexible distribution of distortions is that it allows the distribution of positive

distortions to differ from that of negative distortions and also allows the distributions to vary

across industries. This captures the idea that the mechanism behind positive distortions can

be completely different from that behind negative ones and the mechanism may vary across

industries. Furthermore, an industry’s probability of having positive distortions is a free

parameter that is industry specific so that we do not need to assume a ratio of positive

distortions in an industry ex ante.

In addition, accommodating the large variation of markups is challenging under a constant-

elasticity-of-substitution (CES) demand because it requires constant demand elasticities and

therefore constant markups. Nested CES allows demand elasticities and markups to vary

across nests but not within nests. An arbitrary nested CES is not tractable because it is

not identifiable without parametric restrictions. In general, there are two channels through

which firms’ markups vary: different demand elasticities and unexpected cost shocks that

1The latter is a standard assumption in the literature of misallocation, while the former is a convenient
and practical feature of our estimation strategy.
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change firms’ realized marginal costs. The latter occurs when firms face price rigidity so

that they can not modify prices when marginal costs change. We overcome the challenge

of accommodating heterogeneous markups using a combination of nested CES demand and

unexpected idiosyncratic cost shocks. We solve the tractability issue by specifying the finest

industry category observed as parent nests and use the model to estimate the number of

unobserved types within an industry. The remaining variation of markups is explained by

cost shocks. Using cost shocks to capture excessive variation in markups under CES demand

framework is employed in Atkeson and Burstein (2008). Its firms observe cost shocks when

they set prices, and cost shocks are used to explain excessive variation in prices among do-

mestic markets and different foreign markets through varying market structures. However,

in Atkeson and Burstein (2008), firms in the same sector face the same cost shocks, which

means cost shocks can not help explain markup variation within a sector. Our cost shocks

are realized after firms set price and are firm specific. This allows us to accommodate any

markup variation within an industry which is the modeling counterpart of a sector in Atkeson

and Burstein (2008).

We do not ex ante impose a positive correlation between markups and market shares

that results from a positive correlation between markups and productivity. Although stud-

ies on trade and domestic markets using American firms (Bernard et al. (2003), Atkeson

and Burstein (2008), De Loecker and Warzynski (2012), and Edmond et al. (2019)) and

Gupta (2021) using Indian firms assume or support this positive correlation, our data give

no direct empirical evidence for it. In fact, we find a negative correlation between markups

and sales. One explanation is that this positive correlation is more likely to occur in a

market-based economy such as the American economy while the Chinese economy contains

many regulations and distortions, such as entry barriers, a lack of market-based allocation

of financial credit, and a significant role for State-Owned Enterprises (SOEs). Removing

SOEs attenuates the negative correlation, which hints at the possibility of finding a positive

correlation if we can create a sample of Chinese firms whose environment is more market

based. Another explanation is that the positive correlation between markups and market

shares under nested CES demand exists among oligopolies (Atkeson and Burstein (2008)).

However, 80% of the industries in our data contain more than 50 firms and the top decile

contains more than 1,000 firms. Furthermore, our data do not support the positive corre-

lation even for industries with less than 25 firms and after dropping all SOEs. Finally, the

missing positive correlation may result from distortions in capital and labor market which

distort observed sizes or market shares. If high-markup firms tend to have larger distortions

while low-markup firms tend to have smaller or even negative distortions, we would not be

able to observe a positive correlation even if in a distortion-free economy exists. Therefore,
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it is unclear whether Chinese firms follow this pattern. Given this, we argue that it is better

not to impose any correlation ex ante and to use a framework that accommodates arbitrary

correlations. This motivates our decision on not to use demand structures that offer endoge-

nous markups, such as nested CES with oligopolies (Atkeson and Burstein (2008), Edmond

et al. (2015), and Burstein et al. (2020)), Kimball preferences (Klenow and Willis (2016)),

translog preferences (Feenstra and Weinstein (2017)), the CREMR demand (Mrázová et al.

(2021)), and hyperbolic absolute risk aversion preference (Haltiwanger et al. (2018)).

The cost of not imposing any correlation in our framework is that we can not measure

the deadweight loss caused by heterogeneous markups because the market outcome always

aligns with that of the social planner. The welfare implication on the labor income share

comes merely from reallocating resources among firms with different markups and different

firm-level labor shares. There are several recent studies that measure the deadweight loss

caused by heterogeneous markups, including the theoretical foundations provided by Dhingra

and Morrow (2019) and Mrázová et al. (2021), empirical studies by Liang (2021) and Gupta

(2021) in the context of Indian firms, and the impact of trade on the deadweight loss by

Edmond et al. (2015), Feenstra and Weinstein (2017), and Baqaee et al. (2020). To the best

of our knowledge, all the existing structural models that capture the deadweight loss require

imposing a given correlation between firm sizes and markups ex ante.2

In spite of this, our framework offers a way of applying the nested CES framework when

firm-level markups vary. One motivation of the other demand framework mentioned above is

that applying CES means constant demand elasticities and markups. The other framework

allows varying markups and can, therefore, fit the data more closely (Mrázová et al. (2021)).

Our framework shows that one can benefit from the tractability and simplicity of the CES

demand while still allow the large variation of markups.

We apply our model to Chinese data on the year 2005 and find that predicted TFP

gains from reallocating resources within industries are 43.9%, which is less than the 86.6%

predicted by HK. Applying our model to other years is straightforward and we find similar

results when using data on 2001.3 When taking into account the gains from reallocating

resources across industries, TFP gains are 50.6%. The labor income share increases by 7.4

percentage points to 27.2%. In a counterfactual scenario of homogeneous demand elasticities

where all other primitives are the same as our estimators, predicted TFP gains are similar

but the increase in labor income share is higher. More specifically, when demand elasticities

are 8.5, the average of our estimated demand elasticities, the labor income share increases

2Baqaee et al. (2020) uses a generalized Kimball preference but still requires that markups increase as a
firm grows.

32001 is chosen because HK also reports 2001, which makes comparison convenient. We do not pick 2004
which is also reported in HK because the data quality in 2001 is better.
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by 11.4 percentage points while total TFP gains are 51.8% almost the same as the 50.6%

under heterogeneous demand elasticities. This indicates changes in TFP gains are not always

informative about changes in the labor income share. Failing to account for heterogeneous

markups may miss the impact on average workers. Furthermore, our estimated distortions

suggest that SOEs are more likely to overuse labor and capital compared to domestic private

firms. This is consistent with the fact that SOEs tend to have more favorable financial access

but have difficulties in reducing labor costs, as they use more permanent labor contracts.

Relaxing the assumptions imposed by HK provides empirical evidence on the importance

of using parameters estimated from microdata. If HK’s low demand elasticities are replaced

with the average of our estimates, 8.5, predicted TFP gains from reallocating resources

within industries rise to 362.3%. They drop slightly but are still 298.6% when allowing

heterogeneous demand elasticities. These numbers shrink to 63.8% and 59.2% once use our

estimated production elasticities. This pattern calls attention to the sensitivity of predicted

TFP gains to these parameters and suggests the importance of using our estimation method.

Our paper can be seen as a generalization of HK. In fact, our method can be applied

to situations where the assumptions required by the original HK method are violated, i.e.

heterogeneous markups and sloped marginal cost curves. Replacing our estimated production

elasticities and demand elasticities by those assumed in HK reproduces its result and its

requirement of equalizing TFPR under no distortion.

Haltiwanger et al. (2018) argues that variation in TFPR can reflect demand shifters

instead of misallocation and, when shifting along a sloped marginal cost curve, efficiency

rather than distortions. Furthermore, if demand elasticities differ across firms, distortions

measured by HK are a mixture of distortions and markups. We find large dispersion in

observed revenue-cost ratios. If this large dispersion is driven by differences in markups,

the distortions measured by HK contain variations in markups. We also find returns to

scale vary across industries which suggests some variation in TFPR should reflect efficiency.

We deal with these biases by directly modeling demand as having heterogeneous demand

elasticities and production functions as non-constant returns to scale. This disentangles the

part of variation in marginal revenues due to markups from the part due to distortions.

Unlike HK, TFPR is not equalized when distortions are removed and the TFPR variation

in our no-distortion equilibrium indeed reflects changes in marginal cost and markups. Both

Haltiwanger et al. (2018) and our paper deal with the implication of HK’s assumptions and

their impact on predicted TFP gains. However, we adopt a completely different approach

in relaxing the assumptions. Haltiwanger et al. (2018) uses the hyperbolic absolute risk

aversion utility function to relax the constant-markup assumption. This means they also

imposes a positive correlation between market shares and markups. Besides, our method
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can be used when price and quantity data are not available while Haltiwanger et al. (2018)

requires those data.

Our paper complements recent studies on exploring sources of TFPR variation other

than distortions. Our method takes into account the impact of varying returns to scale

and demand elasticities on TFPR variation and disentangles the part of variation due to

distortions from the part due to varying returns to scale and varying markups. Bils et al.

(2020) focuses on the part of TFPR variation caused by measurement errors and proposes a

way to correct additive measurement errors in revenue and input. David and Venkateswaran

(2019) points out adjustment costs and information frictions can also cause dispersion in the

ratio of value-added and capital and proposes a framework to disentangle different sources.

Due to the link between TFPR and the ratio of value-added and capital, it is possible that

adjustment costs and information frictions also contribute to TFPR variation.

Similar to our paper, Ruzic and Ho (2021) estimates parameters of heterogeneous de-

mand elasticities and production elasticities using micro data. However, its method requires

constant demand elasticities and markups within industries so that the variation of demand

elasticities within industries can still contaminate its measures of distortions. It also requires

that distortions have zero mean while we do not impose this restriction. Its model does not

allow for firms to have negative profits but there are 15% of firms in our data experiencing

negative profits. Dropping all these firms may leave out useful information. Our model can

use this information because it allows negative profits. Lastly, its method can only talk about

predicted TFP gains within industries because it calculates relative distortions whereas our

method can calculate both within and cross industries TFP gains.

Our paper also contributes to the discussion whether constant returns to scale is con-

sistent with firms’ empirical production decisions. While many studies assume constant

returns to scale, a growing literature finds empirical evidence against it, and large variation

in industry-level returns to scale have been documented (Chirinko and Fazzari (1994), Basu

and Fernald (1997), Gao and Kehrig (2016), Lafortune et al. (2021)). Our structural anal-

ysis confirms returns to scale vary significantly across industries. To check the robustness

of our structural estimation of returns to scale, we implement a reduced form analysis us-

ing Klette and Griliches (1996) which relies on different modelling assumptions. Both our

structural and reduced-form analyses demonstrate on average decreasing returns to scale.

This may result from under-reported labor expenditures (non-wage labor expenditure is not

included) and variation of the ratio between wage and non-wage labor expenditure across

firms (without such variation, our reduced-form analysis should be able to correct it). It can

also be caused by other unobserved production factors such as intangible assets. The fact

that we use microdata can be another reason as Basu and Fernald (1997) points out returns
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to scale is sensitive to aggregation levels. Earlier research on returns to scale mainly uses

data aggregated at the level of broadly defined industries. In fact, Lafortune et al. (2021)

also finds decreasing returns to scale using an industry-city panel data in the US.

Finally, our paper is related to recent studies on the welfare implications of markups.

This literature covers a variety of topics, such as the trend of rising aggregate markups (Basu

(2019), Autor et al. (2020), and De Loecker et al. (2020)), the interaction between trade and

markups (Edmond et al. (2015) and Feenstra and Weinstein (2017)), endogenous markups

in the context of creative destruction (Peters (2020)), and channels of welfare loss (Edmond

et al. (2019)). Although we do not explicitly measure welfare changes, our paper improves

the understanding of the welfare impact of heterogeneous markups and misallocation on

labor. A lower increase in the labor income share under heterogeneous markups suggests a

smaller gain for workers.

The remainder of the paper is organized as follows. We introduce the data set in Section

2 and conduct a reduced-form analysis in Section 3. Section 4 describes our theoretical

model. We discuss our identification procedure in Section 5 and presents our estimation

results in Section 6. Section 7 concludes the paper. Appendix provides the derivation of

theoretical results, details of estimation procedures, a complete list of TFP gains when

relaxing assumptions in HK, and results from using Chinese data on 2001.

2 Data

Our data source is the Chinese Annual Survey of Manufacturing (ASM, 1998-2009) collected

by the National Bureau of Statistics of China.4 This data set has been used by previous

studies including HK, Song et al. (2011), and David and Venkateswaran (2019). It is a

census containing above-scale non-state firms (firms with more than 5 million RMB, about

$600, 000, in revenue) and all the state-owned enterprises (SOEs). For demonstration, our

structural analysis uses the year 2005 but it should be easily applied to other years. We do

the same structural analysis for the year 2001 in Appendix G. The reduced-form analysis on

returns to scale uses 1998-2009.

The data set contains rich information on firm-level value-added, wage expenditure, net

value of fixed asset, sales, and cost. When cleaning the data, we follow Brandt et al. (2012)

to drop unreasonable observations accounting-wise, such as negative value added, negative

debt, negative sales, etc. A full list of the types of observations dropped is provided in

Appendix A. We trim the 1% tails of value added, labor and capital share of value added,

revenue-cost ratio, capital, and labor. We do not trim the tails of profits because trimming

4We acquire the data through a data center at Peking University.
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the tails of revenue-cost ratio should already deal with abnormal profits. Since the focus of

this research is on structural analysis and we use the year 2005 for the structural analysis

in our main text, we provide here the summary statistics of the year 2005 and refer to

Appendix A for the summary statistics of the entire data. In both the year 2005 and the

entire data, there are 15% of the firms with negative profits.

Table 1: Summary Statistics of Cleaned Data (2005)

Statistic N Mean Min Pctl(25) Median Pctl(75) Max

value added 229,241 13,814.46 122 2,517 5,377 13,250 277,908
K 229,241 16,366.41 83.76 1,620.23 4,211.66 12,151.88 515,954.20
wL 229,241 2,730.73 80 583 1,188 2,665 78,956
revenue 229,241 50,184.74 2 9,500 19,457 45,994 11,041,153
cost 229,241 43,075.61 1 7,935 16,481 39,072 10,757,115
profits 229,241 2,370.47 −292,087 72 480 1,815 415,879
revenue/cost 229,241 1.21 0.81 1.08 1.14 1.25 4.68
wL/value added 229,241 0.32 0.01 0.12 0.23 0.42 3.15

One well-known limitation of this data is its labor expenditure does not include the

non-wage part and the aggregate labor share of value added is too low compared to the

one inferred by Chinese Input-and-Output Table and national accounts. HK is aware of

this issue and scales up each firm’s labor expenditure by the same proportion so that the

aggregate labor share reaches 50%. We run our estimation using unscaled labor expenditure

because the under-reporting seems more severe in large firms than small firms. In fact, very

large firms are concentrated in the area with very low labor expenditure while smaller firms

are more spread out. Figure 5 in Appendix A demonstrates this pattern with more details.

This makes sense intuitively because larger firms are more capable of providing non-wage

labor income. Although the aggregate labor expenditure share in this data is around 20%,

the average of all the firms’ labor expenditure share is 32% after the data cleaning described

above. Since firms of all sizes receive equal weights in our estimation, scaling up all the

firms’ labor expenditure by the same proportion overestimates labor expenditure, and our

estimators reflect more the unweighted 32% average rather than the weighted 20% average.

In other words, such uniform scale-up introduces new biases.

It is possible that using unscaled labor share underestimates production elasticities of

labor and therefore underestimate returns to scale on average. We use a reduced form analysis

to check our structural estimators. In fact, later sections show the reduced-form estimators

by and large coincide with the structural estimators. We consider this as a favorable piece of

evidence because the reduced form analysis is completely different from our structural model

so that there is no guarantee the two results coincide. Moreover, scaling-up all the firms’
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labor shares by the same proportion does not change the reduced-form estimators. Although

the ideal but infeasible practice is to find the non-wage part for each firm, the evidence leads

us to believe using the observed wage expenditure is the best feasible option for estimating

production elasticities and predicting TFP gains.

3 Reduced-form analysis

Before carrying out structural analysis, we fist do a classical production estimation to show

what the reduced-form analysis tells us about returns to scale. Simple linear regression on

firms’ expenditure share also demonstrate correlation between firm types and distortions.

Our reduced form analysis on average returns to scale closely follows Klette and Griliches

(1996). We denote rit as value added deflated by two-digit industry price index Pst. We

deflate at this level because only this level’s price index is available. A CES demand implies:

yit − yst = −ε(pit − pst) + udit

ε is demand elasticities. yit, pit, yst, and pst are the logarithm of firm-level production and

prices, and industry-level production and pries. udit is a demand shock. This reduced form

requires demand elasticities to be constant across industries and over time. In Appendix B,

we allow demand elasticities to vary across industries but still constant over time by applying

this analysis to each 2-digit industry. Since rit = yit + pit − pst, the demand side requires

deflated firm-level price pit − pst to satisfy the following function of deflated value added rit

and industry-level production yst:

pit − pst =
rit − yst − udit

1− ε
(1)

A firm’s production function in logarithm is:

yit = log(Ai) + αKkit + αLlit + uyit

kit and lit are the logarithm of capital and labor usage. uyit is a supply shock. Production

elasticities αK and αL are required to be constant across industries and over time. Ap-

pendix B allows them to vary across industries. The logarithm of deflated revenues using

the supply-side structure is simply yit + pit− pst. Combine this with the production function

and Equation 1:

rit = β0 + β1kit + β2lit + β3yst + vit (2)
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where β0 = ε−1
ε

log(Ai), β1 = ε−1
ε
αK , β2 = ε−1

ε
αL, and β3 = 1

ε
. vit is a combination of

demand shocks and supply shocks, i.e. ε−1
ε
uyit +

udit
ε

. Equation 2 is the regression used in this

reduced form analysis. The estimated demand elasticities and returns to scale are:

ε̂ =
1

β̂3

α̂K + α̂L =
β̂1 + β̂2

1− β̂3

Following Klette and Griliches (1996), we estimate Equation 2 using first differences with

a constant. The longer the panel data, the easier it is for identification. We therefore use

all the years available, i.e. 1998-2009. The constant captures the possibility of a constant

growth rate in deflated revenue. Due to concerns over endogeneity as explained in Klette

and Griliches (1996), we also do an IV estimation using the second-order differences of labor

and capital as instruments. Results of both OLS and IV estimation are reported in Table 2.

Similar to Klette and Griliches (1996), our OLS estimator and IV estimator produce similar

results. Our IV estimation infers returns to scale to be 0.61 ((0.406 + 0.156)/(1 − 0.077))

and demand elasticities to be 12.92 (1/0.077) while OLS infers returns to scale to be 0.53

((0.343 + 0.134)/(1 − 0.104)) and demand elasticities 9.62 (1/0.104). The Hausman test

rejects the null of no endogeneity, so we prefer our IV estimators. One thing worth noticing

is that the estimators are not affected if we scale up every firms’ labor share by a common

proportion.

We also look at the relation between ownership type and production factor usage. For

easier comparison to the distortions estimated from our structural model in later sections,

we use only the year 2005. The benchmark in Table 3 is domestic private firms. It shows the

SOEs on average have higher labor expenditure share and capital share than domestic private

firms after controlling for industry fixed effects. SOEs also tend to use disproportionally more

capital. This echoes the distortion patterns identified by our structural analysis. There are

also foreign firms in the data but only the coefficients on SOEs are reported here as it is of

the most interest.
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Table 2: Reduced-form estimation of returns to scale

Dependent variable

rit
OLS IV

(1) (2)

lit 0.343∗∗∗ 0.406∗∗∗

(0.001) (0.002)

kit 0.134∗∗∗ 0.156∗∗∗

(0.001) (0.002)

yst 0.104∗∗∗ 0.077∗∗∗

(0.003) (0.003)

constant 0.086∗∗∗ 0.048∗∗∗

(0.001) (0.001)

Observations 1,182,562 815,546
R2 0.099 0.070
Adjusted R2 0.099 0.070
Residual Std. Error 0.660 (df = 1182558) 0.615 (df = 815542)
F Statistic 43,471.580∗∗∗ (df = 3; 1182558)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
rit is deflated firm-level value added, VAs is industry s’s aggregate VA.

lit is deflated observed labor expenditure
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Table 3: Relationship between income shares and ownership (2005)

Dependent variable

log(wL/PYsi) log(K/PYsi) log(wl/K)

(1) (2) (3)

SOEs 0.487∗∗∗ 0.730∗∗∗ −0.244∗∗∗

(0.010) (0.013) (0.012)

Observations 229,416 229,416 229,416
R2 0.020 0.020 0.002
Adjusted R2 0.017 0.017 −0.0003
F Statistic (df = 3; 228890) 1,522.401∗∗∗ 1,521.787∗∗∗ 152.746∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Industry fixed effect is included.

4 Model

We use a standard monopolistic competition model where firms not only differ on produc-

tivity but also on demand elasticities, production elasticities, and returns to scale. It is an

extension of HK, relaxing their restrictions on demand elasticities and production elasticities.

We follow HK to characterize demand side structure using a final good producer who

combines products Ys from S industries using a Cobb-Douglas aggregator and sellS the final

good in a perfectly competitive market to a representative consumer:

Y =
S∏
s=1

Y βs
s , where

S∑
s=1

βs = 1

Cost minimization gives:

PsYs = βsPY

Ys is the compound product of industry s and Ps is its price. P =
∏S

s=1

(
Ps
βs

)1/βs
is the price

of the final good and is set to 1 because the final good is a numeraire. Unlike HK, each

industry faces its own demand elasticities and within each industry there is a possibility of

having a high-demand-elasticity type and a low-demand-elasticity type. When there are two

types, s̄ and s, inside an industry, the industry compound product is written as:

Ys = Y γs
s̄ Y 1−γs

s
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and

Yg =

(∑
i∈g

Y
εg−1

εg

i

) εg
εg−1

, where

g ∈ {s̄, s} , if two types inside s

g = s , if one type inside s

Firms in s̄ face higher demand elasticities, thus lower markups, than firms in s, i.e.

εs̄ > εs. The markups decided by demand elasticities are the expected markups as they are

also affected by cost shocks, which will be explained in details below. An intuition behind

high-demand-elasticity versus low-demand-elasticity types is established brands versus lesser-

known brands. Alternatively, it can also be firms capable of producing products for special

purposes versus those producing generic ones. In the rest of this paper, a type refers to the

type s̄ or s when there are two types inside s or to industry s itself when there is only one

type; an industry always refer to an industry s. Loosely speaking, our types are comparable

to industries in HK when deriving most results in this section.

Our production function is a Cobb-Douglas function with non-constant returns to scale:

Yi = AiK
αKs
i L

αLs
i

Unlike HK, αks +αLs does not have to be 1. Notice, αKs and αLs change with s but not within

s. In other words, αKs and αLs are the same for firms from s̄ and s.

We denote distortions that change the marginal revenues of capital and labor as τ ki and

τLi . Firms with limited access to capital have larger τKi while those enjoying cheap financial

credits have lower τKi ; similarly, firms that use permanent labor contracts, such as SOEs,

have higher τLi as they normally can not reduce labor inputs easily. τKi and τLi can be

negative when firms’ rental cost is below market rental rates, but τKi and τLi must be greater

than −1 so that labor and capital expenditure is positive. The market rental rates of capital

and labor are R and w. The aggregate supply of capital and labor is fixed. τKi and τLi

are collected by some agent or government and are transferred back to the representative

consumer as a lump sum. We do not allow government to run deficit:∑
s

∑
g

∑
i∈g

τKi Ki + τLi Li ≥ 0

However, this condition turns out to be not binding in our empirical study and is ignored

when estimating all the other parameters.

Firms face idiosyncratic cost shocks δi, which are realized after choosing their prices,

labor, and capital. The cost shocks are proportional to but not part of capital and labor

expenditure. One can think of it as, for example, uncertainty in managerial cost which

is higher as firms hire more capital and labor. When making production choices, firms
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maximize expected profits :

E[Πi] = PiYi − (R(1 + τKi )Ki + w(1 + τLi )Li)E[eδi ]

which gives the standard pricing rule where prices are proportional to the expected marginal

cost:5

Pi =
εg

εg − 1
·
(

1

Ai

) 1

αLs +αKs

Y

1−αLs −αKs
αLs +αKs

i

(
R(1 + τKi )

αKs

) αKs
αLs +αKs

(
w(1 + τLi )

αLs

) αLs
αLs +αKs

E[eδi ]︸ ︷︷ ︸
expected marginal cost

Derivation of optimal prices and other key variables in this section are provided in Ap-

pendix C. Optimal prices are a function of production because firms are not constant returns

to scale, and marginal cost depends on production. After the cost shocks, firms carry out

their production as planned and earn their profits:

Πi = PiYi − (R(1 + τKi )Ki + w(1 + τLi )Li)e
δi

No entry or exit is allowed. The markups predicted by our model are the ratios between the

optimal prices and the realized marginal cost, denoted as µi + 1:

µi + 1 =
εg

εg − 1

E[eδi ]

eδi

There are two sources of variations in firms’ markups: different demand elasticities and

idiosyncratic cost shocks. The latter enlarges the range of theoretical markups from greater

than 1 in a standard CES model to greater than 0 and allows larger variations in markups

using less parameters than regular nested-CES models. It is an important feature of our

model because our data suggests a large variation in markups, which is difficult to fit with

a tractable regular nested-CES model. 15% of the firms have negative profits implying

markups less than 1. These firms’ behavior cannot be explained by a static model without

cost shocks. The first part of µi + 1 is the same as the standard ones and has to be larger

than 1 because εg > 1. The second part can take any positive values and can be arbitrarily

close to 0 if a cost shock δi goes to positive infinity. Firms with highly unfavorable cost

shocks may have markups below 1.

The gaps between production elasticities and observed labor and capital income shares

5For the existence of optimal pricing rule, we assume εg > 1
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pin down the distortions6:

wLiE[eδi ]

PiYi(εg − 1)/εg
=

αLs
1 + τLi

RKiE[eδi ]

PiYi(εg − 1)/εg
=

αKs
1 + τKi

The demand side is very simple. A representative consumer owns all the capital and

labor, receiving as a lump sum the government income
∑

s

∑
g

∑
i∈g τ

K
i Ki + τLi Li. The

payment for cost shocks also goes to the consumer as a lump sum. The economy reaches

a general equilibrium where all the firms and the representative consumer solve their own

optimization problems and market rental prices of labor and capital clear markets.

The aggregate TFP gains can be decomposed into two parts: gains from reallocation

within types and gains from reallocation across types.7

TFP gains =
Y∗

Y
=
∏
g

[
TFP∗g
TFPg

]βg
︸ ︷︷ ︸

gains within types

·

[(
L∗g
Lg

)αLg (K∗g
Kg

)αKg ]βg
︸ ︷︷ ︸

gains across types

The type-level TFP, i.e. TFPg is defined as Yg

K
αKg
g L

αLg
g

and becomes TFP∗g when distortions are

0. Lg and Kg are capital and labor used in g with distortions while L∗g and K∗g are without

distortions. The first equation holds because the supply of total capital and labor is fixed.

The firm-level and type-level TFPR are defined as:

TFPRi ≡PiAi =
PiYi

K
αKs
i L

αLs
i

TFPRg ≡
∑

i∈g PiYi

K
αKs
g L

αLs
g

The type-level TFP is also a weighted sum of firm-level TFP or Ai, which is the same as

6 Notice combining these two equations gives the optimal pricing rule: Pi = PiYi
Yi

= PiYi

AiK
αKs
i L

αLs
i

=(
PiYi
Ki

)αKs (PiYi
Li

)αLs (PiYi)
1−αKs −αLs

Ai
.

Rearrange the equation gives: Pi =
(
PiYi
Ki

) αKs
αKs +αLs

(
PiYi
Li

) αLs
αKs +αLs Y

1−αKs −αLs
αKs +αLs

i

(
1
Ai

) 1

αKs +αLs =

εg
εg−1

(
1
Ai

) 1

αLs +αKs Y

1−αLs −αKs
αLs +αKs

i

(
R(1+τKi )

αKs

) αKs
αLs +αKs

(
w(1+τLi )

αLs

) αLs
αLs +αKs E[eδi ].

7HK only has the within-industry gains.
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HK.

TFPg =

(∑
i∈g

(
Ai ·

TFPRg

TFPRi

)εg−1
) 1

εg−1

We follow HK to calculate Ai using (PiYi)
εg/(εg−1)

K
αKs
i (wLi)α

L
s

because we only need TFP ratios between

firms belonging to the same type. However, the ratio TFPRi/TFPRg and consequently TFPg

and TFP∗g are different from HK due to non-constant returns to scale.

TFPRi

TFPRg

= (1 + τKi )α
K
s (1 + τLi )α

L
s

(∑
i∈g

PiYi
PgYg(1 + τKi )

)αKs
(∑

i∈g

PiYi
PgYg(1 + τLi )

)αLs

︸ ︷︷ ︸
Same as CRS

·
(
PiYi
PgYg

)1−αKs −αLs

The last term in TFPRi/TFPRg disappears under constant returns to scale. The rest is

the same as the one in HK after replacing our notation of distortions by theirs.

The formula of TFP∗g is:

TFP∗g =

∑
i∈g

(
Ai ·

(
P ∗i Y

∗
i

P ∗g Y
∗
g

)αK+αL−1
)εg−1

 1
εg−1

where

P ∗i Y
∗
i

P ∗g Y
∗
g

=
A

εg−1

εg+(1−εg)(αL+αK )

i∑
i∈g A

εg−1

εg+(1−εg)(αL+αK )

i

Larger firms receive higher weights in type-level TFP if they are increasing returns to scale

but receive lower weights if they are decreasing returns to scale. Different from HK, TFPR

under no distortion is not equalized within an type unless αKs +αLs = 1 and these variations

reflect efficiency, as argued by Haltiwanger et al. (2018). Demand elasticities εg, firm-level

productivity Ai, and returns to scale αLs + αKs affect the no-distortion TFPR ratio, which

links the TFPR ratio to variation of markups and the marginal cost:

TFPR∗i
TFPR∗g

=

(
P ∗i Y

∗
i

P ∗g Y
∗
g

)1−αKs −αLs
=

 A

εg−1

εg+(1−εg)(αLs +αKs )

i∑
i∈g A

εg−1

εg+(1−εg)(αLs +αKs )

i


1−αKs −αLs

Calculating the gains across types is the same as calculating the ratios between type-level
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labor and capital usage before and after the reallocation. The ratios can be written as:

L∗g
Lg

=
w∗L∗g/(w

∗L)

wLg/(wL)

K∗g
Kg

=
K∗g/K

Kg/K

Since wLg/(wL) and Kg/K are directly observed, we only need to calculate w∗L∗g/(w
∗L)

and K∗g/K:

w∗L∗g
w∗L

=
βg · αLs

εg/(εg−1)E[eδi ]∑
g βg ·

αLs
εg/(εg−1)E[eδi ]

K∗g
K

=
βg · αKs

εg/(εg−1)E[eδi ]∑
g βg ·

αKs
εg/(εg−1)E[eδi ]

Using the formulas above, aggregate TFP gains can be calculated once the parameters

involved are identified.

5 Identification

We use observed firm-level value added, labor expenditure, the depreciated net value of

capital, total cost, and sales to identify all the required parameters after imposing structural

assumptions about cost shocks and distortions. We do not need to observe wage as we

can directly observe wage expenditure but we do need to assume the market rental price

of capital. We follow HK to assume R = 0.1. The value of R affects TFP gains only via

estimated production elasticities. In other words, if production elasticities are known, as

it is the case in HK, changing the value of R does not change TFP gains as R does not

affect allocation across firms. Our identification involves three steps and are explained in

the following three subsections.

5.1 Step 1: calculate firm-level markups——the limitations and

its remedies

Inferring markups without observed prices, physical production, and physical inputs is dif-

ficult. Generally, there are three methods for estimating markups: the demand approach,

the production approach, and the accounting approach. Developed by Berry et al. (1995),

the demand approach models consumers’ choices among products and infers markups from
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parameters in consumers’ utility functions. This method requires product prices, sales in

units of products, and some observed characteristics of the products. The production ap-

proach measures markups as the ratio of production elasticities to cost share of a variable

input (De Loecker and Warzynski (2012)). Although it does not require prices, applying

it to markets with heterogeneous markups and heterogeneous production functions creates

various problems when physical production and physical inputs are replaced by revenue pro-

duction and input expenditure (See Bond et al. (2021) for detailed explanations. A brief

discussion on this is offered below). The accounting approach does not require any econo-

metric assumption apart from that the marginal cost equals the average cost. This approach

only needs cost and revenue data.

We do not observe prices and units of products sold, so only the production approach

and the accounting approach are feasible. In fact, these are the methods used by many

papers that infer firm-level markups using similar data as ours, such as De Loecker and

Warzynski (2012), Liu (2019), Autor et al. (2020), De Loecker et al. (2020) and Baqaee

and Farhi (2020). While both approaches create bias in our model setup, we prefer using

the accounting approach and then carefully check whether possible bias affects our results

because apart from the measurement errors in the observed cost and revenue, there is only

one source of bias, i.e. non-constant returns to scale.

Dealing with the bias in the production approach is a lot of more difficult if not completely

unfeasible. There are four sources of bias in the production approach under our setup when

physical production and physical inputs are not observed and when firms have heterogeneous

markups. The first one results from replacing production elasticities by revenue elasticities. If

the revenue elasticities are consistently estimated, the estimated markups by the production

approach should always be 1 (Bond et al. (2021)). Secondly, the assumption of variable

input is very restrictive and it is almost impossible to find a truly variable input in data.

Besides, the production approach also requires that the variable input do not affect demand

and it can be common for inputs, such as labor inputs for marketing, to affect demand

(Bond et al. (2021)). Most commonly used variable inputs are material and energy but we

observe neither in our data. The last two sources are related to the consistency of estimated

production elasticities using revenue data. In order to estimate production elasticities, the

production approach needs to estimate production functions using Olley and Pakes (1996),

Levinsohn and Petrin (2003), or Ackerberg et al. (2015). However, when revenue production

is used in the place of physical production, Klette and Griliches (1996) demonstrates that

heterogeneous markups can bias the estimated production elasticities downward. Last but

no the least, even if one successfully corrects this bias by controlling for industry-level sales

and prices, weak instruments can still plague the estimators (Bond et al. (2021)). Although
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Ridder et al. (2021) shows that estimated markups using revenue gives the correct dispersion

but this requires using material as variable input. We only observe labor and capital. Since

labor and capital are far from being variable, applying the production approach in our case

is problematic.

5.2 Step 2: Identify type-related parameters and cost shocks’ dis-

tribution parameters

We allow demand elasticities to differ within the finest industry category observed in our

data. The hard part is we do not see which industry s contains two types {s̄, s} and which

contains only one type, nor do we observe a firm’s type when two types are possible in an

industry.

The observed markup, i.e. a firm-level revenue-cost ratio, is a noisy indicator of a firm’s

type:

log(µi + 1) = log

(
εg

εg − 1

)
︸ ︷︷ ︸
indicator of type

+ log
(
E[eδi ]

)
− δi︸ ︷︷ ︸

noises

To identify the existence of two types, firms’ types, and demand elasticities, we assume δi

follows a normal distribution with mean 0 within each type:

δig ∼ N (0, σg)

The distribution variances σg differ across types. When there is no type inside an industry,

the distribution of the logarithmic markups is:

log(µi + 1) ∼ N
(

log
εs

εs − 1
, σεs

)
for i ∈ s

Since we only observe the pooled distribution of s and s̄ when there are two types, the

distributions of log(µi + 1) for all those industries follow a mixed normal distribution:

log(µi + 1) ∼ wsN
(

log
εs

εs − 1
, σεs

)
+ (1− ws)N

(
log

εs̄
εs̄ − 1

, σεs̄

)
for i ∈ s

ws is the probability that a firm is type s and 1−ws is the probability that a firm is type s̄

conditioned on the firm is from s. In other words, they are the ex-ante probabilities. They

enter the density function as weights of the respective density components. After observing
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a firm’s markups, the ex-post probability of a firm with markups µi + 1 being type s is:

P(i ∈ s|µi) =
wsf(µi;µs, σs)

wsf(µi;µs, σs) + (1− ws)f(µi;µs̄, σs̄)

P(i ∈ s̄|µi) =1− P(i ∈ s|µi)

f(µi;µg, σg) = 1
σg
φ
(

log(1+µi)−log(1+µg)

σg

)
for g ∈ {s̄, s} and φ(·) is the density function of a

standard normal distribution. 1 + µg equals εg
εg−1

for g ∈ {s, s̄}. A firm belongs to s if

P(i ∈ s|µi) > P(i ∈ s̄|µi), otherwise it belongs to s̄.

The log-likelihood of observing the data in an industry with mixture distribution is:

``({µi}i∈s|ws, µs̄, µs, σs̄, σs) =
∑
i∈s

log(wsf(µi;µs, σs) + (1− ws)f(µi;µs̄, σs̄)) (3)

The distribution for an industry with only one type is a standard normal distribution:

``({µi}i∈s|µs, σs) =
∑
i∈s

log(f(µi;µs, σs)) (4)

We use the EM test developed by Chen and Li (2009) to test a mixture of two distributions

versus one. If the test rejects the null hypothesis of no mixture for an industry, we estimate

it using Equation (3); otherwise, we use Equation (4).

Estimating mixture distribution is difficult because it is hard to identify overdispersion

when two distribution components are close. To make our estimation robust, we use two

algorithms for each industry from 50 starting values: the expected maximization (EM)

algorithm (McLachlan and Peel (2004)) and a direct optimization of Equation (3). Both

algorithms are sensitive to starting values because both objective functions contain numerous

local maximums. Our simulation experiments show no guarantee which one works better, so

including both increases the chance of finding or getting close to the global maximum. As

our contribution is not on mixture estimation, details are provided in Appendix D.1.

Tests on whether an industry contains two types are sensitive to outliers. If one type’s

standard deviation is 100 times larger than the other type in the same industry or when

the weights of one type is less than 5%, we treat the smaller type as an outlier and drop

observations in the type. Types with only one observation are dropped as well. Test and

estimation are implemented again after dropping all the outliers. More details on this are in

Appendix D.2.
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5.3 Step 3: Identify production elasticities and distortions

Profit maximization gives firms’ capital and labor expenditures as a function of production

elasticities and distortions:

log

(
wLiE[eδi ]

PiYi(εg − 1)/εg

)
= log(αLs )− log(1 + τLi )

log

(
RKiE[eδi ]

PiYi(εg − 1)/εg

)
= log(αKs )− log(1 + τKi )

We treat the left-hand side of the equations as known because εg and E[eδi ] are estimated

in the previous step, R is set to 0.1, and the rest is directly observed. αLs and αKs can

be interpreted as the location of the distribution of log
(

wLiE[eδi ]
PiYi(εg−1)/εg

)
and log

(
RKiE[eδi ]

PiYi(εg−1)/εg

)
while the variations in log(1 + τLi ) and log(1 + τKi ) determine the deviation from αLs and

αKs . Since the mechanisms behind positive distortions may be very different from those

behind negative distortions, we allow the distribution of positive τKi and τLi to differ from

the distribution of negative ones for each industry, and we allow the probability of having

positive distortions in an industry to be a free parameter. Distortions are independent and

identically distributed within an industry and are independent across industries. Distortions

on capital are independent from distortions on labor.

log(τKi + 1) ∼

2κKs N (0, σKs,+) , if τKi > 0

(2− 2κKs )N (0, σKs,−) , if τKi < 0

log(τLi + 1) ∼

2κLsN (0, σLs,+) , if τLi > 0

(2− 2κLs )N (0, σLs,−) , if τLi < 0

The log-likelihood of observing PiYi, Ki, wLi in industry s is the sum of the log-likelihood

of {PiYi, Ki}i∈s and {PiYi, Li}i∈s:

``({PiYi, Ki, wLi}i∈s|ΘK ,ΘL) =
∑
i∈s

``(PiYi, Ki|ΘK) + ``(PiYi, Li|ΘL) (5)

where

``(PiYi, Ki|ΘK) =2κKs h
(
θKi ; log(αKs ), σKs,+

)
1

[
αKs
θKi

> 1

]
+ (2− 2κKs )h

(
θKi ; log(αKs ), σKs,−

)
1

[
αKs
θKi
≤ 1

]
``(PiYi, Li|ΘL) =2κLs h

(
θLi ; log(αLs ), σLs,+

)
1

[
αLs
θLi

> 1

]
+ (2− 2κLs )h

(
θLi ; log(αLs ), σLs,−

)
1

[
αLs
θLi
≤ 1

]
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ΘK indicates the parameters related to capital expenditure {κKs , αKs , σKs,+, σKs,−}, and ΘL

indicates the parameters related to labor expenditure {κLs , αLs , σLs,+, σLs,−}. 1[·] takes 1 if the

statement inside is true and 0 otherwise. h(·; log(α), σ) is the log density function of a normal

distribution with mean log(α) and standard deviation σ. θKi and θLi are the log of capital

and labor expenditure share corrected by expected markups and expected cost shocks. As

mentioned above, θKi and θLi are treated as known.

θKi = log

(
RKiE[eδi ]

PiYi(εg − 1)/εg

)
θLi = log

(
wLiE[eδi ]

PiYi(εg − 1)/εg

)
The identification is a simple maximum likelihood estimation (MLE) except that the

log-likelihood function is not differentiable with regard to αKs and αLs when αKs
θKi

= 1 and

αLs
θLi

= 1. Standard optimization methods for this type of problem does not guarantee a

global maximum. We propose a combination of grid searching and first-order conditions

that guarantees global maximum under a mild restriction that αKs and αLs is in (0, 1). It

is mild because positive labor and capital expenditure requires αKs and αLs to be positive.

αKs and αLs larger than 1 means firms have increasing returns to scale in one production

factor while holding all the other factors constant. This rarely holds in reality. A sketch

of our identification is presented here and details are provided in Appendix E. Since the

objective function is continuously differentiable once αKs and αLs are fixed, we maximize the

log-likelihood function with respect to the rest parameters for each guess of αKs and αLs .

We then pick the αKs and αLs which give the highest log-likelihood. Because the objective

function is a linear summation of a capital part and a labor part, we can estimate ΘK and

ΘL separately. In other words, instead of searching over a two-dimension unit square, we

search over two independent one-dimension (0, 1) intervals, which significantly speeds up the

process.

Using the estimated capital intensity α̂Ks and α̂Ls , we can calculate the distortions faced

by firm i:

1 + τ̂Li =
α̂Ls PiYi(ε̂g − 1)/ε̂g

wLiÊ[eδi ]

1 + τ̂Ki =
α̂Ks PiYi(ε̂g − 1)/ε̂g

RKiÊ[eδi ]
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6 Results

In this section, we first report our estimators and discuss their possible biases. We then show

our main results and finish the section with robustness checks.

6.1 Estimated parameters

Before going to the main results, we first present our estimators. Table 4 shows 462 industries

are estimated as a mixture of two normal distributions and 61 as a single normal distribution.

Industry containing two types tend to be larger in terms of firm counts. The middle row

of Table 5 demonstrates the ex-ante probability of being a high-demand-elasticity type in

general exceeds that of being a low-demand-elasticity type, which means in an industry with

different demand elasticities, normally there are more firms facing higher demand elasticities.

Table 4: Distribution of firm counts for industries containing 1 type and 2 types

two types N Mean Min Pctl(25) Median Pctl(75) Max

No 61 23 2 6 15 27 237
Yes 462 494 12 118 256 544.500 9, 947

Table 5: Type-level summary statistics of estimates allowing for types inside industries

N Mean St. Dev. Pctl(10) Pctl(25) Median Pctl(75) Pctl(90)

Eg[µi + 1] 985 1.30 0.25 1.11 1.14 1.22 1.39 1.57
σg 985 6.33 3.64 2.77 3.59 5.45 8.32 10.48

Eg[eδi ] 985 1.01 0.02 1 1 1.01 1.02 1.03
ex-ante Pg[s̄] 928 0.66 0.22 0.27 0.59 0.73 0.82 0.88

αK 523 0.16 0.17 0.04 0.06 0.09 0.19 0.36
αL 523 0.39 0.23 0.13 0.21 0.33 0.57 0.76

scale 523 0.55 0.31 0.22 0.32 0.48 0.75 0.95

Table 5 also reports the summary statistics of estimated markups, demand elasticities,

and expected cost shocks at the type level and estimated production elasticities and returns

to scale at the industry level, treating each type or industry as having the same size. We

document the large variation of industry-level production elasticities and returns to scale.

The average returns to scale of industries are 0.55 and the average of all the firms is 0.47,

i.e. weight each industry by its firm counts. Demand elasticities also vary across types, with

the top 10 percentile more than 3 times larger than the bottom 10 percentile. The average
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demand elasticities of types are 6.33 while the average of all the firms is 8.49. We use the

latter in our counterfactual case of homogeneous markups and in the comparison to HK

because it better reflects the average of our data for our production elasticities estimation.

The top 10 percentile of markups is about 40% higher than the bottom 10 percentile of

markups.

There is little markups estimation for Chinese firms in literature, so we check our esti-

mates by comparing to American markups estimated by existing studies. The cost-weighted

average markups from our estimation are 1.15 which coincides with the 1.15 benchmark

cost-weighted average markups in Edmond et al. (2019). It is also consistent with Baqaee

and Farhi (2020)’s estimate when using the method developed by De Loecker and Warzynski

(2012). De Loecker and Warzynski (2012) itself estimates average markups to be between

1.10 and 1.28, a range contains our estimates. In terms of sales-weighted average markups,

ours is 1.17 which is below the estimates from De Loecker et al. (2020) whose sales-weighted

average markups are 1.20 in 1980 and 1.60 in 2012. Our median markups are 1.24, a bit

lower than the 1.30 median by Feenstra and Weinstein (2017). All these studies mentioned

so far using American data. Compared to firms from developing countries, our 1.15 average

is higher but not far from the 1.12 average markups found by Peters (2020) using Indonesian

data.

The estimated average returns to scale and demand elasticities from our reduced form

analysis in Section 3 are 0.61 and 10.87. The former is a bit higher than the industry-level

average of returns to scale 0.55 and more far away from our firms-level average 0.47. The

latter is higher than our type-level average of demand elasticities 6.33, and also higher but

closer to the firm-level average 8.49.

Our estimated distortions suggest that SOEs are more likely to use more capital and

labor compared to domestic private firms. Although there are some domestic private firms

facing lower distortions, i.e. using relatively more capital and labor than most SOEs, and

there are SOEs facing higher distortions, i.e. using relatively less capital and labor than

most domestic private firms, the distortion distribution of domestic private firms first-order

stochastically dominates that of SOEs (Table 6). The large variation within both ownership

types may result from a fuzzy connection between the ownership labels and their business

environment. Some domestic private firms may still enjoy favorite financial access because

they used to be an SOE or some SOEs hold shares in them. Domestic private firms may

receive financial support from central or local government if they are deemed as strategically

important by the government. Sometimes, the distinction between an SOE and a domestic

private firm is not clear. Normally, there are two criteria of determining whether a firm

is an SOE: its registration type and its major share holders. A firm can be labeled as an
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SOE, according to the first criterion, if it is registered as an SOE; it can also be called an

SOE, based on the latter criterion, if its major shareholders are SOEs or some public agents.

The same applies to domestic private firms. The two criteria generally agree except for some

special cases where, for example, firms are labeled as SOEs under one criterion but not under

the other. To remove this ambiguity, Table 6 keeps only those observations where the two

criteria agree.

Table 6: Estimated distortions for different firm types

firm type N Mean Min Pctl(25) Median Pctl(75) Max
τKi domestic priv 164396 1.36 -0.99 -0.50 0.08 1.41 305.22

SOE 10600 0.41 -1.00 -0.73 -0.38 0.33 147.12
all 174996 1.31 -1.00 -0.52 0.05 1.34 305.22

τLi domestic priv 164396 0.94 -0.98 -0.35 0.16 1.18 54.49
SOE 10600 0.33 -0.99 -0.53 -0.13 0.54 26.08
all 174996 0.91 -0.99 -0.36 0.13 1.13 54.49

6.2 The inferred markups: biased or not

The results in Table 5 show that the average returns to scale is about 0.6. If this is the true

returns to scale, this suggests more than 80% of the firms in our data set price below marginal

cost. This also means if we correct the markups inferred in the first identification step, our

estimated markups would be very different from those in the literature listed above. In fact,

one should not use the returns to scale estimated from the third step to correct the markups

inferred in the first step because simultaneously identify returns to scale and markups using

only revenue data and no physical production data is not possible. We provide a formal proof

for this in Appendix H and show that the same problem exists as long as the production

function is homogeneous of degree r for any positive number r. A similar finding is also

discussed in Bond et al. (2021). If one ignores the identification issue and uses the returns to

scale estimated in the third step to correct the markups inferred in the first step, updating

can still take place but the update happens only when the sample analogues differ from

their true values. If we have the entire population and our model correctly specifies the data

generating process, the markups inferred from the first step should always gives constant

returns to scale in the third step.

In fact, we should look at the production model as a simplification of a richer model

where firms’ use labor, tangible assets, and intangible assets. When maximizing profits,

firms take intangible assets as given and choose the optimal labor and tangible assets. The

capital we observed in the data is the tangible assets and we do not observe intangible assets.
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Therefore, the sum of αKs and αLs is only part of the returns to scale. Therefore, firms may

still be close to constant returns to scale when the estimated αLs + αKs is below 1. We treat

intangible assets as given because intangible asset such as knowledge and experience are more

difficult to adjust than labor and tangible assets. Appendix I shows that the procedures of

estimating TFP gains from equalizing the marginal revenue of labor and tangible assets in

this extended model is the same as the one presented above and our predicted TFP gains

should be interpreted as the gains from equalizing the marginal revenue of labor and tangible

assets.

People familiar with this data may argue that the unobserved non-wage labor share leads

to the low αLs + αKs and may prefer following HK to scale up the observed labor share or

using the observed number of employees. We agree that the unobserved non-wage labor

is indeed a problem for anyone using this data but the two methods proposed are unlikely

good solutions. If these methods can correct estimated αLs + αKs , reduced-form analysis

using scaled wage expenditure or the number of employees should also give higher estimated

returns to scale. However, we find the estimated returns to scale in both cases are around

0.6.

Given the fact that directly using revenue-cost ratio provides estimated markups in line

with those in literature and our estimated αLs + αKs is only part of the returns to scale, we

prefer to not correcting the inferred markups in our first step at all. Even if our estimators

contains some bias, our robustness check shows that the size of possible bias does not matter

to our main results (Section 6.6).

6.3 Markups and sizes

When discussing the correlation between markups and sizes, existing research usually use

sales to measure sizes. Our project also follows this practice. However, we find mixed

evidence about whether there is a positive correlation between markups and sales. Follow-

ing Edmond et al. (2019), we define relative sales as those normalized by the unweighted

industry-level average, relative expected markups as expected markups normalized by the

cost-weighted industry-level average, and relative revenue-cost ratios as revenue-cost ratios

normalized by the cost-weighted industry-level average. The revenue-cost ratios are directly

observed in our data and are treated as the realized markups, denoted as µi + 1. The ex-

pected markups Eg[µi + 1] are estimated by our model. If there is a positive correlation

between markups and sales, we should see larger firms more likely to belong to the higher-

markup type of an industry and to have higher relative expected markups. We should also

see larger firms have higher relative revenue-cost ratio. However, the first two columns of
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Table 7 demonstrate negative correlations.

Table 7: Correlation between relative sales and relative markups

Dependent variable

ln(Eg[µi + 1]) ln(µi + 1) ln(Eg[µi + 1]) ln(µi + 1)
full sample no SOEs

(1) (2) (3) (4)

ln(sales) −0.003∗∗∗ −0.005∗∗∗ −0.002∗∗∗ −0.004∗∗∗

(0.0001) (0.0003) (0.0001) (0.0003)

Constant 0.005∗∗∗ 0.009∗∗∗ 0.004∗∗∗ 0.008∗∗∗

(0.0002) (0.0004) (0.0002) (0.0004)

Observations 229,410 229,410 217,835 217,835
R2 0.001 0.001 0.001 0.001
Adjusted R2 0.001 0.001 0.001 0.001
Residual Std. Error 0.078 (df = 229408) 0.153 (df = 229408) 0.076 (df = 217833) 0.148 (df = 217833)
F Statistic 318.612∗∗∗ (df = 1; 229408) 259.458∗∗∗ (df = 1; 229408) 194.828∗∗∗ (df = 1; 217833) 165.349∗∗∗ (df = 1; 217833)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All the variables are in relative values, i.e. they are normalized by industry-type averages.

ln(Eg[µi + 1]) is expected markups in log. ln(µi + 1) is the log of revenue-cost ratio.

Table 8: Correlation between relative sales and relative markups for industries with firm
counts ≤ 25

Dependent variable

ln(Eg[µi + 1]) ln(µi + 1) ln(Eg[µi + 1]) ln(µi + 1)
small industries small industries and no SOEs

(1) (2) (3) (4)

ln(sales) −0.008∗∗∗ −0.023∗∗∗ −0.007∗∗∗ −0.022∗∗∗

(0.003) (0.004) (0.003) (0.005)

Constant 0.127∗∗∗ 0.180∗∗∗ 0.128∗∗∗ 0.180∗∗∗

(0.004) (0.006) (0.004) (0.007)

Observations 2,652 2,652 2,397 2,397
R2 0.004 0.011 0.003 0.009
Adjusted R2 0.004 0.010 0.002 0.008
Residual Std. Error 0.158 (df = 2650) 0.273 (df = 2650) 0.155 (df = 2395) 0.269 (df = 2395)
F Statistic 10.858∗∗∗ (df = 1; 2650) 28.277∗∗∗ (df = 1; 2650) 6.836∗∗∗ (df = 1; 2395) 21.050∗∗∗ (df = 1; 2395)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All the variables are in relative values, i.e. they are normalized by industry-type averages.

ln(Eg[µi + 1]) is expected markups in log. ln(µi + 1) is the log of revenue-cost ratio.

There are multiple explanations for our different results. One possibility is that the pos-

itive correlation is more likely in a market-based economy but Chinese economy experience

various distortions, such as entry barriers and entry permissions, the lack of market-based

allocation of financial credits, the significant roles for State-Owned Enterprises (SOEs), et

cetera. In fact, most studies on the positive correlation uses American firms (Bernard et al.

(2003), Atkeson and Burstein (2008), De Loecker and Warzynski (2012), and Edmond et al.
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(2015), Edmond et al. (2019)) 8 and American economy is more market-based than China.

In the last two columns of Table 7, we drop all the SOEs in our data. The magnitude of

the negative correlation is smaller but still significant. Suggesting SOEs contribute to some

of the negative correlations. SOEs are only one part of all the possible distortions in China

and our results in the later section demonstrates that the observed firm ownership is an

informative but noisy indicator of whether a firm behaves like a typical SOE. It is, therefore,

not surprising that dropping all the SOEs does not provide significant positive correlations.

Another explanation to the missing positive correlation in Table 7 is that this positive

correlation may be more salient in industries where firms act as oligopolies, or in other words,

only a few firms are interacting. This is also the assumption that generates the positive

correlation in Atkeson and Burstein (2008) and Edmond et al. (2015). In Table 8, we check

whether industries with less than 25 firms demonstrate a positive correlation. Similar to

Table 7, the first two columns include SOEs while the last two drop them. Different from

our expectation, the negative correlations become more salient and dropping SOEs attenuate

it slightly. This result looks puzzling. Small industries seem to experience more market

interruptions not captured by the presence of SOEs. Perhaps, entry permission imposed by

the government artificially create some small industries so that small industries deviate more

from market equilibrium. Similar results remain when looking at industries with less than

20 firms or 30 firms.

The third explanation is the observed sizes are distorted due to capital and labor distor-

tions. If high-markup firms face larger distortions while low-markup firms face lower or even

negative distortions, we won’t be able to observe the positive correlation even if it exists in a

distortion-free market. Since we do not find evidence to support the positive correlation, we

favor not imposing any ex-ante correlation between productivity and markups and let the

data tells us whether a larger firm belongs to a high-markup type of an industry. Interest-

ingly, in spite of no restrictions, our model seems to successfully tease off part of the negative

correlation and treat some part of the revenue-cost ratio which is negatively correlated with

sales as cost shocks because the coefficients for ln(Eg[µi + 1]) are smaller in magnitude than

those for ln(µi + 1).

Another interesting finding is that although markups and sales are negatively correlated,

we do observe a positive correlation between the relative labor revenue productivity (hereafter

labor productivity) and the relative sales (Figure 1). This is used by Edmond et al. (2019)

to identify the parameters which determine the positive correlations between markups and

productivity because if markups does not vary with productivity, then labor productivity

8To the best of our knowledge, there is only one paper, Gupta (2021), using data from developing
countries that support the positive correlation. There it uses Indian data.
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and markups also do not vary with sales. Following Edmond et al. (2019), relative labor

productivity is defined as labor productivity normalized by the average at the industry level

and labor productivity is sales divided by labor expenditures. It may look contradicting that

our data demonstrates a positive correlations between the relative labor productivity and

the relative sales but a negative correlation between the relative markups and the relative

sales. However, when firms are decreasing returns to scale, higher sales do not translate into

higher profits. The positive correlation we see in Figure 1 may simply due to the fact that,

holding labor expenditures constant, higher sales create higher labor productivity because

the numerator increases while the denominator does not change.

Figure 1: Joint density of relative sales and relative labor revenue productivity

Notes: sales and relative labor revenue productivity are in their relative values, i.e. they are normalized
industry-type average.

6.4 Markups and market concentration

Markups indicate how much market power a firm has and how much concentration there is in

a market. Therefore, our markups should be positive correlated with indicators about market

concentration. Figure 2a shows how expected markups at the industry level correlated with

the number of firms in an industry. More firms usually indicate less concentration and hence

lower markups. Figure 2a confirms this correlation. It also shows when an industry type has

a lot of SOEs relative to the total number of firms in the industry, it is more likely to deviate

from this negative linear correlation. A similar pattern remains when we look at the market

29



share of SOEs in an industry type (Figure 2b). Besides, we compare our industry-level

average markups to the Herfindahl indexes in Figure 3 and find that our markups increase

with the Herfindahl indexes.

Figure 2: Relation between industry-level firm counts, expected markups, and shares of
SOEs
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Notes: industry-level expected markups are cost-weighted average

6.5 TFP gains and income share changes

We use our estimated production elasticities and demand elasticities to show how the aggre-

gate TFP gains change in HK’s framework when relaxing its assumptions. To replace the

production elasticities and demand elasticities in HK by our estimates, we use industry code

to link two data sets. Cost is not provided in HK, so we can not link type-level estimates to

their data. Instead, we estimate demand elasticities using our data as if only one type exists

in an industry, i.e. no demand elasticities variation in any industry, and link them to HK’s

data. The estimators are less dispersed than but similar to those of our preferred model.

Summary statistics of these estimators are provided in Appendix D.3.

As shown in Table 9, when we increase the demand elasticities in HK from 3 to 8.5, TFP

gains jump from 87% to 362% and remains around 300% when introducing heterogeneity in

demand elasticities. The number drops significantly once we introduce non-constant returns
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Figure 3: Relation between industry-level expected markups, and the Herfindahl index
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Table 9: Within-type TFP gains in China (2005) comparison across models

Data α σ TFP gains (%)

HK calibrated using US firms (HK) 3 86.6
HK calibrated using US firms (HK) 8.5 362.3
HK calibrated using US firms (HK) heterogeneous (one type) 298.6
HK Our estimators 3 51.5
HK Our estimators 8.5 63.8
HK Our estimators heterogeneous (one type) 59.2
Our Our estimators 8.5 46.3
Our Our estimators heterogeneous (two types) 43.9
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to scale and is 59% when demand elasticities are estimated from micro data. Doing the same

exercise using our data produces lower TFP gains but such pattern remains (Appendix F.2

provides a complete comparison between the two data and it demonstrates this pattern). Our

data is a newer version of the ASM and the two data produce different results. Appendix F.1

compares both versions to the macro variables published in China Statistical Yearbooks. Our

data matches the macro variables better than HK’s.

Table 10: TFP gains in China (2005)

within industry (%) across industry (%) total (%)
43.9 4.7 50.6

Equalizing the marginal revenues of labor and capital generates 51% increase of aggregate

TFP in China in 2005. Reallocation within types and across types raise aggregate TFP by

44% and 5% respectively. This reallocation involves large changes in type-level labor and

capital usage and the changes differ across types. As shown in Table 11, more than half of

the types reduce their capital and labor usage while some types’ capital and labor are 10

and 7 times larger.

Table 11: Changes in type-level labor and capital

Statistic Mean Min Pctl(25) Median Pctl(75) Max

l∗

l
1.03 0.08 0.62 0.86 1.32 6.91

k∗

k
1.12 0.05 0.51 0.82 1.33 10.49

Reallocation causes aggregate labor and capital income share to increase by 6 percentage

points (Table 12a). The observed labor income share is higher than capital income share

and is predicted to have a larger increase. Labor income share increases from 20% to 27%,

up by 7 percentage points while capital income share stays around 11% and drops by about

1 percentage point. The labor income share increases more and the capital income share

increases when we keep all the other primitives but set the demand elasticities to be 8.5, the

average of our estimated demand elasticities (Table 12b). The increase in the total labor and

capital income share becomes 12 percentage points, with an increase of 11 percentage points

and 0.1 percentage points respectively for labor and capital. The increase in aggregate labor

and capital income share almost doubles under the homogeneous-markups case.

TFP gains does not change much under homogeneous markups. They are more sensitive

to the level of average markups rather than the variations. Keeping all the other primitives

the same as those estimated from our model, when demand elasticities are all equal to
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Table 12: Labor and capital income share (%)

(a) Heterogeneous markups

observed predicted change

L 19.76 27.2 7.44
K 11.86 10.77 -1.09

L+K 31.62 37.97 6.35

(b) Homogeneous markups=8.5

observed predicted change

L 20.72 32.15 11.44
K 12.85 12.98 0.13

L+K 33.56 45.13 11.57

8.5, within-industry gains are 43.2%, less than 1 percentage point lower than those under

heterogeneous markups. Taking into account the gains of reallocation across industries, TFP

gains under homogeneous demand elasticities are 51.8%, about 1 percentage point higher

than those under heterogeneous demand elasticities, meaning removing the variations in

expected markups slightly increases aggregate TFP gains. However, if we not only remove

the variations in demand elasticities and also reduce the demand elasticities to 3, within-

industry TFP gains become 37.4% and the aggregate TFP gains are 44.2%. Notice, this is

different from estimating our model parameters assuming demand elasticities to be 3 as the

one shown in Table 22 in Appendix F.2 because there the primitives are different from the

ones produced by our preferred model specification.

Labor income shares increase because the reallocation from high-markup to low-markup

firms dominates the reallocation in the other direction. Since firms inside the same indus-

try type have the same demand elasticities and the same production elasticities, we look at

changes at the type level instead of the firm level. Although the pattern is similar in both

figures, there is a significant negative correlation in Figure 4b but not in Figure 4a. The

difference between the changes of capital and labor income share is then exaggerated by

whether the increases or decreases in labor or capital usage take place in types with higher

labor or capital production elasticities, because income shares are more sensitive to usage

changes in types with larger production elasticities. Figure 4c and Figure 4d show higher

production elasticities are usually associated with a larger increase in usage. It also demon-

strates that most types dwell in the region where αK < 0.3 whereas they are more spread

out for αL. Therefore, labor income share is more sensitive to increases in labor usage which

amplifies the negative correlation we observed in Figure 4b and creates a larger increase in

labor income share.
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Figure 4: Changes in capital and labor usage for industry types with different markups
and production elasticities
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6.6 Robustness checks

This subsection checks whether our main results are sensitive to possible biases in our esti-

mated demand elasticities and labor production elasticities. The underlying assumption here

is the average demand elasticities and labor production elasticities obtained in our reduced

form analysis are close enough to the true values. The first three rows of Table 13 scale up

our estimated demand elasticities so that the average equals 12.90, the demand elasticities

obtained from our reduced form analysis. We carry out the scaling for three types of average:

value-added based average, sales-based average, and cost-based average. The average of our

estimators before the scaling is reported in the fifth column. The fourth till sixth row scale

up our estimated labor production elasticities so that the average is 0.5, the value imposed

by HK. The seventh till ninth row scale them to 0.44, the labor production elasticities from

our reduced form analysis while the last three rows replace the labor expenditure in our

reduced form analysis by the number of employees.

The last column reports the predicted within-industry TFP gains. Unlike in Table 9,

our predicted TFP gains are fairly stable, ranging between 43.3% and 56.7%. Therefore, we

believe the possible biases in our estimators are probably not crucial for our main results.

Table 13: Within-type TFP gains in China (2005): robustness analysis

var of interest target target source mean type unscaled mean TFP gains (%)

σ 12.90 RF main va-based 8.48 46.55
σ 12.90 RF main sales-based 9.07 46.63
σ 12.90 RF main cost-based 9.37 46.72
αL 0.50 HK’s guess va-based 0.32 48.40
αL 0.50 HK’s guess sales-based 0.32 43.29
αL 0.50 HK’s guess cost-based 0.32 43.81
αL 0.44 RF main va-based 0.32 55.72
αL 0.44 RF main sales-based 0.32 56.72
αL 0.44 RF main cost-based 0.32 53.29
αL 0.46 RF using L va-based 0.32 48.80
αL 0.46 RF using L sales-based 0.32 48.06
αL 0.46 RF using L cost-based 0.32 48.12

Notes: var of interest indicates on which variables the robustness analysis is carried out.
RF main means estimates from reduced form analysis.
RF using L is the reduced form estimates using the number of employees.
unscaled mean is the mean from structural estimates.
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7 Conclusion

Measuring the TFP costs of misallocation has generated great interest, especially follow-

ing Hsieh and Klenow (2009) (hereafter HK), but less attention is paid to the impact of

misallocation on income shares. We first document the sensitivity of the results in HK to

the assumed markups and constant returns to scale. We then propose a model where its

parameters can be estimated using micro data. Our model is robust to several types of

misspecification and to measurement errors caused by varying demand elasticities and non-

constant returns to scale. Markup estimates from our model are consistent with the existing

literature and with indicators of industry concentration. Using our model, we find that the

gains in the labor share are dampened when markups are allowed to be heterogeneous, which

suggests that distributional and welfare concerns come with the efficiency gains from equal-

izing the marginal revenues. The business environment for SOEs seems to be different from

that of domestic private firms due to a systematic difference in capital and labor distortions.

However, the variation within either ownership types is so large that some domestic private

firms’ labor and capital usage very much resembles a typical SOE and vice versa. Research

that treats SOEs differently from domestic private firms may need to be careful with the

highly noisy ownership labels observed.
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Appendix

A Data

We drop unreasonable observations accounting-wise including observations with negative

value added, negative wage expenditure, negative capital, negative total asset, negative

account receivable, negative total debt, negative long-term debt, negative account payable,

negative export, negative sales, and negative cost. We also drop observations whose account

receivable is larger than total asset, total debt larger than total asset, account payable larger

than liquid debt, and profits larger than sales. If a firm’s cost is missing but its sales and

profits are observed, then its cost is sales minus profits. The survey reports firms’ net value

of capital and investment. To calculate depreciated net value of capital, we use perpetual

annuity method.

Table 14: Summary Statistics of Cleaned Data (1998-2009)

Statistic N Mean Min Pctl(25) Median Pctl(75) Max

value added 1,767,623 12,891.55 122 2,328 4,952 12,210 277,956
K 1,767,623 18,502.50 83.61 1,745.29 4,644.34 13,889.94 515,969.30
wL 1,767,623 2,650.66 80 537 1,120 2,570 79,200
revenue 1,767,623 46,385.36 2 8,544 17,564 42,409 58,906,099
cost 1,767,623 41,004.20 1 7,540.5 15,546 37,503 57,460,589
profits 1,767,623 2,242.86 −531,161 49 404 1,583 546,835

Figure 5 plots the unscaled wage share against firms’ value added. The labor shares of

firms with value added above 1e5 are mostly below the aggregate labor share 0.19 while

smaller firms are more spread out. Firms are more concentrated in the domain of low labor

share as value added increases.
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Figure 5: Joint distribution of labor income share and firm sizes (2005)
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B Reduced form analysis of returns to scale

In this section, we follow Klette and Griliches (1996) more closerly by estimating Equation (2)

in Section 3 for each 2-digit industry as Klette and Griliches (1996) also estimates it industry

by industry. There are in total 38 2-digit industries in our data but we may need to be careful

interpreting the results for smaller industries. The reduced-form analysis requires at least

three consecutive observations for each firm but the bottom 10% industries contain less than

2500 observations and the smallest industry has only 133 observations (15).

Table 15: Sample sizes of 2-digit industries

Statistic N Mean Min Pctl(25) Median Pctl(75) Max

firm count 38 40,778 133 15,792.5 29,957.5 61,011.8 130,007

We compare our reduced-form estimated returns to scale to those from our structural

model. The structural ones are the average of returns to scale across firms in a 2-digit

industry. For most larger industries, the two estimators are close or even the same (Figure 6).

Those industries’ whose reduced-form estimators differ a lot from their structural estimators

41



Figure 6: Returns to scale: 2-digit industries with a sample size above the first quartile
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are all very small industries. However, one may need to be cautious in applying this analysis

to all the industries as the reduced-form demand elasticities for 1 industry is below 1. This

may be due to some endogeneity not dealt with by our instruments, or it can be model

misspecification. The CES demand assumed in Klette and Griliches (1996) requires firms

with higher prices have lower market shares. However, if the demand causes that firms

charging higher prices have a higher production share, we may observe positive β1 and β2

but negative β3. This coincides with what happens for this industry. Its β3 is negative, and

β1 and β2 are positive.

C Derivation of TFP gains

We first show how to derive the optimal prices. The optimal prices are always the expected

marginal cost times εg/(εg − 1). For some given Yi, firms’ profits maximization problem can

be formulated as, :

min
Ki,Li

(R(1 + τKi )Ki + w(1 + τLi ))E[eδi ]

s.t. AiK
αKs
i L

αLs
i ≥ Yi
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Expected marginal cost is the Lagrange multiplier of its Lagrange function

min
Ki,Li

(R(1 + τKi )Ki + w(1 + τLi ))E[eδi ]− λ(AiK
αKs
i L

αLs
i − Yi)

Solving it gives expected marginal cost:

E[MC(Yi)] =

(
1

Ai

) 1

αLs +αKs

Y

1−αLs −αKs
αLs +αKs

i

(
R(1 + τKi )

αKs

) αKs
αLs +αKs

(
w(1 + τLi )

αLs

) αLs
αLs +αKs

E[eδi ]

and optimal prices:

Pi =
εg

εg − 1
·
(

1

Ai

) 1

αLs +αKs

Y

1−αLs −αKs
αLs +αKs

i

(
R(1 + τKi )

αKs

) αKs
αLs +αKs

(
w(1 + τLi )

αLs

) αLs
αLs +αKs

E[eδi ]︸ ︷︷ ︸
expected marginal cost

The type-level TFP as a weighted sum of firm-level TFP is the same as the one in HK

because the expression only requires the type-level aggregator to be CES:

TFPg =TFPRg ·
1

Pg

=TFPRg ·

(∑
i∈g

P
1−εg
i

)1/(εg−1))

=TFPRg ·

(∑
i∈g

(
Ai

TFPRi

)εg−1
)1/(εg−1))

=

(∑
i∈g

(
Ai ·

TFPRg

TFPRi

)εg−1
) 1

εg−1

From the definition of TFPR:

TFPRg =

(
PgYg
Kg

)αKs (PgYg
Lg

)αLs
(PgYg)

1−αKs −αLs

TFPRi =

(
PiYi
Ki

)αKs (PiYi
Li

)αLs
(PiYi)

1−αKs −αLs
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Firms’ profit maximization also gives:

Ki

PgYg
=
εg − 1

εg
· αgK

(1 + τKi )R
· PiYi
PgYg

Li
PgYg

=
εg − 1

εg
· αLs

(1 + τLi )w
· PiYi
PgYg

Ki

PiYi
=
εg − 1

εg
· αKs

(1 + τKi )R

Li
PiYi

=
εg − 1

εg
· αLs

(1 + τLi )w

Plug these into TFPRi and TFPRg:

TFPRi =

(
εg − 1

εg
· αKs

(1 + τKi )R

)−αKs (εg − 1

εg
· αLs

(1 + τLi )w

)−αLs
· (PiYi)1−αKs −αLs

= (1 + τKi )α
K
s (1 + τLi )αL

(
R

αKs

)αKs ( w

αLs

)αLs ( εg
εg − 1

)αKs +αLs

︸ ︷︷ ︸
Same as CRS

(PiYi)
1−αKs −αLs

TFPRg =

(∑
i∈g

εg − 1

εg
· αKs

(1 + τKi )R
· PiYi
PgYg

)−αKs (∑
i∈g

εg − 1

εg
· αLs

(1 + τLi )w
· PiYi
PgYg

)−αLs
· (PgYg)1−αKs −αLs

=

(∑
i∈g

1

1 + τKi
· PiYi
PgYg

)−αKs (∑
i∈g

1

1 + τLi
· PiYi
PgYg

)−αLs (
R

αKs

)αKs ( w

αLs

)αLs ( εg
εg − 1

)αKs +αLs

︸ ︷︷ ︸
Same as CRS

· (PgYg)1−αKs −αLs

In the code, we use an equivalent but easier formula because Kg and wLg are observed.

Follow HK, we define:

MPKg ≡
∑
i∈g

PiYi
PgYg(1 + τKi )

=
εg

εg − 1
· R
αKs
· Kg

PgYg

MPLg ≡
∑
i∈g

PiYi
PgYg(1 + τLi )

=
εg

εg − 1
· w
αLs
· Lg
PgYg

Then we can write:

TFPRi

TFPRg

= (1 + τKi )α
K
s (1 + τLi )α

L
s MPKαKs

g MPLα
L
s
g︸ ︷︷ ︸

Same as CRS

(
PiYi
PgYg

)1−αK−αL

44



Set τKi and τLi to 0 gives:

TFP∗g =

∑
i∈g

(
Ai ·

(
P ∗g Y

∗
g

P ∗i Y
∗
i

)1−αK−αL
)εg−1

 1
εg−1

Since firms inside the same g has the same demand elasticities and expected cost shocks, for

any firm i and j from the same g:

Y ∗i
Y ∗j

=

(
P ∗i
P ∗j

)−εg
=


(

1
Ai

)1/(αLs +αKs )

(Y ∗i )
1−αLs −αKs
αLs +αKs(

1
Aj

)1/(αLs +αKs )

(Y ∗j )
1−αLs −αKs
αLs +αKs


−εg

The first equation is due to the demand structure and the second equation simply plug in

the expression of optimal prices. Solve for Y ∗i /Y
∗
j :

Y ∗i
Y ∗j

=

(
Ai
Aj

) εg

εg+(αLs +αKs )(1−εg)

From the demand structure, PiYi
PgYg

=
(
Pi
Pg

)1−ε
which also means Yi

Yg
=
(
Pi
Pg

)−ε
, thus

PiYi
PjYj

=

(
Pi
Pj

)1−ε

=

(
Pi
Pj

)−ε· 1−ε−ε

=

(
Yi
Yj

) ε−1
ε

Hence,

P ∗i Y
∗
i

P ∗j Y
∗
j

=

(
Ai
Aj

) εg−1

εg+(1−εg)(αLs +αKs )

which can be easily written as:

P ∗i Y
∗
i

P ∗g Y
∗
g

=
A

εg−1

εg+(1−εg)(αL+αK )

i∑
i∈g A

εg−1

εg+(1−εg)(αL+αK )

i

C.1 TFP gains under homogeneous demand elasticities with known

primitives

This sections provides derivations of formulas used when calculating TFP gains in the coun-

terfactual scenario of homogeneous demand elasticities while keep all the other primitives

the same as those estimated by our preferred model. This requires we first solve for the
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equilibrium of the economy given those primitives and than find predicted TFP gains when

removing distortions. The formula of type-level TFP and TFPR ratio is the same as the one

in Section 4

TFPg =

(∑
i∈g

(
Ai ·

TFPRg

TFPRi

)εg−1
) 1

εg−1

TFPRi

TFPRg

= (1 + τKi )α
K
s (1 + τLi )α

L
s

(∑
i∈g

PiYi
PgYg(1 + τKi )

)αKs
(∑

i∈g

PiYi
PgYg(1 + τLi )

)αLs

︸ ︷︷ ︸
Same as CRS

·
(
PiYi
PgYg

)1−αKs −αLs

Because we have known primitives, Ai, εg, τ
K
i , τLi , αKs , and αLs are known. PiYi

PgYg
is the

equilibrium sales share determined by those primitives and is the only unknown. Using the

optimal pricing rule, we can write the price ratio of two firms from the same type as:

Pi
Pj

=

(
Aj
Ai

) 1

αLs +αKs

(
Yi
Yj

) 1

αLs +αKs
−1(

1 + τKi
1 + τKj

) αK

αLs +αKs

(
1 + τLi
1 + τLj

) αL

αLs +αKs

Using demand side equation, Yi
Yj

=
(
Pi
Pj

)−εg
, this can be rewritten as

(
Pi
Pj

)1+εg

(
1

αLs +αKs
−1

)
=

(
Aj
Ai

) 1

αLs +αKs

(
1 + τKi
1 + τKj

) αK

αLs +αKs

(
1 + τLi
1 + τLj

) αL

αLs +αKs

Demand side tells us, PiYi
PjYj

=
(
Pi
Pj

)1−ε
, therefore

PiYi
PjYj

=

(
Aj
Ai

) 1−εg
(1−εg)(αLs +αKs )+εg

(
1 + τKi
1 + τKj

) αK (1−εg)

(1−εg)(αLs +αKs )+εg

(
1 + τLi
1 + τLj

) αL(1−εg)

(1−εg)(αLs +αKs )+εg

Thus,

PiYi ∝
(

1

Ai

) 1−εg
(1−εg)(αLs +αKs )+εg

(1 + τKi )
αK (1−εg)

(1−εg)(αLs +αKs )+εg (1 + τLi )
αL(1−εg)

(1−εg)(αLs +αKs )+εg ≡ Wi

Hence,
PiYi
PgYg

=
Wi∑
j∈gWj
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D Mixture estimation, outliers, and unreasonable de-

mand elasticities

D.1 Mixture Estimation

EM algorithm essentially searches for the fixed point of a function that is not a contraction

mapping. It does not guarantee converging to the global maximum or minimum and it may

not even converge at all. Existing optimizers can only ensure local maximum of Equation (3)

in Section 5.2, which contains a lot of local maximums. To improve the robustness of our

estimators, we draw 50 triplets of random starting values for p, µs̄, and µs in each industry

s.

The random valuess of p are independent draws from a uniform distribution on (0,1). µs̄

and µs are two independent draws from the interval three sample standard deviations away

from the sample mean. We use the EM algorithm of Benaglia et al. (2009) developed for

R. When optimizing the likelihood function directly, we use the optim() function in R with

BFGS method. We pick BFGS, or quasi-Newton because it provides the best combination

of speed and accuracy among all the available R optimizers that we are aware of.

Table 16, Table 17, and Table 18 compare 6 different methods’ performance on simulated

data. EM and BFGS are the ones we pick. NM is the method of Nelder and Mead (1965).

SANN is a variant of simulated annealing (Claude J. P. Bélisle (1992)). NR and BHHH are

from Henningsen and Toomet (2011), with NR referring to Newton-Raphson and BHHH to

Berndt-Hall-Hall-Hausman.

We simulate two types of data to test how the algorithms works when the difficulties

of identification change. The first data is very hard to identify with equal mean of 1 and

very close standard deviations σ1 = 1 and σ2 = 1.5. The weight p is 0.25. The second also

has weight p equal to 0.25 but with means further apart relatively to standard deviations:

µ1 = 0, µ2 = 4, σ1 = 1 and σ2 = 2.

Using 50 random starting values, all methods generate similar results apart from the lack

of identification of the components’ names. In spite of sample bias, BFGS, NR, and BHHH

are slightly better at finding the minimum as they produce the lowers negative log-likelihood

(nll). EM also does well when components’ means are away from each other. A closer look

tells us EM produces a lot less variations in the negative log likelihood (nll) across random

starting values, suggesting if the number of random starting values is not large, it is safer

to use EM than BFGS, NR or BHHH. BFGS, NR and BHHH perform better when there

are a large number of starting values but may lead to estimates far away from the global

minimum when starting values are few. The execution time for one starting value shows
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Table 16: Estimates under different methods: 50 random starting values of p, µ1, µ2;
sample size:200

true values methods p µ1 µ2 σ1 σ2 nll

(0.25,1,1,1,1.5)

EM mixtools 0.4683282 0.2859527 1.591074 0.8251734 1.306893 329.2560831
BFGS optim 0.4679615 0.2856622 1.590424 0.8249206 1.306958 329.2560826
NM optim 0.5325401 1.589622 0.2852179 1.306917 0.8245313 329.2560842

SANN optim 0.5399907 1.587284 0.2726049 1.308941 0.8179273 329.2592109
NR maxLik 0.4679779 0.285673 1.590456 0.8249318 1.306953 329.2560826

BHHH maxLik 0.4679779 0.285673 1.590456 0.8249318 1.306953 329.2560826

(0.25,0,4,1,2)

EM mixtools 0.1047498 -0.5673427 3.38516 0.4612274 2.161369 450.5243907
BFGS optim 0.8952547 3.385141 -0.5673413 2.161387 0.4612123 450.5243907
NM optim 0.8951295 3.385244 -0.5677538 2.160873 0.4611698 450.5244077

SANN optim 0.1026536 -0.5735226 3.373923 0.4525442 2.161418 450.5287012
NR maxLik 0.1047467 -0.5673531 3.385145 0.4612135 2.161376 450.5243907

BHHH maxLik 0.1047467 -0.5673531 3.385145 0.4612135 2.161376 450.5243907

The maximum step when generating random starting values is 1 standard deviation.

Table 17: Standard deviation of estimates across the 50 starting values; sample size: 200

true values methods p µ1 µ2 σ1 σ2 nll∗e8

(0.25,1,1,1,1.5)

EM mixtools 1.38e-04 1.11e-04 2.44e-04 9.55e-05 2.36e-05 0.00e+00
BFGS optim 1.66e-01 3.99e+00 2.15e-01 3.73e+00 1.08e-02 1.53e+08
NM optim 1.21e-01 7.88e-01 5.02e-01 3.10e-01 1.70e-01 9.26e+07

SANN optim 1.28e-01 6.81e-01 4.53e-01 5.10e-01 1.56e-01 9.26e+07
NR maxLik 5.17e-02 6.89e+01 2.05e-01 1.61e+01 7.92e-01 5.53e+08

BHHH maxLik 2.20e-01 1.57e+01 4.41e-01 3.01e+02 8.63e-02 1.42e+09

(0.25,0,4,1,2)

EM mixtools 2.88e-07 9.57e-07 1.35e-06 1.29e-06 6.99e-07 5.01e+00
BFGS optim 4.53e-02 1.21e+01 1.86e-01 1.12e+01 6.79e-01 3.03e+08
NM optim 9.74e-02 1.87e+00 4.29e-01 9.58e-01 1.31e-01 2.52e+08

SANN optim 3.11e-02 1.47e+00 1.64e-01 1.33e+00 7.42e-02 2.01e+08
NR maxLik 2.21e-01 2.48e+02 3.06e-01 8.58e+01 3.01e-01 2.27e+08

BHHH maxLik 1.25e-01 4.33e+02 7.76e-01 1.70e+02 1.97e-01 1.59e+09

Normalization: p < 1− p

Table 18: Execution time for one starting value (in seconds)

mixtools package optim package maxLik package
EM BFGS NM SAANN NR BHHH
0.06 0.01 0.02 1.34 0.18 4.93
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BFGS is the fastest. Although the simulation data favors BFGS, BFGS performs badly on

industry ”1753” in our data. Therefore, we use both EM and BFGS in our estimation.

D.2 Outliers

We drop types that contain only one observations. We also drop types whose standard

deviation is 1/100 of the other type in the same industry and its weight is less than 5%.

This drops 8 observations from 8 industries, i.e. all the dropped types turn out to contain

only one observation. After dropping these outliers, we rerun the test of mixture and re-

estimate the parameters accordingly.

D.3 Demand elasticities when each industry has only one type

When all the industries have only one type, the distribution of markups is a normal distri-

bution:

log(µi + 1) ∼ N
(

log
εs

εs − 1
, σεs

)
for i ∈ s

Table 19 provides the summary statistics under this specification.

Table 19: Unweighted summary statistics of estimates not allowing for types inside indus-
tries

N Mean St. Dev. Pctl(10) Pctl(25) Median Pctl(75) Pctl(90)

MarkupsSNoGrouping 523 1.21 0.09 1.13 1.15 1.19 1.24 1.33
sigmaSNoGrouping 523 6.42 1.96 3.99 5.11 6.31 7.52 8.62

expCostShockNoGrouping 523 1.02 0.01 1.01 1.01 1.01 1.02 1.03
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E Identify production elasticities and distortions

From Equation (5), when αKs and αLs are fixed, estimator of the remaining parameters are:

κ̂Ks =

∑
i∈s 1

[
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]
> 1

]
Ns

κ̂Ls =

∑
i∈s 1

[
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]
> 1

]
Ns

(̂σK+ )2 =

∑
i∈s 1

[
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]
> 1

](
log

(
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]

))2

∑
i∈s 1

[
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]
> 1

]

(̂σKs,−)2 =

∑
i∈s 1

[
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]
< 1

](
log

(
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]

))2

∑
i∈s 1

[
αKs PiYi(εi−1)/εi

RKiÊ[eδi ]
< 1

]

(̂σL+)2 =

∑
i∈s 1

[
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]
> 1

](
log

(
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]

))2

∑
i∈s 1

[
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]
> 1

]

(̂σLs,−)2 =

∑
i∈s 1

[
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]
< 1

](
log

(
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]

))2

∑
i∈s 1

[
αLs PiYi(εi−1)/εi

wLiÊ[eδi ]
< 1

]
The last four equations are from first-order conditions. The right-hand side are either ob-

served or estimated in previous steps except for αKs and αLs . We calculate the log-likelihood of

the capital part and labor part at each guess of αKs and αLs separately. α̂Ks and α̂Ls maximize

the log-likelihood.

α̂Ks = arg max
αKs

∑
i∈s

``(PiYi, Ki|κ̂Ks , αKs , σ̂Ks,+, σ̂Ks,−)

α̂Ls = arg max
αLs

∑
i∈s

``(PiYi, Li|κ̂Ls , αLs , σ̂Ls,+, σ̂Ls,−)

where (κ̂Ks , σ̂
K
s,+, σ̂

K
s,−, κ̂

L
s , σ̂

L
s,+, σ̂

L
s,−) are determined as above for each αKs and αLs . α̂Ks and α̂Ls

are determined using a grid search on two (0, 1) intervals.
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F Comparison to HK

HK requires two key assumption: demand elasticities equals 3 and constant returns to scale.

In this section, we relax these assumptions one by one to show how TFP gains react. Before

doing this exercise, we first investigate the difference between our data and HK’s. The

evidence favors using our data.

F.1 Data versions

Both HK and we use the ASM data but ours is a newer version acquired via a data center

at Peking University. Table 20 and Table 21 show how much the aggregates of the two ASM

data deviate from the counterpart macro variables published in China Statistical Yearbooks

(CSY) reported as percentage shares of those variables in CSY. We report 1998-2008 for our

data because other years are not used in this paper. HK only have 1998-2005 so Table 21

only reports these years. The differences between our data and CSY are mostly around or

below 2% while those between HK’s data and CSY are around 10− 20%. Our data contains

around 0.05− 0.1% more firms than CSY in each year except for 2004 and 2008 while HK’s

data contains around 20% less firms in 1998-2002 and around 10% less in 2003-2005.

Table 20: My data statistics in comparison with China Statistical Yearbook: ratio (%)

Year Number of firms Sales Output Value added Employment Net value of fixed assets Export profits
1998 0.05 0.41 0.38 0.41 -8.56 1.48 0.58 -2.76
1999 0.04 0.94 1.02 0.92 0.46 -2.21 1.19 0.20
2000 0.06 0.54 0.51 0.45 0.39 -1.31 0.11 0.09
2001 0.06 0.89 1.26 1.14 0.54 -1.50 0.81 1.91
2002 0.07 0.84 0.83 0.83 0.37 -1.57 0.16 0.64
2003 0.10 1.80 1.78 1.88 1.00 -1.41 1.59 2.32
2004 -0.54 0.78 0.74 5.20 0.98 -2.72 1.06 1.95
2005 0.09 1.24 1.22 1.30 1.14 -2.76 1.17 1.39
2006 0.12 1.38 1.18 1.12 0.64 -3.01 3.05 1.23
2007 0.13 1.95 1.64 2.14 1.52 -3.06 1.96 3.48
2008 -3.30 -0.74 -1.40 -2.74 -6.02 -0.46 -1.28

Notes: all the variables are from from the latest available yearbook issue.
Export data of China Statistical Yearbook is from Brandt et al. (2014).

F.2 Relax assumptions imposed in HK

The first three rows of Table 22 relax the assumption of demand elasticities σ. The third row

uses our estimated industry-level σ by matching our estimated σ to the relevant industry in

HK using the four-digit industry code. We don’t allow demand elasticities to differ within

four-digit industries here because this requires cost and sales data which is not available in
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Table 21: HK’s data statistics in comparison with China Statistical Yearbook: ratio (%)

Year Number of firms Sales Value added Employment Net value of fixed assets Export
1998 -27.87 -14.74 -20.19 -23.24 -16.69 -19.12
1999 -26.09 -12.22 -18.62 -19.84 -15.23 -14.09
2000 -23.14 -9.04 -12.81 -20.92 -2.53 -10.47
2001 -22.17 -10.44 -13.85 -19.17 -2.57 -11.41
2002 -19.00 -8.19 -11.54 -14.64 0.15 -9.13
2003 -14.15 -5.95 -5.96 -10.24 2.14 -6.34
2004 -9.44 -4.95 -10.34 33.13 -2.94
2005 -8.40 -4.63 -12.66 -6.19 -2.74 -4.75

Notes: all the variables are from from the latest available yearbook issue.

Export data of China Statistical Yearbook is from Brandt et al. (2014).

Table 22: Within-type TFP gains in China (2005) comparison across models (a complete
version)

Data α σ TFP gains (%)

HK calibrated using US firms (HK) 3 86.6
HK calibrated using US firms (HK) 8.5 362.3
HK calibrated using US firms (HK) heterogeneous (one type) 298.6
HK Our estimators 3 51.5
HK Our estimators 8.5 63.8
HK Our estimators heterogeneous (one type) 59.2
Our calibrated using US firms (HK) 3 116.1
Our calibrated using US firms (HK) 8.5 419.9
Our calibrated using US firms (HK) heterogeneous (one type) 349
Our calibrated using US firms (HK) heterogeneous (two types) 358.7
Our Our estimators 3 37.9
Our Our estimators 8.5 46.3
Our Our estimators heterogeneous (one type) 49.4
Our Our estimators heterogeneous (two types) 43.9
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HK. As shown in the highlighted first row, imposing the assumptions in HK to our model

and using its data give its result. The second row sets σ to 8.4, the average of our estimated

demand elasticities. The third row introduces heterogeneous demand elasticities. TFP gains

quadruple when σ increases from 3 to 8.4 and then decline slightly but are still around 300%

when moving to heterogeneous demand elasticities.

The fourth till sixth rows relax the assumption of constant returns to scale by replac-

ing HK’s production elasticities with my estimated production elasticities. The fourth row

maintains the assumption of σ = 3 while the sixth row allows heterogeneous markups. When

allowing non-constant returns to scale, TFP gains drop sharply to 59% and 74% respectively

for σ = 3 and for the heterogeneous σ.

The second part of the table uses our data. Row 7 applies HK’s method to our data and

present higher TFP gains, 116%. Row 8-10 maintain constant returns to scale but employ

different demand elasticities. To facilitate easier comparison to the first part of the table,

we also include the scenarios where demand elasticities are constant in industries. Similar

to the cases of using HK’s data, TFP gains increase significantly when using our estimated

demand elasticities. Once constant returns to scale is relaxed, predicted TFP gains drop

from more than 350% to around 57%.

G Apply the analysis to the year 2001 for robustness

check

In the main results, we use the year 2005 to show how our structural model works, but

our model can be easily applied to other years. In this section we pick the year 2001 to

demonstrate the robustness of our results. This year is picked because HK also reports its

results for the year 2001. We do not do our analysis for 1998 which is also reported in HK

because 1998 does not provide enough data needed for our structural analysis.

Table 23: Ex-ante probability of belonging to s̄ in industries with mixture distribution
(2001)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

prob of belonging to s̄ 453 0.71 0.18 0.03 0.62 0.74 0.84 0.99

Similar to the year 2005, most firms belongs to the low-markup group (Table 23) and

industries containing two types also tend to be larger than those only containing one type

(Table 24). Table 25 show the summary statistics of our structural estimators. The estima-

53



Table 24: Summary statistics on industry sizes (2001)

from an s with mixture Number of industries Min. 1st Qu. Median Mean 3rd Qu. Max.

No 131 2 7.500 19 26.779 32.500 356
Yes 453 10 66 154 282.362 329 5, 984

tors are also similar to those for 2005 except that the estimated average scale is 0.74, higher

than that of 2005.

Table 25: Type-level summary statistics of estimates allowing types inside industries (2001)

N Mean St. Dev. Pctl(10) Pctl(25) Median Pctl(75) Pctl(90)

Eg[µi + 1] 1, 036 1.31 0.26 1.10 1.14 1.22 1.40 1.58
σg 1, 036 6.47 7.02 2.74 3.53 5.48 8.25 10.96

Eg[eδi ] 1, 036 1.01 0.02 1 1 1.01 1.02 1.03
αK 552 0.29 0.24 0.06 0.10 0.20 0.39 0.67
αL 552 0.46 0.25 0.15 0.24 0.40 0.68 0.83

scale 552 0.74 0.37 0.31 0.44 0.70 0.98 1.24

Within-industry TFP gains are 70%, lower than the 96% by HK (Table 26). When

taking into account gains from reallocating across industries, it becomes 80%. We also see a

larger increase of labor income share and TFP gains when removing variations in expected

markups, as shown in Table 27, Table 28, and Table 29.

Table 26: TFP gains in China (2001)

within industry (%) across industry (%) total (%)

66.9 8.0 80.3

Table 27: Labor and capital income share (%) (2001)

observed predicted change

L 22.31 36.03 13.72
K 20.89 20.94 0.05

L+K 43.2 56.97 13.77

Table 30 present the same pattern we see before whether SOEs tend to have small τK and

τL, meaning they tend to use too much capital and labor compared to the allocation when
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Table 28: Labor and capital income share: σ = 7.9 (%) (2001)

observed predicted change

L 24.15 43.26 19.11
K 22.28 25.44 3.16

L+K 46.43 68.70 22.27

Table 29: TFP gains in China, σ = 7.9 (2001)

within industry (%) across industry (%) total (%)

71.1 10.8 89.6

equalizing the marginal revenues of capital and labor. However, there are large variations

within both ownership. Some domestic private firms appear to behave like an SOE and vice

versa.

Table 30: Estimated distortions for different firm types (2001)

firm type N Mean Min Pctl(25) Median Pctl(75) Max
τK domestic priv 80308 2.35 -1.00 -0.38 0.39 2.14 366.10

SOE 19025 0.58 -0.99 -0.71 -0.35 0.43 171.22
all 99333 2.01 -1.00 -0.48 0.20 1.77 366.10

τL domestic priv 80308 1.44 -0.98 -0.23 0.42 1.67 65.87
SOE 19025 0.51 -0.97 -0.48 -0.06 0.65 57.82
all 99333 1.26 -0.98 -0.29 0.30 1.46 65.87

H Identification issue of correcting the biases in in-

ferred markups

H.1 Cobb-Douglas production function

Integrating over the marginal cost function and divide it by production gives:

ACi = rsMCi
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where ACi is the average cost, MCi is the marginal cost, and r is the returns to scale, i.e.

rs = αLs + αKs . The revenue-cost ratio is:

log

(
PiYi
YiACi

)
= log

(
εg

εg − 1

)
− log(rs) + log

(
E[eδi ]

)
− δi

When there is one type, its distribution is:

log

(
PiYi
YiACi

)
∼ N

(
log

εs
εs − 1

− log(r), σεs

)
for i ∈ s

when there are two types, its distribution is:

log

(
PiYi
YiACi

)
∼ wsN

(
log

εs
εs − 1

− log(r), σεs

)
+(1−ws)N

(
log

εs̄
εs̄ − 1

− log(r), σεs̄

)
for i ∈ s

Denote Ξ ≡ εg
εg−1

1
rs

= εg
εg−1

1
αLs +αKs

. Our second estimation step can still estimate the mean but

instead of directly estimating the demand elasticities, we can only estimate log(Ξ), denoted

as l̂og(Ξ).

In the third step, we use these equations:

log

(
wLiE[eδi ]

PiYi

)
= log(αLs )− log

εg
εg − 1

− log(1 + τLi )

log

(
RKiE[eδi ]

PiYi

)
= log(αKs )− log

εg
εg − 1

− log(1 + τKi )

We denote ΞL ≡ εg
εg−1

1
αLs

and ΞK ≡ εg
εg−1

1
αKs

. The third step estimation gives: ̂log(ΞL)

and ̂log(ΞK). If we estimate the parameters simultaneously, we need to solve the following

equation for ε̂g, α̂
L
s and α̂Ks :. We denote them as

Ξ̂ ≡ ε̂s
ε̂s − 1

1

α̂Ls + α̂Ks
(6)

Ξ̂L ≡ ε̂s
ε̂s − 1

1

α̂Ls
(7)

Ξ̂K ≡ ε̂s
ε̂s − 1

1

α̂Ks
(8)

Although we have three equations for three unknowns, but the assumption of CES demand

and Cobb-Douglas production function render one of the three equations redundant. If

we know the true value of Ξ, ΞL, and ΞK , then we must have ΞL + ΞK = Ξ. Therefore,

only two of these three equations contain useful information about the parameters. The
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extra information brought by the third one is only about the difference between the sample

analogues and the true values. It is not possible to identify two equations for three unknowns.

If we increase εg
εg−1

by a factor of φ, we can keep the equations hold by increase αLs and αKs

by φ.

However, using the estimators from our model, one can still ignore this identification

issue and implement the correction of markups using the returns to scale estimated from

the third step. This process will not converge to consistent estimators. In fact, whether it

converges or not only depends on whether the absolute value of X̂i

Ξ̂L+Ξ̂K
is larger than 1. As

discussed above, if our estimated Ξ, ΞL, and ΞK equal their the true values, the returns to

scale estimated in our third step should be 1.

If we start with a guess of εg, denoted as ε̂0. Use Equation (8) and Equation (7), we get

estimates for αKs and αLs , denoted as α̂1
K and α̂1

L:

α̂1
K =Ξ̂K ∗ ε0

ε0 − 1

α̂1
L =Ξ̂L ∗ ε0

ε0 − 1

Use Equation (6), we update ε̂0 to ε̂1:

1− 1

ε̂1
=

Ξ̂

Ξ̂L + Ξ̂K
(1− 1

ε̂0
)

If | Ξ̂
ΞL+ΞK

| < 1, then we will converge to the unique fixed point 1 − 1
ε̂

= 0. However, if we

know the true value, we must have Ξ = ΞL+ΞK , which means any point is a fixed point. We

can not identify the parameters. One can also see this by noticing Equation (6), Equation (8)

and Equation (7) are in fact only two equations. Any two of these equation can derive the

third one. If we increase εg
εg−1

by a factor of k, we can keep the equations hold by increase

αLs and αKs by k.

If we ignore this issue and still update estimation this way, the updating is possible

not because it is not a fixed point but because we do not observe the true value of Ξ
ΞL+ΞK

.

Depending on the difference between estimation and the true value, 1− 1
ε̂

may either converge

to 0 or to infinity. It contains no meaningful information about demand elasticities. Such

identification problem also means simultaneous estimating all the parameters won’t work

neither.
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H.2 More general production function: homogeneous of degree r

This problem remains as long as we can only use revenue-cost ratio to infer markups and

when production function is homogeneity of degree r. For simplicity of demonstration, we

omit firm or type subscripts, distortions, and cost shocks. We omit distortions and cost

shocks because we only need to show using revenue-cost ratio, we can only identify l̂og Ξ.

Using the sum of labor and capital expenditure share, we can also only identify l̂og Ξ. Hence,

once we use the labor share and the capital share, the information contained in revenue-cost

ratio is redundant for parameter estimation. We are then left with only two equations. The

first-order condition of profits maximization gives:

ε− 1

ε
PF1 = r

ε− 1

ε
PF2 = w

where F1 = ∂F (K,L)
∂K

and F2 = ∂F (K,L)
∂L

. Due to homogeneity of degree r, rF (K,L) = KF1 +

LF2. Combine the F.O.C.:

rK + wL =
ε− 1

ε
P (F1K + F2L) =

rε− 1

ε
PF (K,L)

Hence
rK + wL

PF (K,L)
= log(r)− log

ε

ε− 1

We next need to show under this more general production function, we still haveAC = rMC

It is easy to show that if for production level Y, K∗ and L∗ are the optimal capital and

laboe, then for any factor γ > 0, the optimal capital and labor for producing γrY are γK∗

and γL∗. We denote the optimal amount of capital and labor for the first unit of output as

θK and θL. For any level of production, we can write it as

Y = F (Y 1/rθK , Y
1/rθL)

Its cost under the optimal capital and labor choices is

c = Y 1/rθKR + Y 1/rθLw

Differentiate cost with respect to Y:

dc

dY
=

1

r

c

Y
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Hence AC = rMC. Therefore,

log

(
PiYi
YiACi

)
= log

(
ε

ε− 1

)
− log(r)

I A model with intangible assets

Our structural estimation of returns to scale is on average 0.7 which appears to cause concerns

over inferring markups using revenue-cost ratios. In fact, the seemingly inconsistency is

resolved if we use a more complete model where both tangible and intangible assets are

included. Capital in our main results contains only tangible assets. However, production

does require intangible assets. A constant-returns-to-scale can appear decreasing returns to

scale if we do not include the intangible assets. In this section, we will show that the TFP

gains we find comes from equalizing the marginal revenue of labor and tangible assets while

treating intangible asset as a state variable.

Denote the intangible assets of firm i as Ni which is taken as given when the firm maximize

its profits at time t. We treat Ni as a state variable because it is a lot more difficult to adjust

intangible assets in one period. One may take into account today’s choice on future value of

intangible of intangible assets but doing so requires another project of dynamic model. To

keep things simple, we shut down the dynamic part and treat Ni as given. The production

function is then:

Yi = AiK
αKs
i L

αLs
i N

αNs
i

Since Ni is fixed, we can rewrite the production function:

Yi = ÃiK
αKs
i L

αLs
i

where Ãi = AiN
αNs
i . Replacing Ai by Ãi, all the other results are the same as those in

Section 4.

J Robustness

J.1 Use the number of employees instead of labor expenditure

Reduced form analysis:

Average returns to scale is 0.66 ((0.41+0.17)/(1-0.11)) and average demand elasticities

are 8.80 (1/0.11).
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Table 31: Reduced-form estimation of returns to scale when using the number of employees

Dependent varaible

rit
OLS IV

(1) (2)

lit 0.322∗∗∗ 0.410∗∗∗

(0.002) (0.003)

kit 0.151∗∗∗ 0.173∗∗∗

(0.001) (0.002)

yst 0.130∗∗∗ 0.114∗∗∗

(0.003) (0.003)

constant 0.117∗∗∗ 0.080∗∗∗

(0.001) (0.001)

Observations 1,186,861 819,923
R2 0.056 0.042
Adjusted R2 0.056 0.042
Residual Std. Error 0.686 (df = 1186857) 0.635 (df = 819919)
F Statistic 23,537.110∗∗∗ (df = 3; 1186857)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
rit is deflated firm-level value added, VAs is industry s’s aggregate VA.

60


	Introduction
	Data
	Reduced-form analysis
	Model
	Identification
	Step 1: calculate firm-level markups——the limitations and its remedies
	Step 2: Identify type-related parameters and cost shocks' distribution parameters
	Step 3: Identify production elasticities and distortions

	Results
	Estimated parameters
	The inferred markups: biased or not
	Markups and sizes
	Markups and market concentration
	TFP gains and income share changes
	Robustness checks

	Conclusion
	Data
	Reduced form analysis of returns to scale
	Derivation of TFP gains
	TFP gains under homogeneous demand elasticities with known primitives

	Mixture estimation, outliers, and unreasonable demand elasticities
	Mixture Estimation
	Outliers
	Demand elasticities when each industry has only one type

	Identify production elasticities and distortions
	Comparison to HK
	Data versions
	Relax assumptions imposed in HK

	Apply the analysis to the year 2001 for robustness check
	Identification issue of correcting the biases in inferred markups
	Cobb-Douglas production function
	More general production function: homogeneous of degree r

	A model with intangible assets
	Robustness
	Use the number of employees instead of labor expenditure


