
Differentiable State Space Models

and Hamiltonian Monte Carlo Estimation ∗

David Childers
CMU

Jesús Fernández-Villaverde
Penn

Jesse Perla
UBC

Cameron Pfiffer
Oregon

Christopher Rackauckas
MIT & Maryland

Peifan Wu
UBC

December 9, 2021

Latest Version

Online Appendix

Abstract

We propose a methodology to take dynamic stochastic general equilibrium (DSGE)

models to the data based on the combination of differentiable state space models and

the Hamiltonian Monte Carlo (HMC) sampler. First, we introduce a method for dif-

ferentiating perturbation solutions of DSGE models with respect to the model’s pa-

rameters. The resulting output can be used for various computational tasks requiring

gradients, such as building an HMC sampler to estimate first- and second-order ap-

proximations of DSGE models. The availability of derivatives also enables a general

filter-free method to estimate nonlinear, non-Gaussian DSGE models by sampling the

joint likelihood of parameters and latent states. We show that the gradient-based joint

likelihood sampling approach is superior in efficiency and robustness to standard

Metropolis-Hastings samplers by estimating a canonical real business cycle model

and a medium-scale New Keynesian DSGE model.

∗All errors are our own. Peifan thanks UBC ARC Sockeye and Compute Canada Westgrid.

1

https://github.com/HighDimensionalEconLab/hmc_dssm_paper/blob/gh_actions_builds/hmc_dssm.pdf
https://github.com/HighDimensionalEconLab/hmc_dssm_paper/blob/gh_actions_builds/hmc_dssm_appendix.pdf

1 Introduction

In this paper, we propose a methodology to take dynamic stochastic general equilib-
rium (DSGE) models (and related dynamic equilibrium models in other fields) to the data
based on the combination of differentiable state space models and the Hamiltonian Monte
Carlo (HMC) sampler. Differentiable state space models allow us to implement the HMC
sampler by providing an easy method to differentiate perturbation solutions of DSGE
models. The HMC has two great advantages with respect to other Markov Chain Monte
Carlos (McMc). First, it draws much more efficiently from the posterior of a DSGE model
than existing alternatives. Second, the HMC scales very well. Hence, we can draw from
the joint distribution of parameters and latent states of the model simultaneously without
having to resort to a filter to marginalize out the latent state variables of the model.

Let us unpack the many ideas in the previous paragraph. DSGE models are one of the
major workhorses of modern macroeconomics. Thus, it is not a surprise that an extensive
strand of literature has focused on how to take these models to the data, both from a
classical or a Bayesian perspective (see the reviews in Fernández-Villaverde et al., 2016,
and Fernández-Villaverde and Guerrón-Quintana, 2021).

While the Bayesian approach is particularly popular, following it, however, is not
without peril. DSGE models rarely have a closed-form solution. Hence, we cannot write
their moments or likelihood functions. Instead, we need to resort to numerical approxi-
mations to evaluate these empirical functions and sample from them, for instance, to find
posterior distributions of parameters of interest.

Despite many years of research, some questions remain open. First, implementing
the Bayesian approach usually requires an McMc sampler, the most popular of which
is the Random Walk Metropolis-Hastings (RWMH) algorithm. It is well known that the
RWMH algorithm (and even many of the more sophisticated improvements built on top
of it) suffer from high autocorrelation across samples. That is, the draws 1,245 and 4,598
(or any other two!) of a typical simulation are much more correlated than we would like.
Due to this high correlation, the effective sample size is small comparing the total samples
drawn: even if we run the sampler 100,000 times, we have only the equivalent of around
1,000 samples coming from a hypothetical pure Monte Carlo (which, unfortunately, we
cannot design). Furthermore, the sampling results might be sensitive to the choice of
starting points, even after long runs of the sampler. These drawbacks are particularly
binding when we deal with DSGE models that are richly parameterized.

Second, evaluating the likelihood function implied by the numerical solution of a
DSGE model is usually done by some filter, such as the Kalman filter –when we have
a first-order perturbation and the shocks that drive the dynamics of the economy are
Gaussian– or the particle filter –when we deal with non-linear solutions and/or non-

2

Gaussian shocks (Fernández-Villaverde and Rubio-Ramı́rez, 2007). The filters deliver the
marginal likelihood of the model with respect to its parameters by integrating over the
distribution of latent states. Unfortunately, these filters can either be restrictive in their
requirements (e.g., the Kalman filter) or computationally costly, non-differentiable, and
difficult to tune up (e.g., the particle filter).

We tackle these two questions by implementing two complementary methods. Our
first method is to apply the HMC sampler to the estimation of DSGE models. The HMC
is a gradient-based sampling method that traverses the posterior efficiently and works
particularly well in high-dimensional cases. While the HMC is an attractive alternative
to the RWMH algorithm, its use in macroeconomics had been blocked by the need to
compute the gradients of the posterior of the DSGE model, a cumbersome task.

We get around this problem by showing how to differentiate both first- and second-
order perturbation solutions of DSGE models with respect to the parameters (although
the core of our argument, built around the implicit function theorem, is applicable to any
higher-order perturbation solutions). Essentially, we provide a local sensitivity analysis
similar to Iskrev (2010), but we extend the results to second-order perturbation solutions.
For example, consider a canonical medium-scale Keynesian DSGE such as Fernández-
Villaverde and Guerrón-Quintana (2021) which has 14 state variables, 24 controls, and
28 parameters. The first-order perturbation solution to this is a matrix of 14× 14 values
for the evolution of the state, and one with 24× 14 for controls. Our procedure provides
the gradient of these two matrices with respect to the 28 deep parameters of the under-
lying model. Those gradients could be used for all sorts of purposes, such as examining
how impulse response functions (IRFs) change with parameters, better calculating the
loss function with simulated methods of moments, or –in our main application– helping
calculate gradients of the likelihood for Bayesian samplers.1

Our second method is to sample both parameter and latent variables simultaneously,
instead of sampling the posterior of the model parameter by marginalizing out the la-
tent variables with a filter. In this way, we do not spend time filtering or being forced
into some distributional assumptions. The idea of sampling parameters and latent states
simultaneously has been around for decades (see Kim et al. 1998, for an early incarna-
tion of this approach), but its implementation was difficult because, as soon as we have
more than a few observations, we are dealing with a high-dimensional inference problem
that the RWMH algorithm cannot handle even with extremely long simulations. In com-
parison, the scalability of the HMC means that the route of the joint likelihood becomes

1We specify the state space model in a discrete-time setting, and the linear equation system will be
Sylvester equations. In a continuous-time setting that is widely used in HANK models, the equations have
a similar form but will be Lyapunov equations. Both Sylvester equations and Lyapunov equations are linear
and can be solved with standard libraries like SLICOT.

3

http://slicot.org/

feasible. More in general, our methods mean that we can bring much larger models to the
data, as long as we can find the required derivatives. Gradient-based approaches such as
HMC are limited by difficult geometry and the cost of gradient calculations, not by the
dimensionality of the problem.

We illustrate the two ideas above by estimating two models: a canonical real business
cycle (RBC) model and the medium-scale New Keynesian model in Fernández-Villaverde
and Guerrón-Quintana (2021). In our first numerical experiment, we find a first-order ap-
proximation of the RBC model and evaluate the associated (parameter) likelihood using
the Kalman filter. Then, we implement the RWMH and HMC samplers. Even if we only
need to sample 3 parameters, the fraction of effective draws for the RWMH is around
0.6%. In comparison, the HMC sampler gets 28% of effective draws, nearly 47 times
more. This experiment shows how much more efficient the HMC sampler is.

In our second numerical experiment, we solve the RBC model using a second-order
perturbation. Then, we estimate this case with the HMC sampler and the joint likelihood
function of parameters and latent states. Since there are 3 parameters and 200 latent states,
we sample along 203 dimensions overall. The HMC delivers a proportion of effective
samples of around 4%. In comparison, the RWMH sampler on the marginal likelihood
of the parameters evaluated using particle filter, a much lower dimensionality problem,
can deliver only an effective sample of only 0.3%. Furthermore, the HMC sampler is more
robust to the starting point of the Markov chain. After 12 minutes of execution, more than
95% of the cumulative mean of the parameters are close to the pseudo-true values in our
joint likelihood approach, while the RWMH counterpart is less than 10%.

In our third and fourth numerical experiments, we repeat the first and second numer-
ical experiments but now with the New Keynesian model instead of the RBC model. In
this case, we have 22 parameters to estimate and 240 latent states. As in our first two
experiments, the HMC sampler is much superior to the RWMH. For instance, while the
HMC yields good McMc mixing, the RWMH with the particle filter fails to escape from
the neighborhood of the starting point.

We implement all the methods in this paper through open-source modular build-
ing blocks that we hope will allow researchers to develop their own applications. First,
the package DifferentiableStateSpaceModels.jl provides a symbolic domain-specific
language for defining nonlinear models embedded in Julia, and to make them easy to
embed in the Julia auto-differentiation ecosystem through ChainRules.jl. Second, the
SciML ecosystem (through the package DifferenceEquations.jl) provides tools to en-
able differentiable simulations, Kalman filters, and joint likelihoods, These packages can
expand the researchers’ imagination for what is a feasible scale in the computation and
estimation of DSGE models thanks to our thorough use of differentiable programming.

4

https://github.com/HighDimensionalEconLab/DifferentiableStateSpaceModels.jl
https://github.com/JuliaDiff/ChainRules.jl
https://sciml.ai/
https://github.com/SciML/DifferenceEquations.jl

Differentiable Programming At the core of our paper, we have the computation of gra-
dients of state space models. “Differentiable programming” –a term encompassing classic
auto-differentiation (AD)– is an old programming paradigm, with origins going back to
the late 1950s. However, the field has exploded with the recent popularity of machine
learning, where it plays a key role. Classic examples of differentiable programming in-
clude calculating Jacobians for use in solving systems of nonlinear differential equations
(Griewank and Walther, 2008), and the training of neural networks using first-order op-
timization methods (Baydin et al., 2017). Differentiable programming/AD ecosystems
exist in Julia, Python, Stan, and other modern programming languages.

The basic idea of differentiable programming is simple and has nothing to do with
numerical approximations (as the ones used in numerical derivatives). First, it is easy to
code a program that substitutes analytic derivatives where appropriate –i.e., if it encoun-
ters sin, it should use cos as the derivative– and applies the chain rule when required.
Second, if we think about a computer program as a sequence of mathematical functions
calling each other, then a library that can analyze that program can also differentiate ar-
bitrary functions by recursively applying the chain rule until it hits primitive gradients.
Third, for the two previous steps to work in practice, we need a large library of primitive
derivatives and gradients for the AD package to substitute.

The previous steps are easy to visualize when the functions to manipulate correspond
to standard mathematical functions (e.g., the log function). This is highly valuable in
itself: letting AD packages execute the chain rule is much more convenient and less error-
prone than analytically working through the algebra by hand. But the surprising result is
that software code one would not expect to have gradients (e.g., loops, accessing a subset
of a vector, solving an entire linear system, constructors of parametric structs, Kronecker
products) can be formalized with primitive gradients with respect to continuous argu-
ments. This latter feature is what radically changes the scale of problems one can solve.

To see this, it is important to understand the difference between forward and reverse-
mode AD. If one wants to calculate some function f : RN → R composed of nested
calls to other functions and find its gradients ∇ f (·) ∈ RN at a particular point x0 ∈ RN,
we can evaluate the chain rule forwards or backwards.2 Intuitively, reverse-mode AD
takes the x0 and applies the functions nested inside of f until it eventually has calculated
f (x0). Then, it perturbs the resulting f (x0) and applies the chain rule backward until it
has calculated ∇ f (x0).3

2In the ML community, they often refer to reverse-mode AD as “back-propagation”, whereas, in differ-
ential equations and control theory, it is referred to as “adjoint sensitivity”.

3Forward-mode AD applies the chain rule forward starting from x0 and calculates f (x0) and ∇ f (x0) at
the end. forward-mode AD is equivalent to using “numerical derivatives” in its computational order, even
if it is always more accurate. This is particularly attractive to compute f : R → RN (where reverse-mode
AD is at its worst) and to calculate sparse Jacobians and Hessians of f : RN → R functions.

5

The critical insight that makes a huge number of applications feasible is that if one has
a low dimensional output of a function, then the computational order of reverse-mode
mode AD is independent of the dimensionality of the input. In particular, if one is dealing
with a univariate output (e.g., a likelihood function, a moment function, a loss function),
the computation of the gradient requires the same number of primitive operations for any
input size. That is, the computation of the gradient uses the same number of primitive op-
erations whether the likelihood function depends on 10 or 1,000 variables. This is why the
combination of reverse-mode AD with convenient programming language support (and
better hardware in GPUs, which are ideal for parallelizing many gradient calculations)
has made the deep learning revolution possible.

There are many ways to implement reverse-mode AD, but the most common approach
is a package for a programming language that analyzes or traces the function during
execution.4 In the case of Python, this functionality is the core feature of Pytorch and
Tensorflow, and in Julia, there are many alternatives such as Zygote.jl (see Innes et al.,
2019). The package manages the application of the chain rule, compiling both the func-
tion calculation and its gradients, and accessing libraries of primitive gradients. These
primitive gradients themselves are black boxes to the AD package. For example, the AD
package might have access to the primitive that the derivative of sin is cos and then the
AD system implements this substitution whenever it encounters that function.5

Hence, differentiable programming is limited by the primitive gradients it has avail-
able and their computational complexity. Deep learning is especially amenable to differ-
entiable programming because it uses functions with an enormous number of parameters
and many levels of nesting, but where the primitive functions themselves are relatively
simple (e.g., affine transformations, hyperbolic tangents, etc.). The contribution of our pa-
per is to implement the same ideas in the perturbation solution of DSGE models, since the
underlying functions we need to evaluate may be much more complicated. Even if gra-
dients are available in principle (e.g., the generalized Schur decomposition used in DSGE
solvers is composed of more primitive operations), some work is required to make them
operate in practice. We show how, if primitive gradients can be written down for a much
higher-level function, then we can register them with packages such as ChainRules.jl

4Some alternatives are to have that tracing/static analysis directly built into language support –such as
the Stan language used for Bayesian estimation or to use a utility that analyzes the source separately and
exports the derivatives as code, as it was common with Fortran, C, or Matlab source-code transformations
used in scientific computing.

5All AD systems have a way to manage these sorts of primitive rules, but very few of them are flexible
and hackable. In most cases, they need to be written in C++ and directly built into the AD package itself.
The exception to this is Julia, which is able to have user-configurable and expandable rules since the AD
systems are often written in Julia themselves. See White et al. (2021) for a description of ChainRules.jl,
which provides a package agnostic way to register primitive gradients. Also, see Schäfer et al. (2021) for
how this can be utilized to have source code implemented in an AD agnostic way since there are tradeoffs
that may lead to different choices among AD packages.

6

https://github.com/FluxML/Zygote.jl
https://github.com/JuliaDiff/ChainRules.jl
https://github.com/JuliaDiff/ChainRules.jl

and seamlessly differentiate any program that uses an embedded DSGE solver in its cal-
culation.

Literature Review The closest paper to this project is a contemporaneous work by Farkas
and Tatar (2020) where the authors propose estimating linear Gaussian DSGE models
with HMC methods on the marginal likelihood of parameters, using Smets and Wouters
(2007) as an example. Our work nests such an application as a special case. More impor-
tantly, Farkas and Tatar (2020) use a non-customizable AD and the differentiation has to
go step-by-step in their whole implementation, which means, among other things, that
they cannot use the Schur decomposition method that is dominant to perturb DSGE mod-
els due to stability and speed. Instead, we offer a much more general framework to im-
plement the HMC in perturbation solutions of DSGE models by passing the required
derivatives to the downstream sampling with customized AD.

Outline The rest of this paper is organized as follows. Section 2 presents the state space
representation of DSGE models and introduces the joint likelihood approach associated
with this mathematical representation. Section 3 describes the HMC. Section 4 shows the
gradients of solutions to DSGE models. Section 5 briefly discusses our implementation.
Section 6 illustrates the estimation results on two models: a canonical RBC model and a
medium-scale New Keynesian model. Section 7 concludes.

2 Likelihood Function and Evaluation

This section introduces the notation for the state space representations of a DSGE model
and defines the likelihood terms we will use later in the estimation stage. In addition,
we provide an AR(1) example to illustrate the difference between joint likelihood and
marginal likelihood and the sampling processes for both of them.

2.1 The State space Model

Following Schmitt-Grohé and Uribe (2004), xt is a vector of state variables that describes
the economic environment, and yt is a vector of control variables. The states are buffeted
by shocks εt. Without loss of generality, we assume these shocks are independent and
identically distributed. Moreover, we denote θ as the parameters to estimate. These pa-
rameters determine the preferences, technology, information sets, or monetary or fiscal
policy rules for the economy. We assume that θ is time-invariant, but we can allow cor-
related or time-varying shocks and parameters with extra notations. See, for example,
Fernández-Villaverde and Rubio-Ramı́rez (2007).

7

The first component of the state space representation of a DSGE model is a transition
equation h(·) that characterizes the law of motion of the states:

xt+1 = h (xt, εt; θ) . (1)

Associated with the transition equation, there is a policy function g that links latent state
variables with the control variables:

yt = g (xt; θ) . (2)

The second component of the state space representation is a measurement equation
q(·) that links states and controls with observations zt:

zt = q (xt, yt; θ) = q (xt, g (xt; θ) ; θ) . (3)

We denote zT = {zt}t=1,...,T as the observation sequence.

2.2 Marginal vs. Joint Likelihood

We review now the concepts of the marginal and joint likelihood function associated with
the previous state space representation.

Marginal Likelihood The log posterior density of θ conditional on data zT can be de-
composed as:

ln p
(

θ|zT
)

︸ ︷︷ ︸
log-posterior

= ln p
(

θ, zT
)
+ C (4)

= ln p (θ)︸ ︷︷ ︸
log-prior

+ ln p
(

zT|θ
)

︸ ︷︷ ︸
log-likelihood

+C (5)

= ln p (θ) +
T

∑
t=1

ln p
(

zt|zt−1, θ
)
+ C. (6)

Equation (5) tells us that the log posterior density is (up to a scale) the sum of log prior
and the conditional density of the data. Furthermore, the second term of equation (5) is
the sum of the conditional density across all T periods as shown in (6).

The sequence of ln p
(
zt|zt−1, θ

)
can be recursively constructed through the Chapman-

8

Kolmogorov equation:

p
(

zt|zt−1, θ
)
=
∫

p
(

zt, xt|zt−1, θ
)

dxt

=
∫

p (zt|xt, θ) p
(

xt|zt−1, θ
)

dxt, (7)

and the Bayes theorem:

p
(
xt|zt, θ

)
=

p (zt|xt, θ) p
(
xt|zt−1, θ

)
p (zt|zt−1, θ)

, (8)

where
p
(

xt|zt−1, θ
)
=
∫

p (xt|xt−1, θ) p
(

xt−1|zt−1, θ
)

dxt−1. (9)

The conditional density (7) includes two terms inside the right-hand side of the inte-
gral. The first term gives us the conditional density of contemporaneous data given the
latent states in the period. The second term shows how, given historical data, we can
forecast the latent states in this period following (8) and (9).

In plain words: the marginal likelihood infers the states at period t from historical
data. Because of the Markov structure of the state space models, the inference of states at
period t only depends on the information at period t− 1 and the observed data at period
t. This is the reason we can call it a “marginal likelihood”: the conditional density is a
function only of parameters θ, marginalizing out all the latent states x. While equations
(8) and (9) are simple in principle, they are daunting to implement in practice. In the case
that the law of motion of the states h (·) is linear in x and ε, and ε follows a Gaussian dis-
tribution, we can filter the latent states with Kalman filter. In non-linear or non-Gaussian
cases, we have to seek some approximated or particle filters.

Joint Likelihood We now focus on the joint likelihood of the data zT and the latent
states xT = {xt}t=1,...,T, i.e., ln p

(
θ, xT|zT).

9

As before, we start decomposing this likelihood as:

ln p
(

θ, xT|zT
)

︸ ︷︷ ︸
log-posterior

= ln p
(

θ, xT, zT
)
+ C (10)

= ln p
(

θ, xT
)

︸ ︷︷ ︸
log-prior

+ ln p
(

zT|xT, θ
)

︸ ︷︷ ︸
log-likelihood

+C (11)

= ln p (θ) + ln
(

xT|θ
)
+

T

∑
t=1

ln p
(
zt|xt, θ

)
+ C (12)

= ln p (θ) +
T

∑
t=1

ln p (zt|xt, θ) +
T

∑
t=1

ln p (xt|xt−1, θ) + ln p (x0|θ) + C (13)

= ln p (θ) +
T

∑
t=1

ln p
(
zt|εt, θ

)
+

T

∑
t=1

ln p (εt|θ) + ln p (x0|θ) + C. (14)

In this case, the log posterior is still the log prior plus the log likelihood, and we can
increment the log likelihood sequentially following equation (12). Because of the Markov
structure of the state space model, xt is sufficient when we compute the likelihood, and
xt only depends on xt−1 given θ, as shown in equation (13).

Another way to interpret equations (10)–(13) is that we compute the log posterior
taking not only the data but also the history of latent states as given, while the law of
the motion of the states is pinned down by the initial state x0, the sequence of shocks
εT = {εt}t=1,...,T, and the model parameters θ. Hence, the second term in (13) comes
directly from the measurement function q (·), and the third term in (13) is just h (·). To
bridge equations (13) and (14), we can rewrite these two terms in (13) as:

T

∑
t=1

ln p (zt|xt, θ) =
T

∑
t=1

ln p
(
zt|εt, θ

)
(15)

T

∑
t=1

ln p (xt|xt−1, θ) =
T

∑
t=1

ln p (εt|θ) . (16)

Therefore, the joint likelihood equation can be explicitly written down given an exoge-
nous series of shock εt. This joint likelihood computation is filter-free, as we do not have
to infer the latent state series xT or their posterior distributions at all, but rather retrieve a
deterministic series of xT from the shock series.

Consequently, instead of sampling just θ to compute a marginal likelihood ln p
(
θ|zT),

we will sample both θ and εT to compute the joint likelihood ln p
(
θ, xT|zT), which is

equivalent to ln p
(
θ, εT|zT). And the joint posterior is equal to marginal posterior when

10

we integrate over εT,

p
(

θ|zT
)
=
∫

xT
p
(

θ, xT|zT
)

dxT =
∫

εT
p
(

θ, εT|zT
)

dεT. (17)

2.3 An AR(1) Example with Measurement Noise

We employ a simple example to show the difference between the marginal likelihood
and the joint likelihood approach. Assume that we want to estimate ρ, the persistence
parameter in an AR(1) process with a measurement noise:

yt = ρyt−1 + εt

zt = yt + ut,

with observations {zt}. The shock process {εt} is i.i.d and following a standard Normal
distribution, and the measurement noise {ut} is i.i.d. following a Normal distribution
with variance Ω. We also denote the probability density function of standard Normal
distribution as ϕ (·).

Marginal likelihood approach The steps to sample the marginal likelihood are:

1. Sample ρ from the prior;

2. Initiate the distribution of y0 as N
(

0, 1
1−ρ2

)
: mean y0|0 = 0 and variance P0|0 =

1
1−ρ2 .

3. Loop over t = 1, . . . , T. For each t, we apply Kalman filter to infer the posterior
distribution of yt, and accrue the likelihood L:

yt|t−1 = ρyt−1|t−1

Pt|t−1 = ρ2Pt−1|t−1 + 1

yt|t = yt−1|t−1 +
Pt|t−1

Pt|t−1 + Ω

(
zt − yt|t−1

)
Pt|t = Pt|t−1 −

P2
t|t−1

Pt|t−1 + Ω

L = L + ln ϕ

zt − yt|t−1√
Pt|t−1

 .

4. Add the log prior to the likelihood L, and sample the next ρ.

11

Joint likelihood approach The steps to sample the joint likelihood are:

1. Sample ρ and a vector of T elements {εt} from the priors.

2. Initiate y0 = 0.

3. Loop over t = 1, . . . , T. For each t, simply compute yt with the law of motion, and
accrue the likelihood L:

yt = ρyt−1 + εt

L = L + ln ϕ

(
zt − yt√

Ω

)
.

4. Add the log prior to the likelihood L, and sample the next combination of ρ and all
{εt}.

While in the end the posterior of ρ should be the same, there are some significant
differences between the marginal likelihood approach and the joint likelihood approach.
The marginal likelihood depends on a filter to infer the distribution of the latent states
over time while only samples the parameters that govern the model; the joint likelihood
approach is filter-free because the law of motion of the state variables is deterministic, at
a cost that it has to draw all the parameters as well as the shocks. Hence, by using the
joint likelihood, we are sampling from a high dimensional space consisting of both the
parameters and the latent shocks, but we do not worry about filtering the latent states.
In particular, the filtering process is a time-consuming approximation when the DSGE
model is nonlinear or non-Gaussian. A typical RWMH sampling algorithm will not suf-
fice in this case. Instead, we apply the HMC – a scalable and efficient sampler that copes
with high-dimensional spaces – that we now introduce.

3 Sampling Method: the Hamiltonian Monte Carlo

This section briefly introduces the HMC, the sampling method that we utilize to estimate
DSGE models (see Betancourt, 2018 for a conceptual discussion of HMC methods). To
do so, we first look back at Random-Walk Metropolis-Hastings (RWMH), as RWMH is
one of the most widely used MCMC methods in DSGE estimations. Given a state of a
Markov chain in the parameter space θi−1, the RWMH method generates a new draw θi

from a proposal density following a Normal distribution, and then it accepts or rejects
θi depending on how the posterior evolves. If the posterior turns out to be higher then
the proposal becomes the new state of the chain; otherwise, the state updates with a

12

probability less than 1. In this way, the Markov chain of samples always tends to travel
to areas with higher densities and reserves a possibility to escape from the local minima.

The drawback of RWMH is clear from the way it samples: it spends much time outside
of the typical set – the part of the parameter space containing the relevant information to
compute the expectations we care about in Bayesian analysis. To understand this state-
ment, we need to introduce the definition of the typical set. For ε > 0 and and I, the
typical set AI

ε with respect to the target posterior p
(
θ|zT) is

AI
ε ≡

{
(θ0, θ1, . . . , θI) :

∣∣∣∣∣− 1
I + 1

I

∑
i=0

ln p
(

θi|zT
)
− b (θ)

∣∣∣∣∣ 6 ε

}
where b (θ) = −

∫
p
(
θi|zT) ln p

(
θi|zT)dθ is the differential entropy of the parameters

with respect to their posterior density. By a week law of large numbers, we have that
Pr(AI

ε) > 1− ε if I is sufficiently large. That is to say, AI
ε includes “most” sequences of

θis that are distributed according to the posterior p
(
θi|zT).

Two properties of the typical set are crucial. First, the typical set is not the region
where the posterior density is the highest; second, the typical set will be a narrower and
narrower band as the number of parameters grows. These two properties indicate the rea-
son that RWMH is not capable of sampling in high dimensional spaces, and initiating the
sampling process from the mode will barely help with the sampling. The RWMH method
wastes many iterations because the proposal density is blind regarding the typical set of
the posterior. Therefore, most of the draws will be either far away from the typical set, or
highly auto-correlated, and the typical set will not be traversed efficiently.

HMC is a solution to the problems addressed above that has gained popularity in re-
cent years. This method improves sampling efficiency by exploiting information from the
posterior’s gradient and hence spends much more time in the typical set. While sampling
along the gradient of the posterior would push the samples to the mode of the posterior,
HMC augments the gradient information with an extra momentum force, i.e., an analogy
of Hamiltonian mechanics in physics.

We augment the vector of parameters θ with an auxiliary momentum vector p sharing
the same dimensions. Random vector p follows Gaussian distribution N (0, M). Then
the Hamiltonian associated with the posterior of θ is

H (θ, p) = − ln p (θ) +
1
2

p>M−1p (18)

where − ln p (θ), the first term of (18) is the negation of log posterior, as the analog of a
“potential energy” function. The second term of (18) 1

2 p>M−1p acts as a “kinetic energy”
term. A Markov chain that samples the combination {θ, p} drawn from this Hamiltonian
has a stationary marginal density p (θ), which provides a theoretical ground for HMC.

13

The way we sample from H (θ, p) is a Gibbs-sampling scheme proposed by Girolami
and Calderhead (2011) with the following steps. First, we draw p from the Normal distri-
bution specified above. Second, we run the Verlet integrator for L iterations, with step ε

for each of these L iterations. Both ε and L are predetermined parameters, with ε control-
ling the step size of Hamiltonian approximation, and L determines the number of steps in
each iteration. The physics analogy here is straightforward to understand. Think about
a particle that moves on the manifold characterized by the log posterior of θ. Every time
we get a new sample from the current position, we randomly kick the particle to an ar-
bitrary direction. The particle moves following the Hamiltonian dynamics, and we stop
the particle after Lε time and record the new θ. Therefore, gradient information of the
posterior is necessary for HMC.

In our following sampling experiments, we use the No-U-Turn sampler (NUTS) pro-
posed by Hoffman and Gelman (2014) which shares the same mechanisms and principles
with a raw HMC method, but endogenously pick ε and L with sample adaptions.

4 Gradients to DSGE Solutions

This section provides the derivations of the derivatives of DSGE first- and second-order
solutions with respect to the model parameters. As the downstream HMC sampler re-
quires gradient information, we compute these values through solving equations derived
from the implicit function theorem. While the first-order gradient result is documented in
the literature (Iskrev, 2010), the second-order result we provide here is a novel extension.

4.1 Notations

We use the “canonical form” following Schmitt-Grohé and Uribe (2004) to characterize a
variety of state space models,

EtH
(
y′, y, x′, x; θ

)
= 0, (19)

where x are states and y are control variables, and θ are the parameters that govern the
model. These notations are consistent with what we have discussed in Section 2. Since
the model follows a Markov structure, we omit the time subscription and just denote x′

and y′ as states and control variables in the next period.
The solution to the model is of the following form,

y = g (x; θ) (20)

x′ = h (x; θ) + ηε′ (21)

14

where functions h is the law of the motion of the states, and function g is the policy
function.

We denote the deterministic steady state of the system as x̄ and ȳ, i.e., x̄ and ȳ satisfies

H (ȳ, ȳ, x̄, x̄; θ) = 0 (22)

and we approximate the solutions to g and h by perturbing around the deterministic
steady states. Let x̂ = x− x̄ and ŷ = y− ȳ be the deviations from the steady states, and
we can write the first-order and second-order solutions with the following notations.

First-order solutions:

ŷ = gx x̂ (23)

x̂′ = hx x̂ + ηε′. (24)

Second-order solutions 6:

[ŷ]i = [gx x̂]i +
1
2

x̂> [gxx]
i x̂ +

1
2
[gσσ]

i (25)[
x̂′
]j
= [hx x̂]j +

1
2

x̂>t [hxx]
j x̂ +

1
2
[hσσ]

j +
[
ηε′
]j . (26)

We follow the DSGE solution methods proposed by Klein (2000) and Schmitt-Grohé
and Uribe (2004) for first- and second-order ones. Therefore in the main text here we will
skip the description of the solution algorithms. Appendix A provides a full characteriza-
tion.

4.2 Solution Gradients

We derive the derivatives of the solutions with respect to the parameters θ mostly with
implicit function theorem. Appendix B provides the details.

Steady States For any parameter θ, we take a total differentiation of (22) which yields

Hx
∂x̄
∂θ

+Hy
∂ȳ
∂θ

+Hx′
∂x̄
∂θ

+Hy′
∂ȳ
∂θ

+Hθ = 0,

where all the derivativesH are evaluated at steady state. This is a linear equation system
when we treat ∂x̄

∂θ and ∂ȳ
∂θ as unknowns.

First-order Solutions We are interested in the derivatives of the first-order solutions, gx

and hx, with respect to the parameters θ. We denote these derivatives as ∂gx
∂θ and ∂hx

∂θ . The

6We are using tensor notations here since gxx and hxx are three dimensional.

15

solutions gx and hx satisfy the following equation when evaluated at steady states,

Hx +Hygx +Hx′hx +Hy′gxhx = 0, (27)

and we differentiate (27) with respect to θ,

dHy′

dθ
dHy
dθ

dHx′
dθ

dHx
dθ

>

gxhx

gx

hx

I

+
[
Hy Hx′ +Hy′gx

] [∂gx
∂θ

∂hx
∂θ

]
+
[
Hy′ 0

] [∂gx
∂θ

∂hx
∂θ

]
hx = 0,

which is a Sylvester equation system 7 on ∂gx
∂θ and ∂hx

∂θ , and we can back out these two sets
of unknowns with a typical Sylvester equation solver.

Second-order Solutions The second-order solutions to the DSGE include additional
four objects besides the first-order solutions: gxx, hxx, gσσ, and hσσ. Again, we denote
these derivatives as ∂gxx

∂θ ,∂hxx
∂θ ,∂gσσ

∂θ , ∂hσσ
∂θ , respectively.

First, we derive the solutions to ∂gxx
∂θ and ∂hxx

∂θ . By differentiating (27) with respect to x
we get

[
Hy′ 0

] [gxx

hxx

]
hx ⊗ hx +

[
Hy Hy′gx +Hx′

] [gxx

hxx

]
+ C = 0 (28)

This equation (28) is a Sylvester equation on

[
gxx

hxx

]
, and we further differentiate it with

respect to θ which yields another Sylvester equation on ∂gxx
∂θ and ∂hxx

∂θ .
The solutions to ∂gσσ

∂θ and ∂hσσ
∂θ are relatively simpler. Solving (29) below yields gσσ and

hσσ,

(
Hy′ +Hy Hy′gx +Hx′

)(gσσ

hσσ

)
+ B = 0 (29)

and differentiating (29) with respect to the parameters θ will yield a linear equation sys-
tem for ∂gσσ

∂θ and ∂hσσ
∂θ . Matrices B and C are constants given the second-order solution to

the DSGE model, and Appendix B provides a detailed construction of these two matrices.

7A matrix Sylvester equation has the form AXB + CXD + E = 0 which is a (bi-)linear equation of real
matrix X. Sylvester equations are widely used in control theory, and fast solvers are available, for example
SLICOT.

16

http://slicot.org/

5 Implementation

We briefly introduce our implementation here. The whole estimation package consists of
two parts. The first is a library that handles first- and second-order approximation solu-
tions to state space models with gradient information and sensitivity analyses calculated.
We implemented an open-source Julia package, DifferentiableStateSpaceModels.jl,
that fulfilling these demands. In this package, we provide a domain-specific language
interface to represent typical macro state space models with symbolic differentiation as
well. The second part is utilizing a Bayesian inference package, namely Turing.jl, that
samples the posterior with the solution and gradient information passed from upstream.

The first part, DifferentiableStateSpaceModels.jl, consists of several components.
First of all, we develop a domain-specific language to specify state space model vari-
ables and equations using Symbolics.jl (see Gowda et al., 2021). Users can also specify
optional equations for steady-state evaluations or initial conditions of them. We gen-
erate the symbolic derivatives for the model. 8 The Symbolics.jl ecosystem allows
us to define a Dynare-like domain-specific language, and then the necessary functions
are differentiated symbolically and eventually exported as normal Julia functions. At
that point, the connection to the previous symbolic language is severed, and these be-
have – and have identical performance – to handcrafted functions and gradients in Julia.9

Second, we implement the first- and second-order solutions to the approximated DSGE
model. Lastly, we compute the gradients of the model solutions to the model parameters
and hook them with the AD backend. In this way, the downstream functions can call
DifferentiableStateSpaceModels.jl and retrieve the gradient information seamlessly.

Then we take the DSGE solutions as well as the gradients to the downstream – Turing.jl
– for estimations using the HMC methods. Turing.jl provides a domain-specific syntax
to define probabilistic models. Users only need to define the prior distributions of the pa-
rameters to draw and call the related likelihood evaluation function from DifferentiableStateSpaceModels.jl,
and then Julia takes care of the rest. In general, Turing.jl supports multiple auto-
differentiation backends, and we are currently using Zygote.jl throughout.

8To get those derivatives, we have several options: (1) calculate the gradients using auto-differentiation
within the function - independent of any use outside of it; (2) generate symbolic derivatives for the func-
tions directly, bypassing AD; or (3) a mixture of symbolic derivatives and auto-differentiation. We choose
(2) in this case. Internally using AD itself in its entirety or in combination with symbolic derivatives, and
preferable in some cases such as heterogeneous agent models where we don’t want to flatten the computa-
tional graph, but is harder to implement as it requires a mixed reverse and forward approach.

9This is specific to Julia as MATLAB, C++ (e.g., SymEngine), and python alternatives (e.g., SymPy)
execute the internal symbolic representation each time instead.

17

https://github.com/HighDimensionalEconLab/DifferentiableStateSpaceModels.jl
https://turing.ml/
https://github.com/HighDimensionalEconLab/DifferentiableStateSpaceModels.jl
https://github.com/JuliaSymbolics/Symbolics.jl
https://github.com/JuliaSymbolics/Symbolics.jl
https://github.com/HighDimensionalEconLab/DifferentiableStateSpaceModels.jl
https://turing.ml/
https://turing.ml/
https://github.com/HighDimensionalEconLab/DifferentiableStateSpaceModels.jl
https://turing.ml/
https://github.com/FluxML/Zygote.jl

6 Main Results

In this section, we present the estimation results of two models respectively with the
methodologies described in the above sections. The first set of results are from estimat-
ing a plain-vanilla real business cycle model, and we compare efficiency and robustness
against traditional canonical methods such as RWMH. The second set of results comes
from estimating a medium-scale, New-Keynesian DSGE model, namely Fernández-Villaverde
and Guerrón-Quintana (2021), and we show the performance of our method in practice.

6.1 The Real Business Cycle Model

We introduce now the canonical real business cycle model. The model can be charac-
terized with equation system (30), where c, k, y, z represent consumption, capital, output,
and the TFP level respectively. The model includes four equations: an intertemporal Eu-
ler equation, a resource constraint, a production function, and the law of motion of an
exogenous TFP process:

1
ct
− β

αezt+1kα−1
t+1 + (1− δ)

ct+1
= 0

ct + kt+1 − (1− δ) kt − yt = 0

yt − ezt kα
t = 0

zt+1 − ρzt − σεt+1 = 0

(30)

For the experiments below we estimate three parameters that govern this model: α, β,
and ρ. As β is close to 1, we sample 100(1/β− 1) instead. We fix the other parameters to
be constant: δ = 0.025 and σ = 0.1. Then we generate two sets of artificial data including
the consumption ct and investment it observations for the first- and the second-order
estimations respectively. Both of the time series are of 200 time periods, governed by the
first- and second-order approximation solutions at pseudo-true values α = 0.3, β = 0.998,
and ρ = 0.9. 10 The innovations of the TFP shock process, {εt}, follow i.i.d standard
Normal distributions.

Table 1: RWMH with Marginal Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3024 0.0077 603.65 1.0022 0.006 2.1791 277

100
(

β−1 − 1
)

0.2 0.2288 0.0501 366.89 1.0035 0.003 1.3245 277
ρ 0.9 0.8956 0.0073 6328.6 1.0001 0.063 22.847 277

10These pseudo-true parameter values are widely used in quarterly calibrated models.

18

Figure 1: NUTS with Marginal Likelihood, RBC Model, First-order

19

Figure 2: NUTS with Joint Likelihood, RBC Model, First-order

20

Table 2: NUTS with Marginal Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3012 0.0079 412.09 1.0132 0.281 1.0582 389

100
(

β−1 − 1
)

0.2 0.2196 0.0523 336.05 1.0129 0.183 0.8630 389
ρ 0.9 0.8956 0.0070 864.34 0.9990 0.630 2.2196 389

Table 3: NUTS with Joint Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3037 0.0091 14.61 1.0280 0.012 0.0124 1180

100
(

β−1 − 1
)

0.2 0.2344 0.0551 46.07 1.0225 0.022 0.0390 1180
ρ 0.9 0.8958 0.0075 147.60 1.0018 0.084 0.1251 1180

We examine the estimation results of first-order RBC model to begin with as Table 1
to Table 4 show. First of all, we sample the Kalman filter derived marginal likelihood on
the parameters but compare the results from gradient-free RWMH sampler to the coun-
terpart from gradient-based NUTS as in Table 1 and Table 2. With much fewer sample
draws NUTS traverses the posterior more efficiently compared to RWMH, and the frac-
tion of effective sample size (ESS%) is several magnitudes higher for NUTS. This effi-
ciency advantage, however, is at the cost of gradient evaluation. For a simple model as
first-order RBC and exact marginal likelihood evaluation from Kalman filter, a brute-force
RWMH draw might perform fine speaking of the execution time, but RWMH will not suf-
fice when the dimension of the parameters increases. Table 3 shows the joint likelihood
method by drawing both the parameters and all the latent states. By comparing Table 3
with Table 2 we can see that the underlying parameters that govern the model yield a
similar posterior in terms of both mean and standard deviation. The fraction of effec-
tive samples, however, drops because the joint likelihood approach draws from a much
higher dimensional parameter space – 3 + 200 = 203 overall. With Table 4 showing the
related statistics, Figure 1 and Figure 2 show the trace plots and the posterior densities of
the MCMC sample we draw. Each of the different lines shows one sample draw with 5000
samples, and we replicate 10 times. Without a huge number of sample draws, the NUTS
sampler traverses the posterior efficiently, and this still holds when the sampling space is
high dimensional in the joint likelihood case. In addition, the shapes of the posteriors are
similar in these two cases.

After an initial check of the first-order RBC model which is a linear Gaussian case, we
turn to second-order RBC models to illustrate the performance of the joint likelihood ap-
proach compared to RWMH with particle filter derived marginal likelihood. In a second-
order RBC model, the data generating process is no longer linear Gaussian, and we apply
the particle filter to filter through the latent variables in the marginal likelihood approach.
Table 5 to Table 7 show the comparisons. For a relatively simple model as RBC, the per-
formance of RWMH with particle filter is similar to that of the joint likelihood approach,

21

Figure 3: Posterior Density of β

Figure 4: NUTS with Joint Likelihood, RBC Model, Second-order

22

Table 4: NUTS with Joint Likelihood, RBC Model, First-order, Parallel

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3019 0.0080 942.79 1.0106 0.019 0.1665 5663

100
(

β−1 − 1
)

0.2 0.2217 0.0509 1, 513.16 1.0059 0.030 0.2672 5663
ρ 0.9 0.8964 0.0071 5, 587.43 1.0023 0.111 0.9865 5663

Notes: We draw 5,000 samples across ten chains, for a total of 50,000 samples.

Table 5: RWMH with Marginal Likelihood on Particle Filter, RBC Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3037 0.0067 133.55 1.0479 0.003 0.0620 2154

100
(

β−1 − 1
)

0.2 0.2414 0.0281 102.90 1.1838 0.002 0.0478 2154
ρ 0.9 0.8965 0.0077 129.22 1.0012 0.002 0.0600 2154

as Table 5 and Table 6 show. Although the posterior mean and standard deviations are
similar, the R-hat value is higher in the RWMH case, which means that the RWMH does
not traverse the posterior well enough. To compare the efficiency between marginal like-
lihood with RWMH and joint likelihood with HMC, we plot the posterior densities of β

in Figure 3. The black dashed line characterizes the posterior density we get after suf-
ficiently long MCMC draws, while the blue and red line represents the density function
from RWMH with particle filter and HMC with joint likelihood respectively, both running
for around 5 minutes. While the RWMH yields much more samples, the density plot is
less close to the true posterior compared to the HMC joint likelihood case, even though
the gradient computation in HMC is costly. In addition, Figure 4 shows 10 independent
MCMC draws from the HMC joint likelihood case, and the results are mixing well, sug-
gesting the consistency of our method even it is drawing samples from a relatively high
dimensional space. Table 7 shows the related statistics.

To further analyze the posterior distributions from the sampler, we layout the scatter
plot of the pairwise joint distributions across the three parameters in the RBC model as in
Figure 5. The three methods yield similar joint distributions of the samples, with α and β

highly correlated and ρ independent.
The joint likelihood approach also provides a by-product for us. As we not only draw

the parameters governing the model but also the latent state variables, we can back out
the estimated latent states without running a filter and smoother in addition. Figure 6
shows the comparison between estimated posteriors and the actual shocks to generate the
simulated data. The left panel and the right panel show results from first- and second-
order RBC respectively. The red lines show the actual data, while the blue lines show the
mean value of posterior estimation. The light blue region shows the interquartile ranges.
Our estimations back out the value of original shocks accurately and the interquartile
ranges look symmetric but heteroskedastic.

23

(a) First-order, Marginal Likelihood

(b) First-order, Joint Likelihood

(c) Second-order, Joint Likelihood

Figure 5: Joint Distribution of Parameters
Notes: The left panel shows the correlation with α on the horizontal axis and
100(1/β− 1) on the vertical axis. The middle panel shows the correlation with
100(1/β− 1) on the horizontal axis and ρ on the vertical axis. The right panel shows the
correlation with α on the horizontal axis and ρ on the vertical axis.

24

Table 6: NUTS with Joint Likelihood, RBC Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3057 0.0071 39.67 1.0014 0.040 0.0160 2480

100
(

β−1 − 1
)

0.2 0.2455 0.0473 71.34 1.0027 0.071 0.0288 2480
ρ 0.9 0.8966 0.0072 153.86 0.9999 0.154 0.0600 2480

Table 7: NUTS with Joint Likelihood, RBC Model, Second-order, Parallel

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time
α 0.3 0.3020 0.0078 984.36 1.0121 0.020 0.0497 19, 810

100
(

β−1 − 1
)

0.2 0.2225 0.0508 1, 530.21 1.0092 0.031 0.0772 19, 810
ρ 0.9 0.8963 0.0072 5, 021.72 1.0019 0.100 0.2535 19, 810

Notes: We draw 5,000 samples across ten chains, for a total of 50,000 samples.

Frequentist Statistics While we carry out Bayesian estimations here, the frequentist
statistics provide a sanity check of our estimation methods in general. In order to mea-
sure the frequentist statistics, we estimate the RBC model with all the three methods men-
tioned above with multiple replications. The pseudo-true of the underlying parameters
are the same, but the generated artificial data are different due to different shock realiza-
tions. Moreover, for all the three methods above, we generate data with different lengths
in time.

Table 8 shows the frequentist statistics for the estimation exercises with Kalman filter
derived marginal likelihood and HMC sampler. The first two columns show the mean
and standard deviation of the estimated mean and the pseudo-true value. The third and
the fourth columns show the coverage probability, i.e., whether the 80% and 90% confi-
dence interval of the estimated posterior contains the pseudo-true value. The three panels
from up to down with different values in T illustrate experiments with different lengths.
We can see that the coverage probabilities, on average, are more accurate as lengths of
data increase. This is because lengthier data leads to more accurate identification of the
underlying parameters. Moreover, the mean bias and mean squared error both decrease.
Table 9 and Table 10 are the frequentist statistics for the joint likelihood approach in first-
and second-order respectively. 11 We can see similar patterns compared to Table 8 which
means the joint likelihood approach we propose is robust and credible to different shock
realizations in general.

Robustness The parameter posteriors sampled based on the joint likelihood approach
turn out to be more consistent than the posteriors generated from the traditional approach
using marginal likelihood. We illustrate this comparison by starting the sampling pro-
cess from a Cartesian product of grids on α, β, and ρ respectively. 12 Figure 9 and Fig-

11For the frequentist statistics of the joint likelihood exercises we provide the parameters only, not the
latent state variables that we draw because they differ in each of the independent replications.

12We create a grid of 5 points for each of these three parameters, and the Cartesian product will
be 125 starting points overall. The grid for α is [0.25, 0.3, 0.35, 0.4, 0.45]. The grid for 100

(
β−1 − 1

)
is

25

(a) First-order RBC (b) Second-order RBC

Figure 6: Inferred Shocks of RBC Model

Figure 7: Robustness Comparison on First-order RBC: Cumulative Mean

26

Figure 8: Robustness Comparison on Second-order RBC: Cumulative Mean

Figure 9: Robustness Comparison on First-order RBC: Trace Plot

27

Table 8: Frequentist Statistics – Kalman

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%
T = 50 α −0.0028 7.25× 10−5 92% 98%

100
(

β−1 − 1
)

0.0221 0.0011 100% 100%
ρ −0.0115 0.0003 92% 98%

T = 100 α −0.0029 5.35× 10−5 92% 95%
100

(
β−1 − 1

)
0.0062 0.0007 100% 100%

ρ −0.0057 4.93× 10−5 96% 99%
T = 200 α −0.0015 3.65× 10−5 86% 97%

100
(

β−1 − 1
)
−0.0024 9.0× 10−4 99% 99%

ρ −0.0018 5.75× 10−6 100% 100%
Notes: All these statistics are generated from 100 estimation replications.

Table 9: Frequentist Statistics – 1st-order Joint

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%
T = 50 α −0.0010 7.31× 10−5 94% 97%

100
(

β−1 − 1
)

0.0262 0.0015 99% 99%
ρ −0.0084 0.0001 98% 99%

T = 100 α 0.0001 4.92× 10−5 91% 97%
100

(
β−1 − 1

)
0.0130 0.0011 96% 100%

ρ −0.0033 2.58× 10−5 100% 100%
T = 200 α −0.0022 8.84× 10−5 86% 93%

100
(

β−1 − 1
)
−0.0045 0.0009 92% 96%

ρ −0.0022 4.95× 10−5 99% 100%
Notes: All these statistics are generated from 100 estimation replications.

ure 10 show the trace plots, and Figure 7 and Figure 8 show the cumulative mean values.
While different sampling methods share similar robustness in estimating the first-order
RBC model, the results differ for the second-order case. For example, the upper panel of
Figure 8 is from our joint likelihood approach with samples drawn from HMC, and the
lower panel of Figure 8 is the counterparts from particle filtered marginal likelihood with
RWMH, executed with Dynare. The parameters, from left to right, are α, β, and ρ respec-
tively, with the black dashed line showing the pseudo-trues that generated the simulated
data.

What we observe from Figure 8 is that even in a relatively simple problem like second-
order RBC models, particle filtered marginal likelihood with RWMH takes a long time to
converge to the high-density region of the posterior, while the joint likelihood approach
with HMC is more consistent across different starting points. This phenomenon root in
the mechanism of the sampling methods. HMC utilizes gradient information, therefore

[0.1, 0.175, 0.25, 0.325, 0.4]. The grid for ρ is [0.3, 0.4625, 0.625, 0.7875, 0.95].

28

Table 10: Frequentist Statistics – 2nd-order Joint

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%
T = 50 α −0.0026 0.0001 80% 90%

100
(

β−1 − 1
)

0.0253 0.0016 96% 98%
ρ −0.0108 0.0002 90% 98%

T = 100 α 3.58× 10−6 5.47× 10−5 84% 94%
100

(
β−1 − 1

)
0.0126 0.0012 96% 98%

ρ −0.0034 2.31× 10−5 100% 100%
T = 200 α −0.0009 5.44× 10−5 76% 86%

100
(

β−1 − 1
)

7.20× 10−5 0.0013 84% 96%
ρ −0.0015 7.12× 10−6 100% 100%

Notes: All these statistics are generated from 50 estimation replications.

Figure 10: Robustness Comparison on Second-order RBC: Trace Plot

29

the sampler traverses faster and arrives at the typical set quickly, even in a high dimen-
sional joint likelihood sample space. RWMH, on the other way around, takes gradual
steps towards the typical set, because the likelihood improvement is marginal when the
sampling point is distant from the pseudo-trues. We truncated the sampling time to be
the same across all the experiments, and our method is more time-efficient even at the
cost of gradient computations.

6.2 Estimating Fernández-Villaverde and Guerrón-Quintana (2021)

We show the estimation results of Fernández-Villaverde and Guerrón-Quintana (2021)
(FVGQ), a canonical medium-scale New-Keynesian DSGE model in this section. In this
model, we have a representative household that consumes, saves, supply labor, and hold
nominal currencies. A final good firm produces output with a continuum of intermedi-
ate goods which are produced by monopolistic competitors facing Calvo type nominal
rigidities. The representative household is the owner of all these firms. The government
sets up monetary and fiscal policy, and we are considering a closed economy here. There
are two unit root processes, with one governing the level of Hicks-neutral TFP and the
other in investment-specific technology. 13

There are six exogenous shocks in the model: household consumption preference,
labor supply, TFP, investment efficiency, fiscal policy, and monetary policy. The first two
shocks are to the preferences, and the third and fourth are two supply-side shocks. We
select six time-series in real data for our estimation: inflation measured by CPI, the federal
funds rate, the growth rate of real wages, the growth rate of real GDP per capita, per
capita working hours, and the inverse relative price of investment with respect to the
price of consumption growth. This model contains parameters to estimate and Table 11
summarizes the priors.

Figure 11 shows the estimated shocks as a by-product from the joint likelihood es-
timations. As we are simultaneously sampling the posterior distribution of the shock
innovations along with the parameters, there is no necessity for us to back out the shock
realizations (or equivalently, the posterior distributions of the latent states). If we were
utilizing the marginal likelihood approach with filtering, then a smoother must be applied
to back out these states. From Figure 11 we can see that we backed out the innovations to
the shocks of an economic sense. During all the recessions periods, we see an unexpected
drop in capital price and a temporary increase in labor supply. Moreover, we capture
the Volcker period accurately as the monetary policy tightened significantly during the
1980-1982 recession.

13The online appendix layouts a full description and characterization of the model and data series for the
estimation.

30

Table 11: Prior Distribution for structural parameters

Parameter Distribution Mean Std
100 (1/β− 1) Gamma 0.25 0.1

h Beta 0.7 0.1
κ Normal 4 1.5
α Normal 0.3 0.05
θp Beta 0.5 0.1
χ Beta 0.5 0.15

γR Beta 0.75 0.1
γy Normal 0.12 0.05
γΠ Normal 1.5 0.25

100 (Π̄− 1) Gamma 0.95 0.1
ḡ Beta 0.3 0.05
ρd Beta 0.5 0.2
ρϕ Beta 0.5 0.2
ρg Beta 0.5 0.2
σA Inverse Gamma 0.1 1
σd Inverse Gamma 0.1 1
σφ Inverse Gamma 0.1 1
σµ Inverse Gamma 0.1 1
σm Inverse Gamma 0.1 1
σg Inverse Gamma 0.1 1
Λµ Gamma 0.0034 0.001
ΛA Gamma 0.00178 0.00075

7 Conclusion

The state space models are widely utilized in macroeconomics. The estimation of this set
of models is not a trivial task, in particular, estimating nonlinear and non-Gaussian state
space models has always been time-consuming and challenging. In this paper, we pro-
pose a new set of methods applying gradient-based MCMC methods with the differen-
tiable programming paradigm to tackle this estimation problem from a novel perspective.
By illustrating the sensitivity analysis to the first- and second-order approximation solu-
tions to the state space models, we first show that the automatic differentiation tools can
support relatively complicated derivative computations. Then, we provide a universal
framework for nonlinear and non-Gaussian state space models. This framework sam-
ples the underlying latent state variables along with the model parameters and evaluates
the joint likelihood rather than a marginal likelihood only on the parameters. We apply
Hamiltonian Monte Carlo, a gradient-based scalable Bayesian sampling method, which
allows efficient and robust sampling on a high dimensional space like this.

Future research along this strand can be vibrant. First of all, with the toolkit we pro-
vided that seamlessly passes gradient information of a complicated state space model

31

Figure 11: Inferred Shocks of Fernández-Villaverde and Guerrón-Quintana (2021)

to its downstream, a variety of gradient-based estimation or sampling methods can be
applied for state space model inferences. For example, we have already applied vari-
ational inference methods and gained satisfactory results in Fernández-Villaverde and
Guerrón-Quintana (2021). Second, the method we proposed is scalable with dimensions
of estimation, which will simplify the process of estimating heterogeneous agent mod-
els (for instance, in the spirit of Kaplan et al., 2018). Last but not the least, we showed
two applications in estimating macro state space models, but the estimation method is
much more general and open to any potential applications characterized by general state
space models. We will definitely see widespread usage of differentiable programming in
economics in the next few years.

32

Table 12: Estimation with marginal likelihood approach, first-order FVGQ model

parameters mean std ess rhat
ḡ 0.515899 0.0625615 368.376 1.00583
h 0.868682 0.0667568 230.275 1.00219

ΛA 0.00116548 0.000244789 513.093 1.00026
Λµ 0.00577486 0.000391655 832.384 1.00015

100 (Π̄− 1) 0.934494 0.0878034 1039.63 0.999392
α 0.292393 0.0217562 385.006 1.00235

100 (1/β− 1) 0.144239 0.0468432 1350.98 0.999566
γR 0.615112 0.0339691 760.218 0.999657
γΠ 1.21828 0.165471 73.9837 1.0039
θp 0.802364 0.0403749 157.453 0.999114
κ 7.73702 1.38322 246.787 0.999187
ρd 0.807469 0.0818411 215.386 1.00744
ρg 0.951315 0.0603435 144.366 1.00425
ρϕ 0.978821 0.00825107 195.694 0.999149
σA 0.00826692 0.00174755 581.122 1.0034
σd 0.124462 0.066943 257.565 1.00278
σg 0.0071145 0.00135781 128.841 1.01598
σm 0.00290885 0.000237841 1008.79 0.999811
σµ 0.00544747 0.000311396 1105.1 1.0003
σφ 0.0139098 0.00219333 744.511 1.00049
χ 0.738719 0.111171 199.604 1.00709

Table 13: Estimation with joint likelihood, first-order FVGQ model

parameters mean std ess rhat
ḡ 0.396885 0.0547821 217.875 1.01205
h 0.89308 0.0468923 107.447 1.05759

ΛA 0.00152115 0.000239741 214.941 1.01329
Λµ 0.00586824 0.000397612 209.578 1.01284

100 (Π̄− 1) 0.784925 0.0585665 288.996 1.01055
α 0.255145 0.020716 171.773 1.0168

100 (1/β− 1) 0.131962 0.0428444 366.458 1.01815
γR 0.623479 0.0329517 287.944 1.01374
γΠ 1.56887 0.117258 119.791 1.15572
θp 0.767652 0.0321262 158.629 1.06112
κ 8.4237 1.23334 363.534 1.02184
ρd 0.707503 0.0964784 97.075 1.04763
ρg 0.958456 0.0302879 148.99 1.05296
ρϕ 0.976573 0.00834117 117.409 1.10795
σA 0.00519128 0.000744698 164.511 1.09215
σd 0.101411 0.0439758 103.577 1.02903
σg 0.00663444 0.000965019 142.625 1.06336
σm 0.00289127 0.000252272 372.254 1.00369
σµ 0.00546604 0.000344543 421.534 1.00982
σφ 0.0140017 0.00155692 167.677 1.02045
χ 0.752136 0.121688 187.561 1.01484

33

Figure 12: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), First-order

34

Figure 13: NUTS with Joint likelihood, Fernández-Villaverde and Guerrón-Quintana
(2021), Second-order

35

References

BAYDIN, A. G., B. A. PEARLMUTTER, A. A. RADUL, AND J. M. SISKIND (2017): “Au-
tomatic Differentiation in Machine Learning: A Survey,” J. Mach. Learn. Res., 18,
5595–5637.

BETANCOURT, M. (2018): “A Conceptual Introduction to Hamiltonian Monte Carlo,” .

FARKAS, M. AND B. TATAR (2020): “Bayesian estimation of DSGE models with Hamilto-
nian Monte Carlo,” Tech. rep., IMFS Working Paper Series.

FERNÁNDEZ-VILLAVERDE, J. AND P. A. GUERRÓN-QUINTANA (2021): “Estimating
DSGE models: Recent advances and future challenges,” Annual Review of Economics,
13.

FERNÁNDEZ-VILLAVERDE, J. AND J. F. RUBIO-RAMÍREZ (2007): “Estimating macroeco-
nomic models: A likelihood approach,” Review of Economic Studies, 74, 1059–1087.

FERNÁNDEZ-VILLAVERDE, J., J. F. RUBIO-RAMÍREZ, AND F. SCHORFHEIDE (2016): “So-
lution and estimation methods for DSGE models,” in Handbook of macroeconomics, Else-
vier, vol. 2, 527–724.

GIROLAMI, M. AND B. CALDERHEAD (2011): “Riemann manifold langevin and hamil-
tonian monte carlo methods,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73, 123–214.

GOWDA, S., Y. MA, A. CHELI, M. GWOZDZ, V. B. SHAH, A. EDELMAN, AND C. RACK-
AUCKAS (2021): “High-performance symbolic-numerics via multiple dispatch,” arXiv
preprint arXiv:2105.03949.

GRIEWANK, A. AND A. WALTHER (2008): Evaluating derivatives: principles and techniques
of algorithmic differentiation, SIAM.

HOFFMAN, M. D. AND A. GELMAN (2014): “The No-U-Turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo.” J. Mach. Learn. Res., 15, 1593–1623.

INNES, M., A. EDELMAN, K. FISCHER, C. RACKAUCKAS, E. SABA, V. B. SHAH, AND

W. TEBBUTT (2019): “A differentiable programming system to bridge machine learning
and scientific computing,” arXiv preprint arXiv:1907.07587.

ISKREV, N. (2010): “Local identification in DSGE models,” Journal of Monetary Economics,
57, 189–202.

36

KAPLAN, G., B. MOLL, AND G. L. VIOLANTE (2018): “Monetary policy according to
HANK,” American Economic Review, 108, 697–743.

KIM, S., N. SHEPHARD, AND S. CHIB (1998): “Stochastic Volatility: Likelihood Inference
and Comparison with ARCH Models,” Review of Economic Studies, 65, 361–393.

KLEIN, P. (2000): “Using the generalized Schur form to solve a multivariate linear rational
expectations model,” Journal of economic dynamics and control, 24, 1405–1423.

SCHÄFER, F., M. TAREK, L. WHITE, AND C. RACKAUCKAS (2021): “AbstractDiffer-
entiation. jl: Backend-Agnostic Differentiable Programming in Julia,” arXiv preprint
arXiv:2109.12449.

SCHMITT-GROHÉ, S. AND M. URIBE (2004): “Solving dynamic general equilibrium mod-
els using a second-order approximation to the policy function,” Journal of Economic Dy-
namics and Control, 28, 755–775.

SMETS, F. AND R. WOUTERS (2007): “Shocks and frictions in US business cycles: A
Bayesian DSGE approach,” American Economic Review, 97, 586–606.

WHITE, L., M. ZGUBIC, M. ABBOTT, J. REVELS, A. ARSLAN, S. AXEN, S. SCHAUB,
N. ROBINSON, Y. MA, G. DHINGRA, WILLTEBBUTT, N. HEIM, A. D. W. ROSEMBERG,
D. WIDMANN, N. SCHMITZ, C. RACKAUCKAS, R. HEINTZMANN, FRANKSCHAE,
K. FISCHER, A. ROBSON, MATTBRZEZINSKI, A. ZHABINSKI, M. BESANÇON,
P. VERTECHI, S. GOWDA, A. FITZGIBBON, C. LUCIBELLO, C. VOGT, D. GANDHI, AND

F. CHORNEY (2021): “JuliaDiff/ChainRules.jl: v1.14.0,” .

37

Appendix A Perturbation Solution and Notation

In this section, we define the perturbation solution to the DSGE model, both in first- and
second-order, with notations and implementation details.

A.1 Tensor Notations

We use tensors for convenience when referring to high dimensional objects. For Jacobian
matrices,

[
fy
]i

α
= ∂ f i

∂yα is the (i, α) element of the derivative of f with respect to y. The
dimension of the Jacobian matrix will be m× n where m is the dimension of f and n is the
dimension of y. i = 1...m and α = 1...n.

An example of tensor contraction notation is below,

[
fy
]i

α
[gx]

α
j =

n

∑
α=1

∂ f i

∂yα

∂gα

∂xj

For Hessian matrices,
[
Hxy

]i
αγ

is row i, column α, page γ of 3-dimensional matrix.
If m, n, k are the dimensions for H, x, y separately then i = 1, . . . , m, α = 1, . . . , n, γ =

1, . . . , k.

A.2 Definitions

Dimensions of related vectors and matrices:

– x: nx × 1

– y: ny × 1

– ε: nε × 1

– η: nx × nε

– Σ: nε × nε

Denote x̄, ȳ as the deterministic steady state that satisfies H (ȳ, ȳ, x̄, x̄) = 0 when muting
the shock processes.

– All vectors are in columns.

– nx: the number of state variables; ny: the number of control variables; nθ: the num-
ber of deep parameters; nε: the number of exogenous shocks.

– There are n = nx + ny equations in the system. H : Rny ×Rny ×Rnx ×Rnx → Rn.

38

– x′ = h (x) + ηε: h is the law of the motion of the states, ε is the exogenous shocks,
i.i.d., with a variance-covariance (VCV) matrix Σ, η is the loadings of the shocks;
y = g (x): g is the policy function.

A.3 First-order Solution

We need to solve gx and hx. The dimensions of gx and hx are ny × nx and nx × nx, respec-
tively. A first-order Taylor expansion of (19) yields the following equation

Hy′y′ +Hyy +Hx′x′ +Hxx = 0,

where Hx;ij =
∂Hi
∂xj

, i = 1, . . . , n, j = 1, . . . nx;Hy;ij =
∂Hi
∂yj

, i = 1, . . . , n, j = 1, . . . ny. All of
these derivatives are evaluated at the deterministic steady state. Put the equation above
in another form [

Hx′ Hy′
] [x′

y′

]
+
[
Hx Hy

] [x
y

]
= 0. (A.1)

Then, following Klein (2000), we apply generalized Schur decomposition to matri-
ces

[
Hx′ Hy′

]
and

[
Hx Hy

]
from (A.1), and follow Blanchard-Kahn condition to

reorder so that ∀i,
∣∣∣S22,i

T22,i

∣∣∣ < 1. Therefore, it results

(
S11 S12

0 S22

)(
Z11 Z12

Z21 Z22

)[
x′

y′

]
+

(
T11 T12

0 T22

)(
Z11 Z12

Z21 Z22

)[
x
y

]
= 0. (A.2)

The dimension of T22 or S22 should be ny as in Blanchard-Kahn condition to ensure that
the converging solution exists and is unique. Therefore,

gx = −Z−1
22 Z21 (A.3)

hx = − (Z11 + Z12gx)
−1 (S11)

−1 T11 (Z11 + Z12gx) (A.4)

A.4 Second-order Solution

We need to solve gxx, hxx, gσσ, hσσ. The dimensions of gxx and hxx are ny × nx × nx and
nx × nx × nx. The dimensions of gσσ and hσσ are ny × 1 and nx × 1.

39

Second-order perturbation of (19) yields([
Hy′y′

]i

αγ
[gx]

γ
δ [hx]

δ
k +

[
Hy′y

]i

αγ
[gx]

γ
k +

[
Hy′x′

]i

αδ
[hx]

δ
k +

[
Hy′x

]i

αk

)
[gx]

α
β [hx]

β
j

+
[
Hy′
]i

α
[gxx]

α
βδ [hx]

δ
k [hx]

β
j +

[
Hy′
]i

α
[gx]

α
β [hxx]

β
jk

+

([
Hyy′

]i

αγ
[gx]

γ
δ [hx]

δ
k +

[
Hyy

]i
αγ

[gx]
γ
k +

[
Hyx′

]i

αδ
[hx]

δ
k +

[
Hyx

]i
αk

)
[gx]

α
j

+
[
Hy
]i

α
[gxx]

α
jk

+

([
Hx′y′

]i

βγ
[gx]

γ
δ [hx]

δ
k +

[
Hx′y

]i

βγ
[gx]

γ
k + [Hx′x′]

i
βδ [hx]

δ
k + [Hx′x]

i
βk

)
[hx]

β
j

+ [Hx′]
i
β [hxx]

β
jk

+
[
Hxy′

]i

jγ
[gx]

γ
δ [hx]

δ
k +

[
Hxy

]i
jγ [gx]

γ
k + [Hxx′]

i
jδ [hx]

δ
k + [Hxx]

i
jk = 0

where i = 1, . . . , n, α, γ = 1, . . . , ny, β, δ, j, k = 1, . . . , nx. If we squeeze the 2nd and 3rd
dimension of gxx and hxx matrices (hence the dimensions are ny × n2

x and nx × n2
x), then

the above equation can be written as

[
Hy′ 0

] [gxx

hxx

]
hx ⊗ hx +

[
Hy Hy′gx +Hx′

] [gxx

hxx

]
+ C = 0, (A.5)

where C is a
(
nx + ny

)
∗
(
n2

x
)

matrix. We compute each row of C below,

Ci,· = vec

gxhx

gx

hx

I

T
Hy′y′ Hy′y Hy′x′ Hy′x

Hyy′ Hyy Hyx′ Hyx

Hx′y′ Hx′y Hx′x′ Hx′x

Hxy′ Hxy Hxx′ Hxx

i

gxhx

gx

hx

I

 . (A.6)

Notice that the matrix in the middle of (A.6) is the Hessian ofHi.

(A.5) is a Sylvester equation for

[
gxx

hxx

]
. We can use some existing solver for the

generalized Sylvester equation; or, another way to exploit the radius of hx is to use a
doubling method. 14

After we solve gxx and hxx, we can write down the equations for gσσ and hσσ,

14Rewrite the above equation as AXF⊗ F + BX + C = 0 where

A =
[
Hy′ 0

]
F = hx

B =
[
Hy Hy′gx +Hx′

]

40

[
Hy′
]i

α
[gx]

α
β [hσσ]

β +
[
Hy′
]i

α
[gσσ]

α +
[
Hy
]i

α
[gσσ]

α + [Hx′]
i
β [hσσ]

β

+
[
Hy′y′

]i

αγ
[gx]

γ
δ [η]

δ
ξ [gx]

α
β [η]

β
φ [Σ]

φ
ξ

+
[
Hy′x′

]i

αδ
[η]δξ [gx]

α
β [η]

β
φ [Σ]

φ
ξ

+
[
Hy′
]i

α
[gxx]

α
βδ [η]

δ
ξ [η]

β
φ [Σ]

φ
ξ

+
[
Hx′y′

]i

βγ
[gx]

γ
δ [η]

δ
ξ [η]

β
φ [Σ]

φ
ξ

+ [Hx′x′]
i
βδ [η]

δ
ξ [η]

β
φ [Σ]

φ
ξ = 0,

where i = 1, . . . , n, α, γ = 1, . . . , ny, β, δ = 1, . . . , nx, φ, ξ = 1, . . . , nε. This yields a linear

equation for

[
gσσ

hσσ

]
. We reorganize the above equation and we get

(
Hy′ +Hy Hy′gx +Hx′

)(gσσ

hσσ

)
+ B = 0. (A.7)

Define function sum (A) = ∑i,j Aij, and the notation for element-wise product (Hadamard
product) as �, then B follows

Bi = sum

[gx

I

]T [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]i [
gx

I

]
+
[
Hy′
]i

gxx

� [ηΣη′
]

for all i = 1, . . . , n.

Here
[
Hy′
]i

gxx is a tensor shrink. That is to say,
{[
Hy′
]i

gxx

}
βδ

= ∑
ny
α=1

[
Hy′
]i

α
[gxx]

α
βδ.

To implement this we can first squeeze gxx into a ny ×
(
n2

x
)

matrix, and then reshape the

matrix product
[
Hy′
]i

gxx into a nx × nx matrix.

Then, we apply an iterative doubling method to solve out X for this specific form of Sylvester equation,

X1 = −B−1C
Xn+1 = Xn + AnXnFn ⊗ Fn

An+1 = An An

Fn+1 = FnFn

41

Appendix B Perturbation Solution Derivatives

This section derives the derivatives of deterministic steady states, solutions in first- and
second-order, with respect to the model parameters.

B.1 Derivative of the Steady States

The model parameters θ in general will change steady state values x̄, ȳ. We are interested
in ∂x̄

∂θ and ∂ȳ
∂θ .

We take the derivatives of (19) with respect to θ,

Fθ (x; θ) = Hx
∂x
∂θ

+Hy
∂y
∂θ

+Hx′
∂x′

∂θ
+Hy′

∂y′

∂θ
+Hθ = 0,

whereHθ;ij =
∂Hi
∂θj

, i = 1, . . . , n, j = 1, . . . nθ. We evaluate this function at the deterministic
steady states x′ = x = x̄, y′ = y = ȳ,

[
Hy +Hy′ Hx +Hx′

] [∂ȳ
∂θ
∂x̄
∂θ

]
+Hθ = 0, (B.1)

(B.1) is a linear equation system when we treat ∂x̄
∂θ and ∂ȳ

∂θ as unknowns.

B.2 First-order Results

We are interested in ∂gx
∂θ and ∂hx

∂θ .
From (19), the first-order model solution satisfies

Fx (x; θ) = Hx +Hygx +Hx′hx +Hy′gxhx = 0. (B.2)

For each element θi of θ, we take derivative of (B.2),

Fx,θi (x; θ) =
dHx

dθi
+

dHy

dθi
gx +Hy

∂gx

∂θi
+

dHx′

dθi
hx +Hx′

∂hx

∂θi
+

dHy′

dθi
gxhx +Hy′

∂gx

∂θi
hx +Hy′gx

∂hx

∂θi
= 0,

and we evaluate the system at the steady state x′ = x = x̄, y′ = y = ȳ. Notice that H is

42

H (y′, y, x′, x; θ), and chain rule applies here as we compute the total derivative ofH:

[
dHx

dθi

]α

β

=
[
Hxy′ +Hxy

]α

βξ

[
∂ȳ
∂θi

]ξ

+ [Hxx′ +Hxx]
α
βδ

[
∂x̄
∂θi

]δ

+

[
∂Hx

∂θi

]α

β[
dHy

dθi

]α

γ

=
[
Hyy′ +Hyy

]α

γξ

[
∂ȳ
∂θi

]ξ

+
[
Hyx′ +Hyx

]α

γδ

[
∂x̄
∂θi

]δ

+

[
∂Hy

∂θi

]α

γ[
dHx′

dθi

]α

β

=
[
Hx′y′ +Hx′y

]α

βξ

[
∂ȳ
∂θi

]ξ

+ [Hx′x′ +Hx′x]
α
βδ

[
∂x̄
∂θi

]δ

+

[
∂Hx′

∂θi

]α

β[dHy′

dθi

]α

γ

=
[
Hy′y′ +Hy′y

]α

γξ

[
∂ȳ
∂θi

]ξ

+
[
Hy′x′ +Hy′x

]α

γδ

[
∂x̄
∂θi

]δ

+

[
∂Hy′

∂θi

]α

γ

, (B.3)

where α = 1, . . . , n, γ, ξ = 1, . . . , ny, β, δ = 1, . . . , nx. We can apply ∂x̄
∂θ and ∂ȳ

∂θ , the result in
the last subsection here.

Stack the unknowns as

[
∂gx
∂θi
∂hx
∂θi

]
, therefore for each element θi of θ we will solve a

Sylvester equation,

dHy′
dθi

dHy
dθi

dHx′
dθi

dHx
dθi

T

gxhx

gx

hx

I

+
[
Hy Hx′ +Hy′gx

] [∂gx
∂θi
∂hx
∂θi

]
+
[
Hy′ 0

] [∂gx
∂θi
∂hx
∂θi

]
hx = 0.

B.3 Second-order Results

We are interested in ∂gxx
∂θ ,∂hxx

∂θ ,∂gσσ

∂θ ,∂hσσ
∂θ .

We differentiate the Sylvester equation (A.5) here (which yields a Sylvester equation
itself): for each element θi of θ,

AXB + DX + C = 0

⇓

A
∂X
∂θi

B + D
∂X
∂θi

+

[
∂A
∂θi

XB + AX
∂B
∂θi

+
∂D
∂θi

X +
∂C
∂θi

]
= 0. (B.4)

This equation has a similar form to (B.4), and can be solved with a similar algorithm.
Notice that these coefficients A, B, D don’t change across different θi, hence we solve them
in parallel.

43

We derive the variables above in (B.4) by applying chain rules,

∂A
∂θi

=
[

dHy′
dθi

0
]

(B.5)

∂B
∂θi

=
∂hx

∂θi
⊗ hx + hx ⊗

∂hx

∂θi
(B.6)

∂D
∂θi

=
[

dHy
dθi

dHy′
dθi

gx +Hy′
∂gx
∂θi

+
dHx′
dθi

]
(B.7)

∂Cj,·
∂θi

= vec

∂gx
∂θi

hx + gx
∂hx
∂θi

∂gx
∂θi
∂hx
∂θi

0

T

Ψj

gxhx

gx

hx

I

+ vec

gxhx

gx

hx

I

T

Ψj

∂gx
∂θi

hx + gx
∂hx
∂θi

∂gx
∂θi
∂hx
∂θi

0

+ vec

gxhx

gx

hx

I

T

dΨj

dθi

gxhx

gx

hx

I

 (B.8)

where j = 1, . . . , n iterating on each equation ofH.

We compute the derivatives with the form
d[Hab]j

dθi
in the last line of Equation (B.8)

through total derivative which requires third-order derivatives of the original equation
system,

d [Hab]j
dθi

=

{[
Haby′ +Haby

]
ξ

[
∂ȳ
∂θi

]ξ

+ [Habx′ +Habx]δ

[
∂x̄
∂θi

]δ
}

j

+
∂ [Hab]j

∂θi
(B.9)

where a, b ∈ [y′, y, x′, x], ξ = 1, . . . , ny, δ = 1, . . . , nx. The combination, therefore, can be

44

expressed as

dΨj

dθi
=

[
∂Ψj

∂y′
+

∂Ψj

∂y

]
ξ

[
∂ȳ
∂θi

]ξ

+

[
∂Ψj

∂x′
+

∂Ψj

∂x

]
δ

[
∂x̄
∂θi

]δ

+
∂Ψj

∂θi
(B.10)

For the equations with gσσ and hσσ we know it satisfies Equation (A.7),

A

[
gσσ

hσσ

]
+ B = 0, (B.11)

therefore for each θi in θ we take the differentiation on both sides of the equation,

∂A
∂θi

[
gσσ

hσσ

]
+ A

[
∂gσσ

∂θi
∂hσσ
∂θi

]
+

∂B
∂θi

= 0. (B.12)

Equation (B.12) is a linear equation in

[
∂gσσ

∂θi
∂hσσ
∂θi

]
. We enumerate j = 1, . . . , n for the index

of the equations.

∂A
∂θi

=
[

dHy′
dθi

+
dHy
dθi

dHy′
dθi

gx +Hy′
∂gx
∂θi

+
dHx′
dθi

]
(B.13)

45

∂Bj

∂θi
= sum

[∂gx
∂θi

0

]T [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j [
gx

I

]� [ηΣη′
]

+ sum

[gx

I

]T [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j [∂gx
∂θi

0

]� [ηΣη′
]

+ sum

[

gx

I

]T d

[
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j

dθi

[
gx

I

]�
[
ηΣη′

]

+ sum

d
[
Hy′
]j

dθi
gxx +

[
Hy′
]j ∂gxx

∂θi

� [ηΣη′
]

+ sum

[gx

I

]T [
Hy′y′ Hy′x′

Hx′y′ Hx′x′

]j [
gx

I

]
+
[
Hy′
]j

gxx

� [η
∂Σ
∂θi

η′
] (B.14)

or, for ∂Bj

∂θi
, if we use the same matrix forH·· as in Equation (B.8),

∂Bj

∂θi
= sum

∂gx
∂θi

0
0
0

T

Ψj

gx

0
I
0

+

gx

0
I
0

T

Ψj

∂gx
∂θi

0
0
0

+

gx

0
I
0

T

dΨj

dθi

gx

0
I
0

+
d
[
Hy′
]j

dθi
gxx +

[
Hy′
]j ∂gxx

∂θi

� [ηΣη′
]

+ sum

gx

0
I
0

T

Ψj

gx

0
I
0

+
[
Hy′
]j

gxx

�
[

η
∂Σ
∂θi

η′
]
 (B.15)

since Σ = ΓΓ′, we have ∂Σ
∂θi

= ∂Γ
∂θi

Γ′ + Γ
(

∂Γ
∂θi

)′
.

Here for
d
[
Hy′

]j

dθi
gxx and

[
Hy′
]j ∂gxx

∂θi
we first squeeze the second and the third dimen-

sions of gxx matrix, and then reshape the result coming from matrix multiplication.

46

Appendix C Sequential Solution and Derivative

Given the previous sections Appendices A and B this section derives the {x̂t, ŷt}T
t=1 and

dx̂t
dθ , dŷt

dθ , dx̂t
dx0

, dŷt
dx0

, and dx̂t
dε , dŷt

dε for all t = 1, . . . T. These are conditional on a particular ε, θ,
and x̂0.

C.1 Solution

The system could be either linear or non-linear. For non-linear systems we need to apply
pruning by shutting down the higher-order effect of the shocks. This is to preserve the
monotonicity of likelihood in shocks.

First-order (linear) ones:

ŷt = gx x̂t (C.1)

x̂t+1 = hx x̂t + ηεt+1 (C.2)

Second-order (non-linear) ones (i = 1, . . . , ny and j = 1, . . . , nx):

x̂ f
t+1 = hx x̂ f

t + ηεt+1 (C.3)

[ŷt]
i = [gx x̂t]

i +
1
2

(
x̂ f

t

)T
[gxx]

i x̂ f
t +

1
2
[gσσ]

i (C.4)

[x̂t+1]
j = [hx x̂t]

j +
1
2

(
x̂ f

t

)T
[hxx]

j x̂ f
t +

1
2
[hσσ]

j + [ηεt+1]
j (C.5)

x̂ f
0 = x̂0 (C.6)

C.2 Derivatives

Parameters We derive ∂x̂t
∂θi

, ∂ŷt
∂θi

.

∂x̂t

∂θi
=

∂ [h (x̂t−1; θ) + ηεt]

∂θi

= h1 (x̂t−1; θ)
∂x̂t−1

∂θi
+ h2,i (x̂t−1; θ)

= h1 (x̂t−1; θ) h1 (x̂t−2; θ)
∂x̂t−2

∂θi
+ h1 (x̂t−1; θ) h2,i (x̂t−2; θ) + h2,i (x̂t−1; θ)

...

=
t−1

∑
j=0

[
t−1

∏
k=j+1

h1 (x̂k; θ)

]
h2,i
(
x̂j; θ

)
(C.7)

47

∂ŷt

∂θi
=

∂ [g (x̂t; θ)]

∂θi

= g1 (x̂t; θ)
∂x̂t

∂θi
+ g2,i (x̂t; θ) (C.8)

In first-order (linear) case, we use the following recursion for ∂x̂t
∂θi

, ∂ŷt
∂θi

,

∂x̂t+1

∂θi
= hx

∂x̂t

∂θi
+

∂hx

∂θi
x̂t (C.9)

∂ŷt

∂θi
= gx

∂x̂t

∂θi
+

∂gx

∂θi
x̂t (C.10)

∂x̂0

∂θi
= 0 (C.11)

In second-order (nonlinear) case with pruning, we use the following recursion,

∂x̂ f
t+1

∂θi
= hx

∂x̂ f
t

∂θi
+

∂hx

∂θi
x̂ f

t (C.12)

∂x̂ f
0

∂θi
= 0 (C.13)[

∂x̂t+1

∂θi

]k
=

[
hx

∂x̂t

∂θi

]k
+

[
∂hx

∂θi
x̂t

]k

+
1
2

(
∂x̂ f

t
∂θi

)T

[hxx]
k x̂ f

t +
1
2

(
x̂ f

t

)T
[

∂hxx

∂θi

]k
x̂ f

t +
1
2

(
x̂ f

t

)T
[hxx]

k ∂x̂ f
t

∂θi
+

1
2

[
∂hσσ

∂θi

]k

(C.14)[
∂ŷt

∂θi

]j
=

[
gx

∂x̂t

∂θi

]j
+

[
∂gx

∂θi
x̂t

]j

+
1
2

(
∂x̂ f

t
∂θi

)T

[gxx]
j x̂ f

t +
1
2

(
x̂ f

t

)T
[

∂gxx

∂θi

]j
x̂ f

t +
1
2

(
x̂ f

t

)T
[gxx]

j ∂x̂ f
t

∂θi
+

1
2

[
∂gσσ

∂θi

]j

(C.15)[
∂x̂0

∂θi

]k
= 0 (C.16)

where k = 1, . . . , nx, j = 1, . . . , ny.

48

Shocks From the chain rule we have

∂x̂t

∂εi
=

∂h (x̂t−1)

∂x̂t−1

∂x̂t−1

∂εi

=

(
t−1

∏
j=i

∂h
(
x̂j
)

∂x̂j

)
η (C.17)

∂ŷt

∂εi
=

∂g (x̂t)

∂x̂t

∂x̂t

∂εi

=
∂g (x̂t)

∂x̂t

(
t−1

∏
j=i

∂h
(
x̂j
)

∂x̂j

)
η (C.18)

In first-order (linear) case, we use the following recursions for ∂x̂t
∂εi

and ∂ŷt
∂εi

where t > i,

∂x̂t+1

∂εi
= hx

∂x̂t

∂εi
(C.19)

∂ŷt

∂εi
= gx

∂x̂t

∂εi
(C.20)

∂x̂i

∂εi
= η (C.21)

For second-order (non-linear) pruning case, we use the following recursions for ∂x̂t
∂εi

and ∂ŷt
∂εi

where t > i,

∂x̂ f
t+1

∂εi
= hx

∂x̂ f
t

∂εi
(C.22)[

∂ŷt

∂εi

]j
=

[
gx

∂x̂t

∂εi

]j
+

1
2

(
∂x̂ f

t
∂εi

)T

[gxx]
j x̂ f

t +
1
2

(
x̂ f

t

)T
[gxx]

j ∂x̂ f
t

∂εi
(C.23)

[
∂x̂t+1

∂εi

]k
=

[
hx

∂x̂t

∂εi

]k
+

1
2

(
∂x̂ f

t
∂εi

)T

[hxx]
k x̂ f

t +
1
2

(
x̂ f

t

)T
[hxx]

k ∂x̂ f
t

∂εi
(C.24)

∂x̂ f
i

∂εi
= η (C.25)

∂x̂i

∂εi
= η (C.26)

49

Initial Condition And apply chain rule we have

∂x̂t

∂x̂0
=

∂ [h (x̂t−1; θ) + ηεt]

∂x̂0
=

∂h (x̂t−1; θ)

∂x̂t−1

∂x̂t−1

∂x̂0
(C.27)

∂ŷt

∂x̂0
=

∂g (x̂t; θ)

∂x̂0
=

∂g (x̂t; θ)

∂x̂t

∂x̂t

∂x̂0
(C.28)

where for linear case,

∂ŷt

∂x̂0
= gx

∂x̂t

∂x̂0
(C.29)

∂x̂t+1

∂x̂0
= hx

∂x̂t

∂x̂0
(C.30)

∂x̂0

∂x̂0
= I (C.31)

and for second-order case,

∂x̂ f
t+1

∂x̂0
= hx

∂x̂ f
t

∂x̂0
(C.32)

∂x̂ f
0

∂x̂0
= I (C.33)[

∂x̂t+1

∂x̂0

]k
=

[
hx

∂x̂t

∂x̂0

]k
+

1
2

(
∂x̂ f

t
∂x̂0

)T

[hxx]
k x̂ f

t +
1
2

(
x̂ f

t

)T
[hxx]

k ∂x̂ f
t

∂x̂0
(C.34)

[
∂ŷt

∂x̂0

]j
=

[
gx

∂x̂t

∂x̂0

]j
+

1
2

(
∂x̂ f

t
∂x̂0

)T

[gxx]
j x̂ f

t +
1
2

(
x̂ f

t

)T
[gxx]

j ∂x̂ f
t

∂x̂0
(C.35)

∂x̂0

∂x̂0
= I (C.36)

Appendix D Kalman filter and its derivatives

For linear Gaussian state space models, we can evaluate the series of posterior distribu-
tions of the latent states, and hence the marginal likelihood by Kalman filter. We compute
the derivatives associated with this whole process as well.

Kalman filter To run Kalman filter, in addition to the initial condition x̂0 we need the
prior covariance matrix of it, P0. A natural choice of P0 is the solution to the Lyapunov
equation

hxP0h′x − P0 + ηΣη′ = 0 (D.1)

50

For notation simplicity, we define G = Q

[
gx

I

]
. Let the constant loadings of steady

state values be H. Then the formula to update with time period t data follows the recur-
sion,

xt|t−1 = hxxt−1 (D.2)

Pt|t−1 = hxPt−1h′x + ηΣη′ (D.3)

zt = Gxt|t−1 + Hū (D.4)

Vt = GPt|t−1G′ + Ω (D.5)

zt ∼ N (zt, Vt) (D.6)

xt = xt|t−1 + Pt|t−1G′V−1
t (zt − zt) (D.7)

Pt = Pt|t−1 − P′t|t−1G′V−1
t GPt|t−1 (D.8)

Derivatives By differentiating the Lyapunov equation we compute ∂P0
∂θi

from another
Lyapunov equation,

hx
∂P0

∂θi
h′x −

∂P0

∂θi
+

(
∂hx

∂θi
P0h′x + hxP0

∂h′x
∂θi

+ η
∂Σ
∂θi

η′
)
= 0

We also track the derivatives of each of the quantities above, with respect to the pa-
rameters that we are interested in, θ.

51

∂xt|t−1

∂θi
=

∂hx

∂θi
xt−1 + hx

∂xt−1

∂θi
(D.9)

∂Pt|t−1

∂θi
=

∂hx

∂θi
Pt−1h′x + hx

∂Pt−1

∂θi
hx + hxPt−1

(
∂hx

∂θi

)T
+ η

∂Σ
∂θi

η′ (D.10)

∂zt

∂θi
=

∂G
∂θi

xt|t−1 + G
∂xt|t−1

∂θi
+ H

∂ū
∂θi

(D.11)

∂Vt

∂θi
=

∂G
∂θi

Pt|t−1G′ + G
∂Pt|t−1

∂θi
G′ + GPt|t−1

(
∂G
∂θi

)T
(D.12)

z̃t ∼ N (zt, Vt)

∂xt

∂θi
=

∂xt|t−1

∂θi
+

∂Pt|t−1

∂θi
G′V−1

t (z̃t − zt) + Pt|t−1

(
∂G
∂θi

)T
V−1

t (z̃t − zt)

− Pt|t−1G′V−1
t

∂Vt

∂θi
V−1

t (z̃t − zt)− Pt|t−1G′V−1
t

∂zt

∂θi
(D.13)

∂Pt

∂θi
=

∂Pt|t−1

∂θi
−

∂Pt|t−1

∂θi

′
G′V−1

t GPt|t−1 − P′t|t−1

(
∂G
∂θi

)T
V−1

t GPt|t−1

+ P′t|t−1G′V−1
t

∂Vt

∂θi
V−1

t GPt|t−1 − P′t|t−1G′V−1
t

∂G
∂θi

Pt|t−1 − P′t|t−1G′V−1
t G

∂Pt|t−1

∂θi
(D.14)

52

	Introduction
	Likelihood Function and Evaluation
	The State space Model
	Marginal vs. Joint Likelihood
	An AR(1) Example with Measurement Noise

	Sampling Method: the Hamiltonian Monte Carlo
	Gradients to DSGE Solutions
	Notations
	Solution Gradients

	Implementation
	Main Results
	The Real Business Cycle Model
	Estimating fernandez2021estimating

	Conclusion
	Perturbation Solution and Notation
	Tensor Notations
	Definitions
	First-order Solution
	Second-order Solution

	Perturbation Solution Derivatives
	Derivative of the Steady States
	First-order Results
	Second-order Results

	Sequential Solution and Derivative
	Solution
	Derivatives

	Kalman filter and its derivatives

